author personal copy - uok.ac.ireng.uok.ac.ir/bevrani/bevrani/81.pdfauthor personal copy. 63 [24]l....

47
Author Personal Copy Author Personal Copy

Upload: others

Post on 10-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Autho

r Per

sona

l Cop

y

Autho

r Per

sona

l Cop

y

Autho

r Per

sona

l Cop

y

Autho

r Per

sona

l Cop

y

PI

Autho

r Per

sona

l Cop

y

1...................................................

LFC

MPC

Autho

r Per

sona

l Cop

y

non-reheat reheat

non-reheat

N

N

i

i

LFCi

MPC

Aut

hor P

erso

nal C

opy

PI

Autho

r Per

sona

l Cop

y

1

-

LFCAGC

LFC

3LFC

LFC

-

PI

PI

LFC

MPC4

MPC

1 Load Frequency Control 2 Automatic Generation Control 3 tie-line power flows 4 Model Predictive Control

Autho

r Per

sona

l Cop

y

2

5

-

PI

5 Distributed model predictive control

Autho

r Per

sona

l Cop

y

Aut

hor P

erso

nal C

opy

LFCAGC

-

-

1Load Frequency Control

2Automatic Generation Control

3primary frequency control

4supplementary frequency control

5speed governor

6hydraulicamplifier

7speed changer

Autho

r Per

sona

l Cop

y

ΔPC

PI

ΔPLΔf-

ΔPm

Autho

r Per

sona

l Cop

y

ΔPm−ΔPLΔf

Δ Δ Δ

Δ

ΔfΔPmΔPLHD

Δ Δ Δ Δ

Autho

r Per

sona

l Cop

y

LFCRRh

TgTtTrTtrTghTth

8Speed-droop characteristic

Autho

r Per

sona

l Cop

y

non-reheat reheat

non-reheat

الف

ب

ج

Autho

r Per

sona

l Cop

y

non-reheat

0.02 pu

Autho

r Per

sona

l Cop

y

-

LFC

LFC

LFC

N

X12δ1δ2V1V2

δ δ

9tie-line power signal

Autho

r Per

sona

l Cop

y

N

δ

δ

Δδ Δδ

T12

| || |

δ

)

Δ ∫Δ ∫Δ )

Δf1Δf2

Δ

Δ Δ )

Δ

Δ Δ )

Δ Δ Δ

[ ∑ Δ

∑ Δ

]

Autho

r Per

sona

l Cop

y

N

Δ ∑Δ

[

∑ Δ

∑ Δ

]

N

ΔPtie,i

ΔPmΔPL

iN

Autho

r Per

sona

l Cop

y

iACE

i

10

tie-line flow deviation 11

area control error

Δ Δ

Autho

r Per

sona

l Cop

y

i

ACE

K(s)

LFC

LFC

LFC

i

12

Participation Factor

Autho

r Per

sona

l Cop

y

LFCk

LFCi

LFCN

Autho

r Per

sona

l Cop

y

Aut

hor P

erso

nal C

opy

-

MAC

MPC

-

1Richalet

2Model Algorithm Control

3Online

Autho

r Per

sona

l Cop

y

MPC

-

-

],[ 21 NN1N-

2N

2N

4Prediction Horizon

5Moving Horizon

6Short Horizon

7Receding Horizon

8 Infinite Horizon

Autho

r Per

sona

l Cop

y

uN

uN

uN

1uN

CVMPC

MVMPC

DV-

MPC

MPC

9Control Horizon

10Controlled variable

11Manipulated Variable

12Disturbance Variable

Autho

r Per

sona

l Cop

y

-

MPC

MPCMV

CV

MPC

13

Manipulated Variables

M N1

N2

Autho

r Per

sona

l Cop

y

MPC

MPC

14

Model-Plant mismatch

Autho

r Per

sona

l Cop

y

MPC

MPC

MPC

MPC

_

+

CVMV

MPC

Autho

r Per

sona

l Cop

y

MPC

MPC

MPC

15

First-Principle Model 16

Empirical Model 17

Quadratic Norm 18

Soft Constraint

Autho

r Per

sona

l Cop

y

QR

MPC

yw

u

2

1 1

2

2

21 )1()()()|()(),,(N

Ni

N

i

u

u

ituiitwtityiNNNJ

N1N2Nu

N1N2

19

Hard Constraint

Autho

r Per

sona

l Cop

y

tytyy

tdututudu

tutuu

)(

)1()(

)(

maxmin

maxmin

maxmin

Autho

r Per

sona

l Cop

y

MPC

MPC

MPC

MPC

pH

NMPC

NMPC

-

20

Batch Process 21

Nonlinear Model Predictive Control

Autho

r Per

sona

l Cop

y

Autho

r Per

sona

l Cop

y

PI

non-reheat

Autho

r Per

sona

l Cop

y

Autho

r Per

sona

l Cop

y

PI

PILMIGALMI

ILMIPI

PI -

PI

-

PI

MPC

PI

PI

1 Genetic Algorithms

2 Linear Matrix Inequalities

3Iterative Linear Matrix Inequalities

4 Identification Toolbox

Autho

r Per

sona

l Cop

y

PI

0.0371 0.04650.0380

-0.2339-0.2672-0.3092

PIΔPL1 =

100 MW (0.1 p.u.)ΔPL2 = 80 MW (0.08 p.u.)ΔPL3 = 50 MW (0.05 p.u.)

Δf-

0 2 4 6 8 10 12 14 16 18 20-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

D f (

Hz)

0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

D P

c (

p.u

.)

Time(Sec.)

MPC

Robust PI

Autho

r Per

sona

l Cop

y

PI

PI

0 2 4 6 8 10 12 14 16 18 20-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

D f (

Hz)

0 2 4 6 8 10 12 14 16 18 20-0.02

0

0.02

0.04

0.06

0.08

D P

c (

p.u

.)

Time(Sec.)

MPC

Robust PI

0 2 4 6 8 10 12 14 16 18 20-0.1

-0.08

-0.06

-0.04

-0.02

0

D f (

Hz)

0 2 4 6 8 10 12 14 16 18 20

0

0.02

0.04

0.06

D P

c (

p.u

.)

Time(Sec.)

MPC

Robust PI

Autho

r Per

sona

l Cop

y

ΔPL1 = 100 MW (0.1 p.u.)ΔPL2 =ΔPL3 =

-

PI

0 2 4 6 8 10 12 14 16 18 20

-0.1

-0.05

0

D f (

Hz)

0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

D P

c (

p.u

.)

Time(Sec.)

MPC

Robust PI

0 2 4 6 8 10 12 14 16 18 20

-0.1

-0.05

0

D f (

Hz)

0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

D P

c (

p.u

.)

Time(Sec.)

MPC

Robust PI

Autho

r Per

sona

l Cop

y

PI

PI

PI

0 2 4 6 8 10 12 14 16 18 20

-0.1

-0.05

0

D f (

Hz)

0 2 4 6 8 10 12 14 16 18 20

0

0.02

0.04

0.06

0.08

0.1

D P

c (

p.u

.)

Time(Sec.)

MPC

Robust PI

Autho

r Per

sona

l Cop

y

53

PI

PI

PI-

PI

Autho

r Per

sona

l Cop

y

63

[1]Bevrani H., "Robust Power System Load-frequency Control, " Springer, NY, 2009.

[2] JALEELI N., EWART D.N., FINK L.H.: „Understanding automatic generation

control‟, IEEE Trans. Power Syst., 1992, 7, (3), pp. 1106–1112

[3] RERKPREEDAPONG D., HASANOVIC A., FELIACHI A.: „Robust load

frequency control using genetic algorithms and linear matrix inequalities‟, IEEE

Trans. Power Syst., 2003, 2, (18), pp. 855–861

[4] BEVRANI H., MITANI Y., TSUJI K.: „Robust decentralised load– frequency

control using an iterative linear matrix inequalities algorithm‟, IEE Proc. Gener.

Transm.Distrib., 2004, 3, (151), pp. 347–354

[5] HIYAMA T.: „Design of decentralised load–frequency regulators for

interconnected power systems‟, IEE Proc. Gener. Transm.Distrib., 1982, 129, pp.

17–23

[6] FELIACHI A.: „Optimal decentralized load frequency control‟, IEEE Trans.

Power Syst., 1987, 2, pp. 379–384

[7] LIAW C.M., CHAO K.H.: „On the design of an optimal automatic generation

controller for interconnected power systems‟, Int. J. Control, 1993, 58, pp. 113–

127

[8] WANG Y., ZHOU R., WEN C.: „Robust load –frequency controller design for

power systems‟, IEE Proc. C Gener.Transm.Distrib., 1993, 140, (1), pp. 11–16

[9] LIM K.Y., WANG Y., ZHOU R.: „Robust decentralized load frequency control

of multi-area power systems‟, IEEProc. Gener.Transm.Distrib., 1996, 5, (143), pp.

377–386

[10] ISHI T., SHIRAI G., FUJITA G.: „Decentralized load frequency based on H-

inf control‟, Electr. Eng. Jpn., 2001, 3, (136), pp. 28–38

[11] KAZEMI M.H., KARRARI M., MENHAJ M.B.: „Decentralized robust

adaptive-output feedback controller for power system load frequency control‟,

Electr. Eng. J., 2002, 84,pp. 75–83.

[12] EL-SHERBINY M.K., EL-SAADY G., YOUSEF A.M.: „Efficient fuzzy logic

load– frequency controller‟, Energy Convers.Manage., 2002, 43, pp. 1853–1863

Autho

r Per

sona

l Cop

y

63

[13] Bevrani, H., Mitani, Y., and Tsuji, K.: „Sequential design of decentralized

load-frequency controllers using m-synthesis and analysis‟, Energy Convers.

Manage., 2004, 45, (6), pp. 865–881

[14] Yang, T.C., Cimen, H., and Zhu, Q.M.: „Decentralised load frequency

controller design based on structured singular values‟, IEE Proc.,Gener.

Transm.Distrib., 1998, 145, (1), pp. 7–14

[15] Bevrani, H.: „Application of Kharitonov‟s theorem and its results in load-

frequency control design‟, Res. Sci. J. Electr. (BARGH), 1998, 24, pp. 82–95

[16] BEVRANI H., HIYAMAT.: „Robust load–frequency regulation: a real-time

laboratory experiment‟, Opt. Control Appl.Methods, 2007, 28, (6), pp. 419–433

[17]Daneshfar F, Bevrani H., HIYAMAT.: „Load–frequency control: a GA-based

multi-agent reinforcement learning‟, IET Gener. Transm.Distrib., 2010, 4, (1), pp.

13–26

[18] E.F. Camacho and C. Bordons, Model Predictive Control, Springer-Verlag,

London, 2nded, 2004.

[19]D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. "Constrained model predictive control: stability and optimality," Automatica, vol. 36, pp. 789-814, 2000.

[20] S.J. Qin, T.A. Badgwell, “A survey of industrial model predictive control

technology”, Control Engineering Practice, vol. 11, No 7, pp. 733-764, 2003

[21] G. Shafiee, M.M. Arefi, M.R. Jahed-Motlagh, A.A. Jalali, “ Model Predictive

control of a highly nonlinear process based on piecewise linear Wiener

models, “1st IEEE int. Conf. E-Learning in Indust. Elec., pp. 113–118, 2006.

[22] G. Shafiee, M.M. Arefi, M.R. Jahed-Motlagh, A.A. Jalali," Nonlinear

predictive control of a polymerization reactor based on piecewise linear

Wiener model,"Chemical Engineering Journal, Vol. 143, Issues 1-3, PP. 282-292,

15 September 2008.

[23]A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright, "Distributed

MPC Strategies With Application to Power System Automatic Generation

Control,"IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,

VOL. 16, NO. 6, NOVEMBER 2008.

Autho

r Per

sona

l Cop

y

63

[24]L. Kong, L. Xiao, "A New Model Predictive Control Scheme-Based Load-

Frequency Control, "IEEE International Conference on Control and

Automation, 2007.

[25]I.A. Hiskens and B. Gong, "Voltage Stability Enhancement Via Model

Predictive Control of Load, "Intelligent Automation and Soft Computing, Vol. 12,

No. X, pp. 1-8, 2006.

[26]B. Otomega, A. Marinakis, M. Glavic, and T. V. Cutsem, "Model Predictive

Control to Alleviate Thermal Overloads, " IEEE TRANSACTIONS ON POWER

SYSTEMS, VOL. 22, NO. 3, AUGUST 2007.

[27] S.J. Qin and T.A. Badgwell, “An Overview of Nonlinear Model Predictive

Applications,” In IFAC Workshop onNonlinear Model Predictive Control,

Assessment and Future Direction, Ascona, Switzerland, 1998.

[28] M.A. Henson, “Nonlinear model predictive control: current status and future directions, ”Computers and Chemical engineering, vol. 23, pp. 187-202, 1998.

[29] S. Piche, B.S. Rodsari, D. Johnson and M. Gerules, “Nonlinear Model

Predictive Control Using Neural Network,” IEEE Control Systems Magazine,

pp. 53–62, 2000.

[30] P. M. Anderson and A. A. Fouad, Power System Control and Stability. USA: IEEE Press,2nd Edition, 2003.

Autho

r Per

sona

l Cop

y

FINAL REPORT OF RESEARCH PROJECT

Faculty:Engineering

Department: Electrical Engineering

Title: Load-frequency predictive control of power systems

By: Qobad Shafiee

Coworker: Hassan Bevrani

Aproval Date: 24 May 2009

Date of final: 15 June 2010 Autho

r Per

sona

l Cop

y

University of Kurdistan Department of Electrical Engineering

Project

Load-frequency Predictive control of power systems

By

Qobad Shafiee

Coworker name

Hassan Bevrani

June 2010

Autho

r Per

sona

l Cop

y