author’s choice © 2013 by the american society for ... · glycoproteomic analysis of the...

23
Glycoproteomic Analysis of the Secretome of Human Endothelial Cells* S Xiaoke Yin‡, Marshall Bern§, Qiuru Xing‡, Jenny Ho¶, Rosa Viner, and Manuel Mayr‡** Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free medium before activation by phorbol-12-my- ristate-13 acetate, a commonly used secretagogue that induces exocytosis of endothelial vesicles. In addition to 123 secreted proteins, the secretome was particularly rich in membrane proteins. Glycopeptides were enriched by zwitterionic hydrophilic interaction liquid chromatography resins and were either treated with PNGase F and H 2 18 O or directly analyzed using a recently developed workflow combining higher-energy C-trap dissociation (HCD) with electron-transfer dissociation (ETD) for a hybrid linear ion trap– orbitrap mass spectrometer. After deglycosylation with PNGase F in the presence of H 2 18 O, 123 unique pep- tides displayed 18 O-deamidation of asparagine, corre- sponding to 86 proteins with a total of 121 glycosylation sites. Direct glycopeptide analysis via HCD-ETD identified 131 glycopeptides from 59 proteins and 118 glycosylation sites, of which 41 were known, 51 were predicted, and 26 were novel. Two methods were compared: alternating HCD-ETD and HCD-product-dependent ETD. The former detected predominantly high-intensity, multiply charged glycopeptides, whereas the latter preferentially selected precursors with complex/hybrid glycans for fragmenta- tion. Validation was performed by means of glycoprotein enrichment and analysis of the input, the flow-through, and the bound fraction. This study represents the most comprehensive characterization of endothelial protein se- cretion to date and demonstrates the potential of new HCD-ETD workflows for determining the glycosylation status of complex biological samples. Molecular & Cel- lular Proteomics 12: 10.1074/mcp.M112.024018, 1–23, 2013. Cardiovascular disease manifests predominantly as myo- cardial ischemia, heart failure, stroke, aortic aneurysm, and peripheral vascular disease and leads to the majority of deaths and disabilities worldwide. Endothelial cells (ECs) con- stitute the inner lining of all blood vessels and form the inter- face between the circulation and the vascular wall (1). The endothelial monolayer is pivotal for maintaining vascular ho- meostasis through a balance of endothelium-derived factors (2, 3). ECs are preferred targets of cardiovascular risk factors such as hypercholesterolemia, diabetes, hypertension, and smoking (1, 4). Repetitive injury is associated with a varying degree of endothelial dysfunction. Alterations in its anticoag- ulant and anti-inflammatory properties leave the vasculature susceptible to disease (5) and play a key role in the initiation and progression of cardiovascular disease (6). Previous proteomics studies (7–13), including one by our group (8), have investigated the secretome of unstimulated human umbilical vein ECs (HUVECs), the most widely used ECs in cardiovascular research. Only two studies have ex- plored the secretome of HUVECs upon activation by shear stress (10) or with statin treatment (13) thus far. One study used human microvascular ECs (9), which represent a distinct population of ECs from small vessels. Yet many factors se- creted by ECs were not identified, probably because of their low abundance. In this study, we used a secretagogue, phor- bol ester phorbol-12-myristate-13-acetate (PMA) (14, 15), to induce maximal protein release from serum-starved HUVECs over 45 min. In addition, we applied three different proteomic strategies for the analysis of glycoproteins/glycopeptides to further enrich secreted proteins and characterize their glyco- sylation sites. EXPERIMENTAL PROCEDURES EC Culture—HUVECs (Lonza Group Ltd., Basel, Switzerland) were cultured on 0.1% gelatin-coated flasks in M199 medium supple- mented with 1 ng/ml endothelial cell growth factor (Sigma), 3 g/ml endothelial growth supplement from bovine neural tissue (Sigma), 10 U/ml heparin, 1.25 g/ml thymidine, 10% fetal bovine serum (A15– 108, PAA Laboratories, Velizy-Villacoublay, France), and 100 g/ml penicillin and streptomycin in a humidified incubator supplemented with 5% CO 2 at 37 °C. The cells were subcultured every 2 to 3 days at a ratio of 1:4 (16). Conditioned Medium Collection—HUVECs were cultured in com- plete medium until confluent. Then, they were washed and incubated in M199 medium for 30 min twice before stimulation with 50 nM PMA (Sigma) in M199 medium for 45 min. The control group was incubated with M199 medium in the absence of PMA for 45 min. Conditioned media were collected and stored at 80 °C for further analysis. Immunofluorescence Staining—HUVECs were cultured in Nunc chamber slides (Sigma-Aldrich) for 3 days. HUVECs were stimulated From ‡The King’s British Heart Foundation Centre, King’s College London, London SE5 9NU, UK; §Protein Metrics, San Carlos, CA 94070; ¶Thermo Fisher Scientific, Hemel Hempstead, HP2 7GE, UK; Thermo Fisher Scientific, San Jose, CA 95134 Author’s Choice—Final version full access. Received September 12, 2012, and in revised form, January 18, 2013 Published, MCP Papers in Press, January 23, 2013, DOI 10.1074/mcp.M112.024018 tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S4 19/2/13 11:49 4/Color Figure(s) 1– 6 ARTNO: M112.024018 Research Author’s Choice © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Molecular & Cellular Proteomics 12.4 1 AQ: P AQ: A AQ: B

Upload: vohanh

Post on 01-Mar-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Glycoproteomic Analysis of the Secretome ofHuman Endothelial Cells*□S

Xiaoke Yin‡, Marshall Bern§, Qiuru Xing‡, Jenny Ho¶, Rosa Viner�, and Manuel Mayr‡**

Previous proteomics studies have partially unraveled thecomplexity of endothelial protein secretion but have notinvestigated glycosylation, a key modification of secretedand membrane proteins for cell communication. In thisstudy, human umbilical vein endothelial cells were kept inserum-free medium before activation by phorbol-12-my-ristate-13 acetate, a commonly used secretagogue thatinduces exocytosis of endothelial vesicles. In addition to123 secreted proteins, the secretome was particularly richin membrane proteins. Glycopeptides were enriched byzwitterionic hydrophilic interaction liquid chromatographyresins and were either treated with PNGase F and H2

18Oor directly analyzed using a recently developed workflowcombining higher-energy C-trap dissociation (HCD) withelectron-transfer dissociation (ETD) for a hybrid linear iontrap–orbitrap mass spectrometer. After deglycosylationwith PNGase F in the presence of H2

18O, 123 unique pep-tides displayed 18O-deamidation of asparagine, corre-sponding to 86 proteins with a total of 121 glycosylationsites. Direct glycopeptide analysis via HCD-ETD identified131 glycopeptides from 59 proteins and 118 glycosylationsites, of which 41 were known, 51 were predicted, and 26were novel. Two methods were compared: alternatingHCD-ETD and HCD-product-dependent ETD. The formerdetected predominantly high-intensity, multiply chargedglycopeptides, whereas the latter preferentially selectedprecursors with complex/hybrid glycans for fragmenta-tion. Validation was performed by means of glycoproteinenrichment and analysis of the input, the flow-through,and the bound fraction. This study represents the mostcomprehensive characterization of endothelial protein se-cretion to date and demonstrates the potential of newHCD-ETD workflows for determining the glycosylationstatus of complex biological samples. Molecular & Cel-lular Proteomics 12: 10.1074/mcp.M112.024018, 1–23,2013.

Cardiovascular disease manifests predominantly as myo-cardial ischemia, heart failure, stroke, aortic aneurysm, and

peripheral vascular disease and leads to the majority ofdeaths and disabilities worldwide. Endothelial cells (ECs) con-stitute the inner lining of all blood vessels and form the inter-face between the circulation and the vascular wall (1). Theendothelial monolayer is pivotal for maintaining vascular ho-meostasis through a balance of endothelium-derived factors(2, 3). ECs are preferred targets of cardiovascular risk factorssuch as hypercholesterolemia, diabetes, hypertension, andsmoking (1, 4). Repetitive injury is associated with a varyingdegree of endothelial dysfunction. Alterations in its anticoag-ulant and anti-inflammatory properties leave the vasculaturesusceptible to disease (5) and play a key role in the initiationand progression of cardiovascular disease (6).

Previous proteomics studies (7–13), including one by ourgroup (8), have investigated the secretome of unstimulatedhuman umbilical vein ECs (HUVECs), the most widely usedECs in cardiovascular research. Only two studies have ex-plored the secretome of HUVECs upon activation by shearstress (10) or with statin treatment (13) thus far. One studyused human microvascular ECs (9), which represent a distinctpopulation of ECs from small vessels. Yet many factors se-creted by ECs were not identified, probably because of theirlow abundance. In this study, we used a secretagogue, phor-bol ester phorbol-12-myristate-13-acetate (PMA) (14, 15), toinduce maximal protein release from serum-starved HUVECsover 45 min. In addition, we applied three different proteomicstrategies for the analysis of glycoproteins/glycopeptides tofurther enrich secreted proteins and characterize their glyco-sylation sites.

EXPERIMENTAL PROCEDURES

EC Culture—HUVECs (Lonza Group Ltd., Basel, Switzerland) werecultured on 0.1% gelatin-coated flasks in M199 medium supple-mented with 1 ng/ml endothelial cell growth factor (Sigma), 3 �g/mlendothelial growth supplement from bovine neural tissue (Sigma), 10U/ml heparin, 1.25 �g/ml thymidine, 10% fetal bovine serum (A15–108, PAA Laboratories, Velizy-Villacoublay, France), and 100 �g/mlpenicillin and streptomycin in a humidified incubator supplementedwith 5% CO2 at 37 °C. The cells were subcultured every 2 to 3 daysat a ratio of 1:4 (16).

Conditioned Medium Collection—HUVECs were cultured in com-plete medium until confluent. Then, they were washed and incubatedin M199 medium for 30 min twice before stimulation with 50 nM PMA(Sigma) in M199 medium for 45 min. The control group was incubatedwith M199 medium in the absence of PMA for 45 min. Conditionedmedia were collected and stored at �80 °C for further analysis.

Immunofluorescence Staining—HUVECs were cultured in Nuncchamber slides (Sigma-Aldrich) for 3 days. HUVECs were stimulated

From ‡The King’s British Heart Foundation Centre, King’s CollegeLondon, London SE5 9NU, UK; §Protein Metrics, San Carlos, CA94070; ¶Thermo Fisher Scientific, Hemel Hempstead, HP2 7GE, UK;�Thermo Fisher Scientific, San Jose, CA 95134

Author’s Choice—Final version full access.Received September 12, 2012, and in revised form, January 18,

2013Published, MCP Papers in Press, January 23, 2013, DOI

10.1074/mcp.M112.024018

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

Research

Author’s Choice © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.This paper is available on line at http://www.mcponline.org

Molecular & Cellular Proteomics 12.4 1

AQ: P

AQ: A

AQ: B

with 50 nM PMA in M199 medium for 45 min or incubated with M199medium for 45 min. The cells were fixed with 4% formaldehyde inPBS for 10 min, permeabilized with 0.1% Triton X-100 in PBS for 5min, and blocked in 5% fetal bovine serum in PBS for 30 min at 37 °C.Following 1 h of incubation with the primary antibodies, VE-cadherin(ab33168, Abcam, Cambridge, UK), and von Willebrand factor (vWF)(sc-8068, Santa Cruz Biotechnology, Santa Cruz, CA) at 37 °C, anAlexa Fluor® 594 conjugated donkey anti-rabbit IgG and an AlexaFluor® 488 conjugated donkey anti-goat IgG, respectively, wereadded, and the cells were incubated at 37 °C for 30 min. Nuclei werecounterstained with 4�,6-diamidino-2-phenylindole (D9542, Sigma)for 5 min. The slide was mounted in fluorescence mounting medium(DAKO, Denmark A/S, Glostrup, Denmark) and examined with anAxioPlan 2 fluorescence microscope (Carl Zeiss, Thornwood, NY)(17).

Proteomics Profiling of the Secretome—Conditioned media wereconcentrated with an Amicon spin column (3kD MWCO, EDO Milli-pore Corp., Billerica, MA) and separated via 4%–12% Bis-Tris SDS-PAGE (Invitrogen). Proteins were visualized via silver staining(PlusOne silver staining kit for proteins, GE Healthcare). Gel bandswere digested with modified trypsin (Promega Corp., Madison, WI)overnight on a ProGest digestion robot (Digilab Inc., Marlborough,MA) and analyzed via reverse-phase nano-flow HPLC (PepMap C18,3 �m, 100 Å, 25 cm � 75 �m inner diameter column, ThermoScientific) interfaced to an LTQ Orbitrap XL MS (Thermo Scientific)(18).

Deglycosylation—Concentrated media were mixed with deglyco-sylation buffer (150 mM NaCl, 50 mM sodium acetate, 10 mM EDTA,proteinase inhibitors, pH 6.8) supplemented with 0.05U PNGase F(Sigma), chondroitinase ABC (C3667, Sigma), and keratanase(G6920, Sigma) and incubated at 37 °C overnight (19).

Immunoblotting—Concentrated or deglycosylated media wereseparated via 4%–12% Bis-Tris gel (Invitrogen). Proteins were trans-ferred on a nitrocellulose membrane and blocked with 5% bovineserum albumin in PBS. Membranes were incubated with primaryantibody overnight at 4 °C. Secondary antibodies were incubated for1 h at room temperature. After the addition of ECL (GE Healthcare),the film was developed using a Compact X4 Automatic Processor(Xograph Healthcare Ltd., Stonehouse, UK). The following primaryantibodies were used: agrin (sc-25528, Santa Cruz Biotechnology),biglycan (ab54855, Abcam), connective tissue growth factor (sc-25440, Santa Cruz Biotechnology), fibronectin (sc-56391, Santa CruzBiotechnology), and lymphatic vessel endothelial hyaluronic acid re-ceptor 1 (AF2089, R&D Systems).

Difference Gel Electrophoresis—Conditioned media from HUVECstreated with or without PMA were concentrated using an Amicon spincolumn (3kD MWCO, Millipore) and the ReadyPrep 2D clean-up kit(Bio-Rad). The pellet was resuspended in difference gel electropho-resis lysis buffer (30 mM Tris, 8 M urea, 4% w/v CHAPS, proteaseinhibitors, pH 8.5). For each secretome sample, 15 �g of proteinswere labeled with Cy3 or Cy5. A dye swap was performed to excludepreferential labeling. Cellular extracts of HUVECs were labeled withCy2. Cy2-, Cy3-, and Cy5-labeled samples were separated via iso-electric focusing on immobilized pH gradient dry strips (18 cm, pH3–10 NL, GE Healthcare) with 30 KVH. The strips were equilibratedwith 10 mg/ml DTT in equilibration buffer (6 M urea, 2% w/v SDS, 30%v/v glycerol, 50 mM Tris, pH 8.8) for 15 min followed by 48 mg/mliodoacetamide in equilibration buffer for 15 min before separation viaSDS-PAGE at 100 W for 4 h using an Ettan DALTsix vertical electro-phoresis system (GE Healthcare) (20–22). Gels were scanned on anEttan difference gel electrophoresis imager (GE Healthcare). Imageswere overlaid with ImageQuant TL software (GE Healthcare). Com-mon spots present in both the cellular proteome and the secretomewere excised, digested with trypsin, and identified using nano-flow

HPLC-MS/MS. Detailed protocols are available on our researchgroup’s website.

Glycopeptide Enrichment—Conditioned media were desalted viathe use of Zeba spin columns (Thermo Scientific). Proteins were thenreduced by 5 mM DTT and alkylated with 25 mM iodoacetamide. Afteracetone precipitation overnight, the pellet was resuspended in 100mM triethylammonium bicarbonate (pH 8.5, Sigma) and digested withmodified trypsin (Promega) at 37 °C overnight. Peptides were labeledat a ratio of 100 �g peptides/0.8 mg Tandem Mass Tag Zero (TMT0)(Thermo Scientific) according to the manufacturer’s instruction. La-beled peptides were further enriched for glycopeptides using zwitte-rionic hydrophilic interaction liquid chromatography resin (Merck) (23).

LC/MS of Intact Glycopeptides—The glycopeptide enriched frac-tion was separated using the EASY-nLCTM nano-HPLC system(Thermo Scientific) with a Magic C18 spray tip 15 cm � 75 �m innerdiameter column (Bruker-Michrom, Auburn, CA). Gradient elution wasperformed with 4% to 30% acetonitrile in 0.1% formic acid over 60min at a flow rate of 300 nl/min. The samples were analyzed with anOrbitrap Elite hybrid MS with electron-transfer dissociation (ETD)(Thermo Scientific). The following MS and MS/MS settings were used:Fourier transform: MSn automatic gain control target � 5E4; MS/MS � 1 �scans, max ion time � 200 ms; MS � 300–1800 m/z,resolution � 60,000 at m/z 400, MS target � 1E6; dynamic exclu-sion � repeat count 1, duration 30 s, exclusion duration 90 s; higher-energy C-trap dissociation (HCD): collision energy � 35%, resolu-tion � 15,000; MSn target ion trap � 1E4, 2 �scans, max ion time �150 ms; ETD anion automatic gain control target � 2E5, charge-de-pendent ETD reaction time enabled. For alternating HCD-ETD MS/MS, the top 10 ions were analyzed. For HCD-product-dependentETD, the top 10 ions were analyzed via HCD, and product-dependentETD acquisition was triggered by product (oxonium) ions (m/z163.0812 for Hex; m/z 204.0864 for HexNAc; m/z 138.0554 for Hex-NAc fragment ion) (24).

Deglycosylation with PNGase F and H218O—Zwitterionic hydro-

philic interaction liquid chromatography resin enriched glycopeptideswere resuspended in 50 mM ammonium bicarbonate in H2

18O (97atom % 18O, Sigma) and deglycosylated with PNGase F (Sigma) for4 h at 37 °C. The samples were separated via reverse-phase nano-flow HPLC (PepMap C18, 3 �m, 100 Å, 25 cm � 75 �m innerdiameter column, Thermo Scientific) before analysis on an LTQ Or-bitrap XL MS (Thermo Scientific).

Glycoprotein Enrichment and LC/MS—ConA1 lectin resins (ThermoScientific) were used to enrich glycoproteins from concentrated con-ditioned media according to the manufacturer’s protocol. The input,glycoprotein-enriched fraction, and flow-through samples were sub-jected to trypsin digestion. The in-solution digests were separated ona Thermo Scientific Dionex UltiMate 3000 Rapid Separation LC(RSLC) system using a PepMap C18 column (3 �m, 100 Å, 50 cm �75 �m inner diameter column, Thermo Scientific). The rapid separa-tion LC system was interfaced to a Q Exactive MS (Thermo Scientific),and samples were analyzed using a top-10 HCD method.

Database Search and Data analysis—The following parameterswere used for different experiments.

(i) Gel-LC-MS/MS: Peak lists were generated by Mascot daemon(version 2.3.0, Matrix Science Ltd., London, UK) using extract_msn_com.exe and searched against the UniProt/Swiss-Prot mamma-

1 The abbreviations used are: ConA, concanavalin A; EC, endothe-lial cell; ETD, electron-transfer dissociation; GlcNAc, N-acetylgluco-samine; HCD, higher-energy C-trap dissociation; Hex, hexose;HexNAc, N-acetylhexosamine; HUVEC, human umbilical vein endo-thelial cell; PMA, phorbol-12-myristate-13-acetate; PNGase F, pep-tide: N-glycosidase F; TMT0, Tandem Mass Tag Zero; vWF, vonWillebrand factor.

Glycoproteomics of the Endothelial Secretome

2 Molecular & Cellular Proteomics 12.4

AQ: C

AQ: D

AQ: EAQ: F

AQ: G

AQ: H

AQ:H,I

AQ: J

AQ: K

AQ: L

AQ: M

Fn1

AQ: N

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

lian database (version 2012.03, 65,780 entries) using Mascot (version2.3.01, Matrix Science) with peptide tolerance � 10 ppm, MS/MStolerance � 0.8 Da, carbamidomethylation of cysteine as a fixedmodification, oxidation of methionine as a variable modification, anda maximum of two missed cleavage sites. The search results wereloaded into Scaffold software (version 3.6.2, Proteome Software Soft-ware, Inc., Portland, OR). A protein probability greater than 99%, apeptide probability greater than 95%, and a minimum number of twopeptides per protein were applied as filters to generate the protein list.Bovine contaminant proteins are listed separately.

(ii) PNGase F � H218O experiment: Thermo Scientific Proteome

Discoverer software version 1.3 was used to search against theUniProt/Swiss-Prot mammalian database (version 2012.03) usingMascot (version 2.3.01, Matrix Science) with a peptide tolerance of 10ppm; an MS/MS tolerance of 0.8 Da; carbamidomethylation of cys-teine as a fixed modification; oxidation of methionine, TMT0 label onlysine and peptide N-terminus, and deamidation (spontaneousdeamidation in ordinary water) and O18-deamidation (deglycosylationby PNGase F in H2

18O) of asparagine as variable modifications; and amaximum of two missed cleavage sites. Proteome Discoverer pro-duced a custom database containing 136 target proteins based onthis search.

(iii) Orbitrap Elite MS: Raw files were searched against the 136-protein database (along with reversed proteins as decoys) usingByonicTM (25) with a peptide tolerance of 10 ppm; an MS/MS toler-ance of 20 ppm for HCD and 0.6 Da for ETD; the carbamidomethy-lated cysteine, TMT0 label on lysine and peptide N-terminus as fixedmodifications; and oxidation of methionine, deamidation of aspara-gine and glutamine, and phosphorylation of serine and threonine asvariable modifications. ByonicTM allowed one N-glycan modificationon the N-X(not P)-S/T consensus motif per peptide, with mass andcomposition chosen from its “common human” glycan databasecontaining 350 glycan masses up to 6000 Da. Glycan modificationswere verified by the presence of corresponding glycan fragment ions,such as the HexNAc oxonium ion at 204.087 Da in HCD spectra.Peptide sequences were identified by ByonicTM from the ETD spectraand verified manually.

(iv) Q Exactive MS: Raw files were searched against the UniProt/Swiss-Prot human database (version 57.13, 20,266 entries) usingProteome Discoverer (version 1.3, Thermo Scientific) with Mascot(version 2.3.0, Matrix Science) and a peptide tolerance of 10 ppm, anMS/MS tolerance of 10 mmu, carbamidomethylation of cysteine as afixed modification, oxidation of methionine as a variable modification,and a maximum of two missed cleavage sites.

RESULTS

The Secretome of Activated ECs—HUVECs were stimu-lated with PMA, a commonly used secretagogue that inducesexocytosis of endothelial vesicles. As previously reported (26),the morphology of ECs changes from spindle-shaped toround upon PMA activation, and the rod-shaped Weibel-Pal-ade bodies, unique storage vesicles within ECs containingvWF and many other secreted proteins, fuse with the cellmembrane (Fig. 1A). In total, the secretomes of 17 primaryECs were analyzed via gel-LC-MS/MS, with or without degly-cosylation. Apart from 123 secreted proteins, the conditionedmedium of PMA-stimulated ECs was particularly rich in sur-face antigens and receptors, including many established en-dothelial markers (Table I). All identified proteins and peptidesare listed in supplemental Tables S1 and S2, respectively. Thedistribution of the frequencies and the cumulated distribution

of the number of samples in which proteins were identified areshown in supplemental Fig. S1. MS datasets of three biolog-ical replicates have been deposited in PRIDE (accession num-bers 26908–27003).

Immunoblots confirmed that proteins such as fibronectinand biglycan were constitutively secreted (Fig. 1B). Otherssuch as agrin and lymphatic vessel endothelial hyaluronic acidreceptor 1 were released upon PMA stimulation, providing an

FIG. 1. PMA treatment to stimulate EC secretion. Treatment ofHUVECs with PMA, a commonly used secretagogue, resulted in acharacteristic morphological change indicative of activation. A, im-munofluorescence staining of vWF (green) and VE-cadherin (red)shows the exocytotic effect of PMA. B, PMA increased protein se-cretion in the conditioned media as confirmed via immunoblotting. C,relative to previous studies, more than twice as many secreted andplasma membrane proteins were identified. D, overlay of intracellularand secreted proteins by means of difference gel electrophoresis. Inthe left-hand panel, proteins in conditioned media of HUVECs arestained in green (�PMA) and red (�PMA), and cellular proteins arestained in blue. Results were reproduced with different biologicalreplicates using reverse-labeling (right-hand panel: red, �PMA;green, �PMA). The protein corresponding to von Willebrand antigen2 is highlighted with a box. Common proteins in the secretome andthe cellular proteome are numbered in supplemental Fig. S2 andlisted in supplemental Table S3.

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 3

AQ: O

F1

T1

ZSI

ZSI

ZSIZSI,AQ:R

COLOR

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEI

Ext

race

llula

ran

dp

lasm

am

emb

rane

pro

tein

sid

entif

ied

inth

eH

UV

EC

-con

diti

oned

med

iaaf

ter

PM

Ast

imul

atio

n

Pro

tein

nam

eU

niP

rot

IDU

niP

rot

acce

ssio

nnu

mb

erG

ene

nam

eC

ellu

lar

com

pon

ent

Gly

cop

rote

inE

Cm

arke

r

Cal

cium

ion-

bin

din

gp

rote

ins

Ann

exin

A1

AN

XA

1_H

UM

AN

P04

083

AN

XA

1P

lasm

am

emb

rane

Ann

exin

A2

aA

NX

A2_

HU

MA

NP

0735

5A

NX

A2

Ext

race

llula

rP

lasm

am

emb

rane

Ann

exin

A3

AN

XA

3_H

UM

AN

P12

429

AN

XA

3P

lasm

am

emb

rane

Cal

retic

ulin

CA

LR_H

UM

AN

P27

797

CA

LRE

xtra

cellu

lar

Gly

cop

rote

inC

alum

enin

CA

LU_H

UM

AN

O43

852

CA

LUE

xtra

cellu

lar

Gly

cop

rote

inC

alp

ain-

1ca

taly

ticsu

bun

itC

AN

1_H

UM

AN

P07

384

CA

PN

1P

lasm

am

emb

rane

Cal

pai

n-2

cata

lytic

sub

unit

CA

N2_

HU

MA

NP

1765

5C

AP

N2

Pla

sma

mem

bra

neC

alp

ain

smal

lsub

unit

1C

PN

S1_

HU

MA

NP

0463

2C

AP

NS

1P

lasm

am

emb

rane

Cal

synt

enin

-1C

STN

1_H

UM

AN

O94

985

CLS

TN1

Pla

sma

mem

bra

neG

lyco

pro

tein

Cal

synt

enin

-3C

STN

3_H

UM

AN

Q9B

QT9

CLS

TN3

Pla

sma

mem

bra

neG

lyco

pro

tein

Des

mog

lein

-1D

SG

1_H

UM

AN

Q02

413

DS

G1

Pla

sma

mem

bra

neG

lyco

pro

tein

Nuc

leob

ind

in-2

NU

CB

2_H

UM

AN

P80

303

NU

CB

2E

xtra

cellu

lar

Car

boh

ydra

tean

dgl

ycan

met

abol

ism

Alp

ha-a

myl

ase

1A

MY

1_H

UM

AN

P04

745

AM

Y1C

Ext

race

llula

rG

lyco

pro

tein

Exo

stos

in-l

ike

2E

XTL

2_H

UM

AN

Q9U

BQ

6E

XTL

2E

xtra

cellu

lar

Gly

cop

rote

inP

olyp

eptid

eN

-ace

tylg

alac

tosa

min

yltr

ansf

eras

e1

GA

LT1_

HU

MA

NQ

1047

2G

ALN

T1E

xtra

cellu

lar

Gly

cop

rote

inS

iala

teO

-ace

tyle

ster

ase

SIA

E_H

UM

AN

Q9H

AT2

SIA

EE

xtra

cellu

lar

Gly

cop

rote

inU

DP

-N-a

cety

lhex

osam

ine

pyr

opho

spho

ryla

seU

AP

1_H

UM

AN

Q16

222

UA

P1

Pla

sma

mem

bra

neC

oagu

latio

nan

dre

late

dp

rote

ins

Am

yloi

d-l

ike

pro

tein

2A

PLP

2_H

UM

AN

Q06

481

AP

LP2

Pla

sma

mem

bra

neG

lyco

pro

tein

Mul

timer

in-1

MM

RN

1_H

UM

AN

Q13

201

MM

RN

1E

xtra

cellu

lar

Gly

cop

rote

inP

lasm

inog

enac

tivat

orin

hib

itor

1P

AI1

_HU

MA

NP

0512

1S

ER

PIN

E1

Ext

race

llula

rG

lyco

pro

tein

Pla

smin

ogen

activ

ator

inhi

bito

r2

PA

I2_H

UM

AN

P05

120

SE

RP

INB

2E

xtra

cellu

lar

Gly

cop

rote

inTi

ssue

fact

orp

athw

ayin

hib

itor

TFP

I1_H

UM

AN

P10

646

TFP

IE

xtra

cellu

lar

Gly

cop

rote

inTi

ssue

fact

orp

athw

ayin

hib

itor

2TF

PI2

_HU

MA

NP

4830

7TF

PI2

Ext

race

llula

rG

lyco

pro

tein

Tiss

ue-t

ype

pla

smin

ogen

activ

ator

TPA

_HU

MA

NP

0075

0P

LAT

Ext

race

llula

rG

lyco

pro

tein

von

Will

ebra

ndfa

ctor

VW

F_H

UM

AN

P04

275

VW

FE

xtra

cellu

lar

Gly

cop

rote

inE

Cm

arke

rE

xtra

cellu

lar

mat

rixco

mp

onen

tsan

das

soci

ated

pro

tein

sA

grin

AG

RIN

_HU

MA

NO

0046

8A

GR

NE

xtra

cellu

lar

Gly

cop

rote

inC

olla

gen

alp

ha-2

(IV)

chai

nC

O4A

2_H

UM

AN

P08

572

CO

L4A

2E

xtra

cellu

lar

Gly

cop

rote

inC

olla

gen

alp

ha-1

(VI)

chai

nC

O6A

1_H

UM

AN

P12

109

CO

L6A

1E

xtra

cellu

lar

Gly

cop

rote

inC

olla

gen

alp

ha-1

(XII)

chai

nC

OC

A1_

HU

MA

NQ

9971

5C

OL1

2A1

Ext

race

llula

rG

lyco

pro

tein

Col

lage

nal

pha

-1(X

VIII

)ch

ain

CO

IA1_

HU

MA

NP

3906

0C

OL1

8A1

Ext

race

llula

rG

lyco

pro

tein

EG

F-co

ntai

ning

fibul

in-l

ike

extr

acel

lula

rm

atrix

pro

tein

1FB

LN3_

HU

MA

NQ

1280

5E

FEM

P1

Ext

race

llula

rG

lyco

pro

tein

Fib

rillin

-1FB

N1_

HU

MA

NP

3555

5FB

N1

Ext

race

llula

rG

lyco

pro

tein

Fib

rillin

-2FB

N2_

HU

MA

NP

3555

6FB

N2

Ext

race

llula

rG

lyco

pro

tein

Fib

rone

ctin

FIN

C_H

UM

AN

P02

751

FN1

Ext

race

llula

rG

lyco

pro

tein

Hya

luro

nan

and

pro

teog

lyca

nlin

kp

rote

in3

HP

LN3_

HU

MA

NQ

96S

86H

AP

LN3

Ext

race

llula

rLa

min

insu

bun

ital

pha

-4LA

MA

4_H

UM

AN

Q16

363

LAM

A4

Ext

race

llula

rG

lyco

pro

tein

Lam

inin

sub

unit

bet

a-1

LAM

B1_

HU

MA

NP

0794

2LA

MB

1E

xtra

cellu

lar

Gly

cop

rote

inLa

min

insu

bun

itga

mm

a-1

LAM

C1_

HU

MA

NP

1104

7LA

MC

1E

xtra

cellu

lar

Gly

cop

rote

inLy

sylo

xid

ase

hom

olog

2LO

XL2

_HU

MA

NQ

9Y4K

0LO

XL2

Ext

race

llula

rG

lyco

pro

tein

Mul

timer

in-2

MM

RN

2_H

UM

AN

Q9H

8L6

MM

RN

2E

xtra

cellu

lar

Gly

cop

rote

in

Glycoproteomics of the Endothelial Secretome

4 Molecular & Cellular Proteomics 12.4

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEI—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDU

niP

rot

acce

ssio

nnu

mb

erG

ene

nam

eC

ellu

lar

com

pon

ent

Gly

cop

rote

inE

Cm

arke

r

Nid

ogen

-1N

ID1_

HU

MA

NP

1454

3N

ID1

Ext

race

llula

rG

lyco

pro

tein

Nid

ogen

-2N

ID2_

HU

MA

NQ

1411

2N

ID2

Ext

race

llula

rG

lyco

pro

tein

Pro

lyl3

-hyd

roxy

lase

1P

3H1_

HU

MA

NQ

32P

28LE

PR

E1

Ext

race

llula

rG

lyco

pro

tein

Bas

emen

tm

emb

rane

-sp

ecifi

che

par

ansu

lfate

pro

teog

lyca

nco

rep

rote

inP

GB

M_H

UM

AN

P98

160

HS

PG

2E

xtra

cellu

lar

Gly

cop

rote

in

Big

lyca

nP

GS

1_H

UM

AN

P21

810

BG

NE

xtra

cellu

lar

Gly

cop

rote

inP

erox

idas

inho

mol

ogP

XD

N_H

UM

AN

Q92

626

PX

DN

Ext

race

llula

rG

lyco

pro

tein

SP

AR

CS

PR

C_H

UM

AN

P09

486

SP

AR

CE

xtra

cellu

lar

Gly

cop

rote

inTa

rget

ofN

esh-

SH

3TA

RS

H_H

UM

AN

Q7Z

7G0

AB

I3B

PE

xtra

cellu

lar

Gly

cop

rote

inTe

stic

an-1

TIC

N1_

HU

MA

NQ

0862

9S

PO

CK

1E

xtra

cellu

lar

Gly

cop

rote

inTh

rom

bos

pon

din

-1TS

P1_

HU

MA

NP

0799

6TH

BS

1E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Gro

wth

fact

ors

and

rela

ted

pro

tein

sC

-typ

ele

ctin

dom

ain

fam

ily11

mem

ber

AC

LC11

_HU

MA

NQ

9Y24

0C

LEC

11A

Ext

race

llula

rG

lyco

pro

tein

Cys

tein

e-ric

hm

otor

neur

on1

pro

tein

CR

IM1_

HU

MA

NQ

9NZ

V1

CR

IM1

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inC

onne

ctiv

etis

sue

grow

thfa

ctor

CTG

F_H

UM

AN

P29

279

CTG

FE

xtra

cellu

lar

Gly

cop

rote

inP

rote

inC

YR

61,

insu

lin-l

ike

grow

thfa

ctor

-bin

din

gp

rote

in10

CY

R61

_HU

MA

NO

0062

2C

YR

61E

xtra

cellu

lar

Dic

kkop

f-re

late

dp

rote

in3

DK

K3_

HU

MA

NQ

9UB

P4

DK

K3

Ext

race

llula

rG

lyco

pro

tein

Folli

stat

in-r

elat

edp

rote

in1

FSTL

1_H

UM

AN

Q12

841

FSTL

1E

xtra

cellu

lar

Gly

cop

rote

inH

epat

oma-

der

ived

grow

thfa

ctor

HD

GF_

HU

MA

NP

5185

8H

DG

FE

xtra

cellu

lar

Insu

lin-l

ike

grow

thfa

ctor

-bin

din

gp

rote

in2

IBP

2_H

UM

AN

P18

065

IGFB

P2

Ext

race

llula

rG

lyco

pro

tein

Insu

lin-l

ike

grow

thfa

ctor

-bin

din

gp

rote

in7

IBP

7_H

UM

AN

Q16

270

IGFB

P7

Ext

race

llula

rG

lyco

pro

tein

Late

nt-t

rans

form

ing

grow

thfa

ctor

bet

a-b

ind

ing

pro

tein

1LT

BP

1_H

UM

AN

Q14

766

LTB

P1

Ext

race

llula

rG

lyco

pro

tein

Late

nt-t

rans

form

ing

grow

thfa

ctor

bet

a-b

ind

ing

pro

tein

2LT

BP

2_H

UM

AN

Q14

767

LTB

P2

Ext

race

llula

rG

lyco

pro

tein

Neu

rona

lgro

wth

regu

lato

r1

NE

GR

1_H

UM

AN

Q7Z

3B1

NE

GR

1P

lasm

am

emb

rane

Gly

cop

rote

inIm

mun

ity-

and

infla

mm

atio

n-re

late

dp

rote

ins

Am

yloi

db

eta

A4

pro

tein

A4_

HU

MA

NP

0506

7A

PP

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inB

eta-

2-m

icro

glob

ulin

B2M

G_H

UM

AN

P61

769

B2M

Ext

race

llula

rG

lyco

pro

tein

Com

ple

men

tC

1qtu

mor

necr

osis

fact

or-r

elat

edp

rote

in5

C1Q

T5_H

UM

AN

Q9B

XJ0

C1Q

TNF5

Ext

race

llula

rC

omp

lem

ent

fact

orH

CFA

H_H

UM

AN

P08

603

CFH

Ext

race

llula

rG

lyco

pro

tein

Inte

rleuk

in-2

5,U

PF0

556

pro

tein

C19

orf1

0C

S01

0_H

UM

AN

Q96

9H8

C19

orf1

0E

xtra

cellu

lar

Gra

nulin

sG

RN

_HU

MA

NP

2879

9G

RN

Ext

race

llula

rG

lyco

pro

tein

Inte

rfer

on-i

nduc

edtr

ansm

emb

rane

pro

tein

1IF

M1_

HU

MA

NP

1316

4IF

ITM

1P

lasm

am

emb

rane

Gal

ectin

-1a

LEG

1_H

UM

AN

P09

382

LGA

LS1

Ext

race

llula

rG

alec

tin-3

LEG

3_H

UM

AN

P17

931

LGA

LS3

Ext

race

llula

rM

acro

pha

gem

igra

tion

inhi

bito

ryfa

ctor

aM

IF_H

UM

AN

P14

174

MIF

Ext

race

llula

rN

KG

2Dlig

and

2N

2DL2

_HU

MA

NQ

9BZ

M5

ULB

P2

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inP

entr

axin

-rel

ated

pro

tein

PTX

3P

TX3_

HU

MA

NP

2602

2P

TX3

Ext

race

llula

rG

lyco

pro

tein

Pro

tein

S10

0-A

7S

10A

7_H

UM

AN

P31

151

S10

0A7

Ext

race

llula

rP

rote

inS

100-

A8

S10

A8_

HU

MA

NP

0510

9S

100A

8E

xtra

cellu

lar

Pla

sma

mem

bra

neTu

bul

oint

erst

itial

nep

hriti

san

tigen

-lik

eTI

NA

L_H

UM

AN

Q9G

ZM

7TI

NA

GL1

Ext

race

llula

rG

lyco

pro

tein

Nuc

leas

e-se

nsiti

veel

emen

t-b

ind

ing

pro

tein

1Y

BO

X1_

HU

MA

NP

6780

9Y

BX

1E

xtra

cellu

lar

Zin

c-al

pha

-2-g

lyco

pro

tein

ZA

2G_H

UM

AN

P25

311

AZ

GP

1E

xtra

cellu

lar

Gly

cop

rote

in

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 5

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEI—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDU

niP

rot

acce

ssio

nnu

mb

erG

ene

nam

eC

ellu

lar

com

pon

ent

Gly

cop

rote

inE

Cm

arke

r

Mem

bra

nean

tigen

san

dre

cep

tors

HLA

clas

sI

hist

ocom

pat

ibili

tyan

tigen

,A

-24

alp

hach

ain

1A24

_HU

MA

NP

0553

4H

LA-A

Pla

sma

mem

bra

neG

lyco

pro

tein

HLA

clas

sI

hist

ocom

pat

ibili

tyan

tigen

,A

-30

alp

hach

ain

1A30

_HU

MA

NP

1618

8H

LA-A

Pla

sma

mem

bra

neG

lyco

pro

tein

HLA

clas

sI

hist

ocom

pat

ibili

tyan

tigen

,C

w-1

2al

pha

chai

n1C

12_H

UM

AN

P30

508

HLA

-CP

lasm

am

emb

rane

Gly

cop

rote

in

Alp

ha-2

-mac

rogl

obul

inre

cep

tor-

asso

ciat

edp

rote

inA

MR

P_H

UM

AN

P30

533

LRP

AP

1E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Bas

alce

llad

hesi

onm

olec

ule

BC

AM

_HU

MA

NP

5089

5B

CA

MP

lasm

am

emb

rane

Gly

cop

rote

inC

omp

lem

ent

com

pon

ent

C1q

rece

pto

rC

1QR

1_H

UM

AN

Q9N

PY

3C

D93

Pla

sma

mem

bra

neG

lyco

pro

tein

EC

mar

ker

Cad

herin

-13

CA

D13

_HU

MA

NP

5529

0C

DH

13P

lasm

am

emb

rane

Gly

cop

rote

inC

adhe

rin-2

CA

DH

2_H

UM

AN

P19

022

CD

H2

Pla

sma

mem

bra

neG

lyco

pro

tein

Cad

herin

-5C

AD

H5_

HU

MA

NP

3315

1C

DH

5P

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rC

D10

9an

tigen

CD

109_

HU

MA

NQ

6YH

K3

CD

109

Pla

sma

mem

bra

neG

lyco

pro

tein

CD

166

antig

enC

D16

6_H

UM

AN

Q13

740

ALC

AM

Pla

sma

mem

bra

neG

lyco

pro

tein

CD

44an

tigen

CD

44_H

UM

AN

P16

070

CD

44P

lasm

am

emb

rane

Gly

cop

rote

inC

D59

glyc

opro

tein

CD

59_H

UM

AN

P13

987

CD

59E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

CD

9an

tigen

CD

9_H

UM

AN

P21

926

CD

9P

lasm

am

emb

rane

Gly

cop

rote

inC

-typ

ele

ctin

dom

ain

fam

ily14

mem

ber

AC

LC14

_HU

MA

NQ

86T1

3C

LEC

14A

Pla

sma

mem

bra

neG

lyco

pro

tein

Dys

trog

lyca

nD

AG

1_H

UM

AN

Q14

118

DA

G1

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inE

ndog

linE

GLN

_HU

MA

NP

1781

3E

NG

Pla

sma

mem

bra

neG

lyco

pro

tein

EC

mar

ker

End

othe

lialp

rote

inC

rece

pto

rE

PC

R_H

UM

AN

Q9U

NN

8P

RO

CR

Pla

sma

mem

bra

neG

lyco

pro

tein

EC

mar

ker

Ep

hrin

typ

e-B

rece

pto

r4

EP

HB

4_H

UM

AN

P54

760

EP

HB

4P

lasm

am

emb

rane

Gly

cop

rote

inE

ndot

helia

lcel

l-se

lect

ive

adhe

sion

mol

ecul

eE

SA

M_H

UM

AN

Q96

AP

7E

SA

MP

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rLe

ucin

e-ric

hre

pea

ttr

ansm

emb

rane

pro

tein

FLR

T2FL

RT2

_HU

MA

NO

4315

5FL

RT2

Pla

sma

mem

bra

neG

lyco

pro

tein

Gua

nine

nucl

eotid

e-b

ind

ing

pro

tein

sub

unit

bet

a-2-

like

1aG

BLP

_HU

MA

NP

6324

4G

NB

2L1

Pla

sma

mem

bra

neH

LAcl

ass

Ihi

stoc

omp

atib

ility

antig

en,

alp

hach

ain

EH

LAE

_HU

MA

NP

1374

7H

LA-E

Pla

sma

mem

bra

neG

lyco

pro

tein

Inte

rcel

lula

rad

hesi

onm

olec

ule

1IC

AM

1_H

UM

AN

P05

362

ICA

M1

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rIn

terc

ellu

lar

adhe

sion

mol

ecul

e2

ICA

M2_

HU

MA

NP

1359

8IC

AM

2P

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rIn

tegr

inal

pha

-2IT

A2_

HU

MA

NP

1730

1IT

GA

2P

lasm

am

emb

rane

Gly

cop

rote

inIn

tegr

inal

pha

-5IT

A5_

HU

MA

NP

0864

8IT

GA

5P

lasm

am

emb

rane

Gly

cop

rote

inIn

tegr

inal

pha

-6IT

A6_

HU

MA

NP

2322

9IT

GA

6P

lasm

am

emb

rane

Gly

cop

rote

inIn

tegr

inb

eta-

1IT

B1_

HU

MA

NP

0555

6IT

GB

1P

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rP

rote

inja

gged

-1JA

G1_

HU

MA

NP

7850

4JA

G1

Pla

sma

mem

bra

neG

lyco

pro

tein

Pro

tein

jagg

ed-2

JAG

2_H

UM

AN

Q9Y

219

JAG

2P

lasm

am

emb

rane

Gly

cop

rote

inJu

nctio

nala

dhe

sion

mol

ecul

eA

JAM

1_H

UM

AN

Q9Y

624

F11R

Pla

sma

mem

bra

neG

lyco

pro

tein

BTB

/PO

Zd

omai

n-co

ntai

ning

pro

tein

KC

TD12

KC

D12

_HU

MA

NQ

96C

X2

KC

TD12

Pla

sma

mem

bra

neK

inec

tinK

TN1_

HU

MA

NQ

86U

P2

KTN

1P

lasm

am

emb

rane

Gly

cop

rote

inLy

soso

me-

asso

ciat

edm

emb

rane

glyc

opro

tein

1LA

MP

1_H

UM

AN

P11

279

LAM

P1

Pla

sma

mem

bra

neG

lyco

pro

tein

Low

-den

sity

lipop

rote

inre

cep

tor

LDLR

_HU

MA

NP

0113

0LD

LRP

lasm

am

emb

rane

Gly

cop

rote

inLo

w-d

ensi

tylip

opro

tein

rece

pto

r-re

late

dp

rote

in5

LRP

5_H

UM

AN

O75

197

LRP

5P

lasm

am

emb

rane

Gly

cop

rote

inLy

mp

hatic

vess

elen

dot

helia

lhya

luro

nic

acid

rece

pto

r1

LYV

E1_

HU

MA

NQ

9Y5Y

7LY

VE

1P

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rH

epat

ocyt

egr

owth

fact

orre

cep

tor

ME

T_H

UM

AN

P08

581

ME

TE

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Cat

ion-

ind

epen

den

tm

anno

se-6

-pho

spha

tere

cep

tor

MP

RI_

HU

MA

NP

1171

7IG

F2R

Pla

sma

mem

bra

neG

lyco

pro

tein

C-t

ype

man

nose

rece

pto

r2

MR

C2_

HU

MA

NQ

9UB

G0

MR

C2

Pla

sma

mem

bra

neG

lyco

pro

tein

Glycoproteomics of the Endothelial Secretome

6 Molecular & Cellular Proteomics 12.4

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEI—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDU

niP

rot

acce

ssio

nnu

mb

erG

ene

nam

eC

ellu

lar

com

pon

ent

Gly

cop

rote

inE

Cm

arke

r

Cel

lsur

face

glyc

opro

tein

MU

C18

MU

C18

_HU

MA

NP

4312

1M

CA

MP

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rN

euro

ligin

-1N

LGN

1_H

UM

AN

Q8N

2Q7

NLG

N1

Pla

sma

mem

bra

neG

lyco

pro

tein

Neu

rona

lcel

lad

hesi

onm

olec

ule

NR

CA

M_H

UM

AN

Q92

823

NR

CA

MP

lasm

am

emb

rane

Gly

cop

rote

inN

euro

pili

n-1

NR

P1_

HU

MA

NO

1478

6N

RP

1E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Neu

rop

ilin-

2N

RP

2_H

UM

AN

O60

462

NR

P2

Pla

sma

mem

bra

neG

lyco

pro

tein

Neu

rotr

imin

NTR

I_H

UM

AN

Q9P

121

NTM

Pla

sma

mem

bra

neG

lyco

pro

tein

Pro

toca

dhe

rin-1

0P

CD

10_H

UM

AN

Q9P

2E7

PC

DH

10P

lasm

am

emb

rane

Gly

cop

rote

inP

roto

cad

herin

-12

PC

D12

_HU

MA

NQ

9NP

G4

PC

DH

12P

lasm

am

emb

rane

Gly

cop

rote

inP

roto

cad

herin

gam

ma-

A11

PC

DG

B_H

UM

AN

Q9Y

5H2

PC

DH

GA

11P

lasm

am

emb

rane

Gly

cop

rote

inP

roto

cad

herin

gam

ma-

A12

PC

DG

C_H

UM

AN

O60

330

PC

DH

GA

12P

lasm

am

emb

rane

Gly

cop

rote

inP

roto

cad

herin

gam

ma-

B7

PC

DG

J_H

UM

AN

Q9Y

5F8

PC

DH

GB

7P

lasm

am

emb

rane

Gly

cop

rote

inP

roto

cad

herin

-1P

CD

H1_

HU

MA

NQ

0817

4P

CD

H1

Pla

sma

mem

bra

neG

lyco

pro

tein

Pro

toca

dhe

rin-9

PC

DH

9_H

UM

AN

Q9H

C56

PC

DH

9P

lasm

am

emb

rane

Gly

cop

rote

inP

rogr

amm

edce

lld

eath

1lig

and

2P

D1L

2_H

UM

AN

Q9B

Q51

PD

CD

1LG

2E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Pla

tele

ten

dot

helia

lcel

lad

hesi

onm

olec

ule

PE

CA

1_H

UM

AN

P16

284

PE

CA

M1

Pla

sma

mem

bra

neG

lyco

pro

tein

EC

mar

ker

Ple

xin-

D1

PLX

D1_

HU

MA

NQ

9Y4D

7P

LXN

D1

Pla

sma

mem

bra

neG

lyco

pro

tein

Inac

tive

tyro

sine

-pro

tein

kina

se7

PTK

7_H

UM

AN

Q13

308

PTK

7P

lasm

am

emb

rane

Gly

cop

rote

inR

ecep

tor-

typ

ety

rosi

ne-p

rote

inp

hosp

hata

sed

elta

PTP

RD

_HU

MA

NP

2346

8P

TPR

DP

lasm

am

emb

rane

Gly

cop

rote

inR

ecep

tor-

typ

ety

rosi

ne-p

rote

inp

hosp

hata

seF

PTP

RF_

HU

MA

NP

1058

6P

TPR

FP

lasm

am

emb

rane

Gly

cop

rote

inR

ecep

tor-

typ

ety

rosi

ne-p

rote

inp

hosp

hata

seka

pp

aP

TPR

K_H

UM

AN

Q15

262

PTP

RK

Pla

sma

mem

bra

neG

lyco

pro

tein

Pol

iovi

rus

rece

pto

rP

VR

_HU

MA

NP

1515

1P

VR

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inP

olio

viru

sre

cep

tor-

rela

ted

pro

tein

2P

VR

L2_H

UM

AN

Q92

692

PV

RL2

Pla

sma

mem

bra

neG

lyco

pro

tein

EC

mar

ker

Rou

ndab

out

hom

olog

1R

OB

O1_

HU

MA

NQ

9Y6N

7R

OB

O1

Pla

sma

mem

bra

neG

lyco

pro

tein

Rou

ndab

out

hom

olog

4R

OB

O4_

HU

MA

NQ

8WZ

75R

OB

O4

Pla

sma

mem

bra

neG

lyco

pro

tein

Syn

dec

an-4

SD

C4_

HU

MA

NP

3143

1S

DC

4E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Sem

apho

rin-4

DS

EM

4D_H

UM

AN

Q92

854

SE

MA

4DP

lasm

am

emb

rane

Gly

cop

rote

inS

emap

horin

-6B

SE

M6B

_HU

MA

NQ

9H3T

3S

EM

A6B

Pla

sma

mem

bra

neG

lyco

pro

tein

Tyro

sine

-pro

tein

pho

spha

tase

non-

rece

pto

rty

pe

sub

stra

te1

SH

PS

1_H

UM

AN

P78

324

SIR

PA

Pla

sma

mem

bra

neG

lyco

pro

tein

Sta

bili

n-1

STA

B1_

HU

MA

NQ

9NY

15S

TAB

1P

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rTr

ansf

errin

rece

pto

rp

rote

in1

TFR

1_H

UM

AN

P02

786

TFR

CE

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Tyro

sine

-pro

tein

kina

sere

cep

tor

Tie-

1TI

E1_

HU

MA

NP

3559

0TI

E1

Pla

sma

mem

bra

neG

lyco

pro

tein

Tyro

sine

-pro

tein

kina

sere

cep

tor

UFO

UFO

_HU

MA

NP

3053

0A

XL

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inV

ascu

lar

end

othe

lialg

row

thfa

ctor

rece

pto

r2

VG

FR2_

HU

MA

NP

3596

8K

DR

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rV

ascu

lar

end

othe

lialg

row

thfa

ctor

rece

pto

r3

VG

FR3_

HU

MA

NP

3591

6FL

T4E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

EC

mar

ker

Ver

ylo

w-d

ensi

tylip

opro

tein

rece

pto

rV

LDLR

_HU

MA

NP

9815

5V

LDLR

Pla

sma

mem

bra

neG

lyco

pro

tein

Mis

cella

neou

sm

emb

rane

pro

tein

sB

rain

acid

solu

ble

pro

tein

1B

AS

P1_

HU

MA

NP

8072

3B

AS

P1

Pla

sma

mem

bra

neD

naJ

hom

olog

sub

fam

ilyB

mem

ber

4D

NJB

4_H

UM

AN

Q9U

DY

4D

NA

JB4

Pla

sma

mem

bra

neR

NA

-bin

din

gp

rote

inE

WS

EW

S_H

UM

AN

Q01

844

EW

SR

1P

lasm

am

emb

rane

Nck

-ass

ocia

ted

pro

tein

1N

CK

P1_

HU

MA

NQ

9Y2A

7N

CK

AP

1P

lasm

am

emb

rane

Na(

�)/

H(�

)ex

chan

gere

gula

tory

cofa

ctor

NH

E-R

F2N

HR

F2_H

UM

AN

Q15

599

SLC

9A3R

2P

lasm

am

emb

rane

Pol

ymer

ase

Ian

dtr

ansc

ript

rele

ase

fact

orP

TRF_

HU

MA

NQ

6NZ

I2P

TRF

Pla

sma

mem

bra

neS

erum

dep

rivat

ion-

resp

onse

pro

tein

SD

PR

_HU

MA

NO

9581

0S

DP

RP

lasm

am

emb

rane

Sus

hire

pea

t-co

ntai

ning

pro

tein

SR

PX

2S

RP

X2_

HU

MA

NO

6068

7S

RP

X2

Ext

race

llula

rE

ryth

rocy

teb

and

7in

tegr

alm

emb

rane

pro

tein

STO

M_H

UM

AN

P27

105

STO

MP

lasm

am

emb

rane

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 7

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEI—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDU

niP

rot

acce

ssio

nnu

mb

erG

ene

nam

eC

ellu

lar

com

pon

ent

Gly

cop

rote

inE

Cm

arke

r

Mis

cella

neou

sse

cret

edp

rote

ins

Pep

tidyl

-gly

cine

alp

ha-a

mid

atin

gm

onoo

xyge

nase

AM

D_H

UM

AN

P19

021

PA

ME

xtra

cellu

lar

Gly

cop

rote

inA

ngio

poi

etin

-2A

NG

P2_

HU

MA

NO

1512

3A

NG

PT2

Ext

race

llula

rG

lyco

pro

tein

End

othe

lin-1

ED

N1_

HU

MA

NP

0530

5E

DN

1E

xtra

cellu

lar

End

othe

lialc

ell-

spec

ific

mol

ecul

e1

ES

M1_

HU

MA

NQ

9NQ

30E

SM

1E

xtra

cellu

lar

Gly

cop

rote

inP

rote

inFA

M3C

FAM

3C_H

UM

AN

Q92

520

WN

T16

Ext

race

llula

rE

pid

idym

alse

cret

ory

pro

tein

E1

NP

C2_

HU

MA

NP

6191

6N

PC

2E

xtra

cellu

lar

Gly

cop

rote

inP

rogr

amm

edce

lld

eath

pro

tein

10P

DC

10_H

UM

AN

Q9B

UL8

PD

CD

10P

lasm

am

emb

rane

Pro

lact

in-i

nduc

ible

pro

tein

PIP

_HU

MA

NP

1227

3P

IPE

xtra

cellu

lar

Gly

cop

rote

inS

ulfh

ydry

loxi

das

e1

QS

OX

1_H

UM

AN

O00

391

QS

OX

1E

xtra

cellu

lar

Gly

cop

rote

inS

ecre

togl

obin

fam

ily1D

mem

ber

2S

G1D

2_H

UM

AN

O95

969

SC

GB

1D2

Ext

race

llula

rTh

iore

dox

ina

THIO

_HU

MA

NP

1059

9TX

NE

xtra

cellu

lar

Thym

osin

bet

a-4

TYB

4_H

UM

AN

P62

328

TMS

B4X

Ext

race

llula

rP

rote

ase

inhi

bito

rsC

ysta

tin-C

CY

TC_H

UM

AN

P01

034

CS

T3E

xtra

cellu

lar

Gly

cop

rote

inLe

ukoc

yte

elas

tase

inhi

bito

rIL

EU

_HU

MA

NP

3074

0S

ER

PIN

B1

Ext

race

llula

rIn

ter-

alp

ha-t

ryp

sin

inhi

bito

rhe

avy

chai

nH

2IT

IH2_

HU

MA

NP

1982

3IT

IH2

Ext

race

llula

rG

lyco

pro

tein

Ser

pin

B9

SP

B9_

HU

MA

NP

5045

3S

ER

PIN

B9

Ext

race

llula

rM

etal

lop

rote

inas

ein

hib

itor

1TI

MP

1_H

UM

AN

P01

033

TIM

P1

Ext

race

llula

rG

lyco

pro

tein

Met

allo

pro

tein

ase

inhi

bito

r2

TIM

P2_

HU

MA

NP

1603

5TI

MP

2E

xtra

cellu

lar

Pro

teas

esA

ngio

tens

in-c

onve

rtin

gen

zym

eA

CE

_HU

MA

NP

1282

1A

CE

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inE

Cm

arke

rD

isin

tegr

inan

dm

etal

lop

rote

inas

ed

omai

n-co

ntai

ning

pro

tein

10A

DA

10_H

UM

AN

O14

672

AD

AM

10P

lasm

am

emb

rane

Gly

cop

rote

in

Am

inop

eptid

ase

BA

MP

B_H

UM

AN

Q9H

4A4

RN

PE

PE

xtra

cellu

lar

Am

inop

eptid

ase

NA

MP

N_H

UM

AN

P15

144

AN

PE

PP

lasm

am

emb

rane

Gly

cop

rote

inB

one

mor

pho

gene

ticp

rote

in1

BM

P1_

HU

MA

NP

1349

7B

MP

1E

xtra

cellu

lar

Gly

cop

rote

inC

athe

psi

nB

CA

TB_H

UM

AN

P07

858

CTS

BE

xtra

cellu

lar

Gly

cop

rote

inC

athe

psi

nD

CA

TD_H

UM

AN

P07

339

CTS

DE

xtra

cellu

lar

Gly

cop

rote

inC

athe

psi

nZ

CA

TZ_H

UM

AN

Q9U

BR

2C

TSZ

Ext

race

llula

rG

lyco

pro

tein

Car

box

ypep

tidas

eQ

CB

PQ

_HU

MA

NQ

9Y64

6C

PQ

Ext

race

llula

rG

lyco

pro

tein

Dip

eptid

ylp

eptid

ase

2D

PP

2_H

UM

AN

Q9U

HL4

DP

P7

Ext

race

llula

rG

lyco

pro

tein

Dip

eptid

ylp

eptid

ase

3D

PP

3_H

UM

AN

Q9N

Y33

DP

P3

Pla

sma

mem

bra

neE

ndop

lasm

icre

ticul

umam

inop

eptid

ase

1E

RA

P1_

HU

MA

NQ

9NZ

08E

RA

P1

Ext

race

llula

rG

lyco

pro

tein

Furin

FUR

IN_H

UM

AN

P09

958

FUR

INP

lasm

am

emb

rane

Gly

cop

rote

inG

amm

a-gl

utam

ylhy

dro

lase

GG

H_H

UM

AN

Q92

820

GG

HE

xtra

cellu

lar

Gly

cop

rote

inS

erin

ep

rote

ase

HTR

A1

HTR

A1_

HU

MA

NQ

9274

3H

TRA

1E

xtra

cellu

lar

Insu

lin-d

egra

din

gen

zym

eID

E_H

UM

AN

P14

735

IDE

Ext

race

llula

rP

lasm

am

emb

rane

Inte

rstit

ialc

olla

gena

seM

MP

1_H

UM

AN

P03

956

MM

P1

Ext

race

llula

rG

lyco

pro

tein

Str

omel

ysin

-2M

MP

10_H

UM

AN

P09

238

MM

P10

Ext

race

llula

rM

atrix

met

allo

pro

tein

ase-

14M

MP

14_H

UM

AN

P50

281

MM

P14

Pla

sma

mem

bra

ne72

kDa

typ

eIV

colla

gena

seM

MP

2_H

UM

AN

P08

253

MM

P2

Ext

race

llula

rG

lyco

pro

tein

Lyso

som

alP

ro-X

carb

oxyp

eptid

ase

PC

P_H

UM

AN

P42

785

PR

CP

Pla

sma

mem

bra

neG

lyco

pro

tein

Ser

ine

pro

teas

e23

PR

S23

_HU

MA

NO

9508

4P

RS

S23

Ext

race

llula

rG

lyco

pro

tein

Ub

iqui

tinca

rbox

yl-t

erm

inal

hyd

rola

se14

UB

P14

_HU

MA

NP

5457

8U

SP

14P

lasm

am

emb

rane

Glycoproteomics of the Endothelial Secretome

8 Molecular & Cellular Proteomics 12.4

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEI—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDU

niP

rot

acce

ssio

nnu

mb

erG

ene

nam

eC

ellu

lar

com

pon

ent

Gly

cop

rote

inE

Cm

arke

r

Sig

nalt

rans

duc

tion

pro

tein

sA

den

ylyl

cycl

ase-

asso

ciat

edp

rote

in1

CA

P1_

HU

MA

NQ

0151

8C

AP

1P

lasm

am

emb

rane

Cel

ldiv

isio

nco

ntro

lpro

tein

42ho

mol

ogC

DC

42_H

UM

AN

P60

953

CD

C42

Pla

sma

mem

bra

neC

onta

ctin

-ass

ocia

ted

pro

tein

-lik

e3

CN

TP3_

HU

MA

NQ

9BZ

76C

NTN

AP

3E

xtra

cellu

lar

Pla

sma

mem

bra

neG

lyco

pro

tein

Ad

apte

rm

olec

ule

crk

CR

K_H

UM

AN

P46

108

CR

KP

lasm

am

emb

rane

Ras

GTP

ase-

activ

atin

gp

rote

in-b

ind

ing

pro

tein

1G

3BP

1_H

UM

AN

Q13

283

G3B

P1

Pla

sma

mem

bra

neG

row

thar

rest

-sp

ecifi

cp

rote

in6

GA

S6_

HU

MA

NQ

1439

3G

AS

6E

xtra

cellu

lar

Gly

cop

rote

inIn

terf

eron

-ind

uced

guan

ylat

e-b

ind

ing

pro

tein

1G

BP

1_H

UM

AN

P32

455

GB

P1

Ext

race

llula

rG

uani

nenu

cleo

tide-

bin

din

gp

rote

inG

(i)su

bun

ital

pha

-2G

NA

I2_H

UM

AN

P04

899

GN

AI2

Pla

sma

mem

bra

neG

lyp

ican

-1G

PC

1_H

UM

AN

P35

052

GP

C1

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inH

edge

hog-

inte

ract

ing

pro

tein

HH

IP_H

UM

AN

Q96

QV

1H

HIP

Ext

race

llula

rP

lasm

am

emb

rane

Gly

cop

rote

inH

istid

ine

tria

dnu

cleo

tide-

bin

din

gp

rote

in1a

HIN

T1_H

UM

AN

P49

773

HIN

T1P

lasm

am

emb

rane

Inte

grin

-lin

ked

pro

tein

kina

seIL

K_H

UM

AN

Q13

418

ILK

Pla

sma

mem

bra

neR

asG

TPas

e-ac

tivat

ing-

like

pro

tein

IQG

AP

1IQ

GA

1_H

UM

AN

P46

940

IQG

AP

1P

lasm

am

emb

rane

cAM

P-d

epen

den

tp

rote

inki

nase

typ

eII-

alp

hare

gula

tory

sub

unit

KA

P2_

HU

MA

NP

1386

1P

RK

AR

2AP

lasm

am

emb

rane

Ras

-rel

ated

pro

tein

Rab

-18

RA

B18

_HU

MA

NQ

9NP

72R

AB

18P

lasm

am

emb

rane

Ras

-rel

ated

pro

tein

Rab

-5C

RA

B5C

_HU

MA

NP

5114

8R

AB

5CP

lasm

am

emb

rane

Ras

-rel

ated

C3

bot

ulin

umto

xin

sub

stra

te1

RA

C1_

HU

MA

NP

6300

0R

AC

1P

lasm

am

emb

rane

Ras

-rel

ated

pro

tein

Ral

-AR

ALA

_HU

MA

NP

1123

3R

ALA

Pla

sma

mem

bra

neR

as-r

elat

edp

rote

inR

ap-1

bR

AP

1B_H

UM

AN

P61

224

RA

P1B

Pla

sma

mem

bra

neG

TPas

eN

Ras

RA

SN

_HU

MA

NP

0111

1N

RA

SP

lasm

am

emb

rane

Ras

-rel

ated

pro

tein

Rab

-11A

RB

11A

_HU

MA

NP

6249

1R

AB

11A

Pla

sma

mem

bra

neR

ho-r

elat

edG

TP-b

ind

ing

pro

tein

Rho

CR

HO

C_H

UM

AN

P08

134

RH

OC

Pla

sma

mem

bra

neR

ho-a

ssoc

iate

dp

rote

inki

nase

2R

OC

K2_

HU

MA

NO

7511

6R

OC

K2

Pla

sma

mem

bra

neR

as-r

elat

edp

rote

inR

-Ras

2R

RA

S2_

HU

MA

NP

6207

0R

RA

S2

Pla

sma

mem

bra

neP

rote

inS

100-

A6a

S10

A6_

HU

MA

NP

0670

3S

100A

6P

lasm

am

emb

rane

Pro

tein

S10

0-A

10a

S10

AA

_HU

MA

NP

6090

3S

100A

10P

lasm

am

emb

rane

Sw

itch-

asso

ciat

edp

rote

in70

SW

P70

_HU

MA

NQ

9UH

65S

WA

P70

Pla

sma

mem

bra

neN

ED

D8-

activ

atin

gen

zym

eE

1re

gula

tory

sub

unit

ULA

1_H

UM

AN

Q13

564

NA

E1

Pla

sma

mem

bra

neTr

ansp

ort-

rela

ted

pro

tein

sA

P-2

com

ple

xsu

bun

ital

pha

-1A

P2A

1_H

UM

AN

O95

782

AP

2A1

Pla

sma

mem

bra

neA

P-2

com

ple

xsu

bun

ital

pha

-2A

P2A

2_H

UM

AN

O94

973

AP

2A2

Pla

sma

mem

bra

neA

DP

-rib

osyl

atio

nfa

ctor

1A

RF1

_HU

MA

NP

8407

7A

RF1

Pla

sma

mem

bra

neA

DP

-rib

osyl

atio

nfa

ctor

6A

RF6

_HU

MA

NP

6233

0A

RF6

Pla

sma

mem

bra

neA

DP

-rib

osyl

atio

nfa

ctor

-lik

ep

rote

in3

AR

L3_H

UM

AN

P36

405

AR

L3P

lasm

am

emb

rane

Bet

a-ar

rest

in-1

AR

RB

1_H

UM

AN

P49

407

AR

RB

1P

lasm

am

emb

rane

Chl

orid

ein

trac

ellu

lar

chan

nelp

rote

in1

CLI

C1_

HU

MA

NO

0029

9C

LIC

1P

lasm

am

emb

rane

Chl

orid

ein

trac

ellu

lar

chan

nelp

rote

in4

CLI

C4_

HU

MA

NQ

9Y69

6C

LIC

4P

lasm

am

emb

rane

Clu

ster

inC

LUS

_HU

MA

NP

1090

9C

LUE

xtra

cellu

lar

Gly

cop

rote

inC

oato

mer

sub

unit

bet

aC

OP

B_H

UM

AN

P53

618

CO

PB

1P

lasm

am

emb

rane

EH

dom

ain-

cont

aini

ngp

rote

in1

EH

D1_

HU

MA

NQ

9H4M

9E

HD

1P

lasm

am

emb

rane

EH

dom

ain-

cont

aini

ngp

rote

in2

EH

D2_

HU

MA

NQ

9NZ

N4

EH

D2

Pla

sma

mem

bra

neP

alm

itoyl

-pro

tein

thio

este

rase

1P

PT1

_HU

MA

NP

5089

7P

PT1

Ext

race

llula

rG

lyco

pro

tein

Pro

tein

S10

0-A

13S

10A

D_H

UM

AN

Q99

584

S10

0A13

Ext

race

llula

r

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 9

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

explanation for why previously unidentified proteins (8, 10)were found in the present analysis (Fig. 1C). An overlay be-tween secreted (Cy3 and Cy 5; green and red color) andcellular (Cy 2; blue color) proteins is shown in Fig. 1D. Com-mon spots were numbered (supplemental Fig. S2) and iden-tified via LC-MS/MS (supplemental Table S3). Certain pro-teins, such as von Willebrand antigen 2 (a propeptide of vWF,AA 23–763), were clearly more abundant in the secretome ofPMA-treated HUVECs.

The Endothelial Glycoproteome—Among the 1252 identi-fied proteins were 253 extracellular or plasma membraneproteins (approximately 20%) related to cell adhesion, bloodcoagulation, hemostasis, signaling transduction, and proteintransportation, of which 166 were known glycoproteins (TableI). To further characterize this subproteome, we employed aglycoproteomics approach. Secreted proteins were precipi-tated and digested with trypsin, and tryptic peptides werelabeled with TMT0 to increase their charge state prior toenrichment by means of zwitterionic hydrophilic interactionliquid chromatography purification (24). For glycosite identifi-cation, an indirect and a direct strategy were pursued (Fig.2A): (i) digestion with PNGase F in the presence of 18O waterto label the conversion of asparagine to aspartic acid upon theremoval of N-glycans, and (ii) alternating HCD and ETD (HCD-

TAB

LEI—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDU

niP

rot

acce

ssio

nnu

mb

erG

ene

nam

eC

ellu

lar

com

pon

ent

Gly

cop

rote

inE

Cm

arke

r

Sol

ute

carr

ier

fam

ily12

mem

ber

2S

12A

2_H

UM

AN

P55

011

SLC

12A

2P

lasm

am

emb

rane

Pro

activ

ator

pol

ypep

tide

SA

P_H

UM

AN

P07

602

PS

AP

Ext

race

llula

rG

lyco

pro

tein

Syn

taxi

n-b

ind

ing

pro

tein

1S

TXB

1_H

UM

AN

P61

764

STX

BP

1P

lasm

am

emb

rane

Syn

taxi

n-b

ind

ing

pro

tein

3S

TXB

3_H

UM

AN

O00

186

STX

BP

3P

lasm

am

emb

rane

Tran

smem

bra

neem

p24

dom

ain-

cont

aini

ngp

rote

in10

TME

DA

_HU

MA

NP

4975

5TM

ED

10P

lasm

am

emb

rane

Gly

cop

rote

inV

esic

le-a

ssoc

iate

dm

emb

rane

pro

tein

-ass

ocia

ted

pro

tein

AV

AP

A_H

UM

AN

Q9P

0L0

VA

PA

Pla

sma

mem

bra

ne

aTh

ese

pro

tein

sw

ere

also

iden

tifie

din

the

cellu

lar

pro

teom

eac

cord

ing

toth

ed

iffer

ence

gele

lect

rop

hore

sis

anal

ysis

pre

sent

edin

the

sup

ple

men

tald

ata.

FIG. 2. Glycoproteomics. A, glycopeptide identification workflow.Comparison of direct and indirect glycopeptide detection using HCD-ETD and 18O-deamidation after PNGase F � H2

18O treatment, re-spectively: identified unique glycopeptides (B), unique glycosylationsites (C), and unique glycoproteins (D).

Glycoproteomics of the Endothelial Secretome

10 Molecular & Cellular Proteomics 12.4

ZSI

ZSI

F2

COLOR

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

alt-ETD) or HCD-product-dependent ETD (HCD-pd-ETD)fragmentation on an Orbitrap Elite MS (24).

There was little overlap in the numbers of glycopeptides(Fig. 2B) and glycosylation sites (Fig. 2C) identified via thedirect (HCD-ETD) and the indirect (PNGase F � H2

18O) meth-ods. Better agreement was observed at the protein level (Fig.2D). With the indirect (PNGase F � H2

18O) method, 27 pep-tides were identified with N[�2.99] modification at non-con-sensus sequence, out of 1139 total identified peptides withN[�2.99]. This anomaly rate of 2.4% (27/1139) combines therate of false identifications and the rate of chance deamida-tions in 18O water that were not in the consensus sequence ofglycosylation (i.e. N-X(not P)-S/T). All glycopeptides identifiedare listed in Table II and supplemental Table S4. Three spectra(full MS, HCD, and ETD) from a neuronal cell adhesion mole-cule (UniProt accession number Q92823) (AA - 222FNHTQ-TIQQK231) are presented in Fig. 3.

For the same samples, HCD-pd-ETD revealed 28 known,25 potential, and 16 novel glycosylation sites based on 209identified spectra; HCD-alt-ETD revealed 20 known, 32 po-tential, and 14 novel glycosylation sites from 110 identifiedspectra. The HCD-alt-ETD method selected mostly precur-sors with higher intensities, higher charge, and smaller m/z(Fig. 4A). Several large glycopeptides were detected via onlyHCD-alt-ETD, and more low-abundant glycopeptides weredetected via HCD-pd-ETD. There was limited overlap in theidentified glycopeptides but better agreement in the proteinlevel (Fig. 4B). Among the 319 total glycopeptides identified inthe conditioned media, 31 were attached with a trimannosylcore (-HexNAc2Hex3) or truncated core (-HexNAc2Hex), 50with high mannose (-HexNAc2Hex4–9), and 238 with complex/hybrid glycans. Notably, HCD-pd-ETD detected almost twiceas many complex/hybrid glycoforms as HCD-alt-ETD(Fig.4C).

Validation of Glycoproteins—To validate the glycosylationstatus, we performed additional analysis before and afterglycoprotein enrichment with affinity resins of ConA lectin(n � 4) using a Q Exactive MS (Thermo Scientific). We thencompared the number of identified spectra in the glycopro-tein-enriched fraction, the flow-through, and the input (sup-plemental Table S5). For most glycoproteins, a higher spectralcount was observed in the glycoprotein-enriched fractionthan in the original input and/or the flow-through. Represent-ative examples (fibronectin, neuronal cell adhesion molecule,tyrosine-protein-kinase-like 7, and vWF) are shown in Fig. 5A.Non-glycosylated proteins, such as annexin A2 and alpha-enolase, were more abundant in the flow-through. Glycopro-teins identified in all three methods are highlighted in Fig. 5B.

Confirmation of Predicted Glycosylation Sites—The hemo-static protein vWF is the main protein stored within Weibel-Palade bodies (27). After secretagogue stimulation, Weibel-Palade bodies undergo exocytosis, releasing vWF filaments.vWF is one of the few known proteins containing the ABOblood group signature, which is formed by different glycans.

Although the released glycan composition of this protein hasbeen investigated extensively (28, 29), experimental evidencefor many putative glycosylation sites is still missing. The cov-erage obtained for vWF in our proteomics analysis is shown inFig. 6A. The precursor protein consists of homologous unitssuch as the VWF type A, C, and D domains and a C-terminalcystine know (CTCK). The vWF propeptide (D1-D2, AA 23–763) is separated from the remaining domains of mature vWF(AA 764–2813) via furin-mediated proteolytic cleavage. Weconfirmed 6 N-glycosylation sites. Notably, three N-glycosy-lation sites were located within the propeptide (AA 23–763).Examples of ETD spectra are shown in Fig. 6B.

DISCUSSION

This study represents a significant advance over the exist-ing proteomics literature on ECs. Unlike other cell types, ECsdo not tolerate prolonged serum starvation, and their suscep-tibility to cell death upon serum withdrawal poses a majorchallenge for proteomic workflows targeting their secretome.We performed secretome analysis after 45 min of PMA stim-ulation combined with enrichment strategies for glycopro-teins and glycopeptides. Glycopeptides were analyzed viathree complementary MS techniques: the detection of 18Oasparagine deamidation after digestion with PNGase F inH2

18O, HCD-alt-ETD, and HCD-pd-ETD using an OrbitrapElite MS.

The Endothelial Secretome—The secretagogue PMA mini-mized EC death by allowing a shorter incubation period underserum-free conditions while increasing coverage in the pro-teomic analysis by inducing the exocytosis of intracellularstorage vesicles (14) such as Weibel-Palade bodies. Theseunique storage vesicles in ECs play a major role in hemostasisand cell-to-cell communication. Using this approach, manymore proteins were identified than in any previous proteomicsstudy on ECs, including known endothelial surface markerssuch as endoglin (CD105), integrin beta-1 (CD29), tyrosine-protein kinase receptor Tie-1, and junctional adhesion mole-cule A; secreted growth factors (i.e. C-type lectin domainfamily 11 member A); co-receptors (i.e. neuropilin-1 (co-re-ceptor for VEGF-A)); proteases(i.e. furin); and inflammatorymediators (i.e. macrophage migration inhibitory factor), toname just a few. Short-term PMA treatment does not releasemicroparticles (30), as shedding events make it difficult todiscern intracellular from secreted/membrane proteins. In adirect comparison of the cellular proteome and the secretomeutilizing difference gel electrophoresis, 70 out of 96 proteinsanalyzed were present in both samples, representing �10%of the visible protein spots in the secretome.

Biological Importance of Glycosylation—Glycosylation iskey for the stability and solubility of secreted and membraneproteins. It is the most complex post-translational modifica-tion (31) and mediates extracellular matrix network assembly,cell–cell interactions, and cell–matrix interactions. Unlikepolynucleotides and polypeptides, which have a linear struc-

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 11

T2,ZSI

F4

ZSI

F5

F6

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEII

Gly

cop

eptid

esid

entif

ied

via

the

HC

D-E

TDm

etho

d

Pro

tein

nam

eU

niP

rot

IDP

eptid

eG

lyco

site

Typ

eG

lyca

nsO

bse

rved

m/z

Z�

Mas

s(p

pm

)

Afa

min

AFA

M_H

UM

AN

$DIE

NFN

(�17

02.5

82)ˆS

TQk

N33

Kno

wn

Hex

8Hex

NA

c284

3.35

94

�5.

8A

min

opep

tidas

eN

AM

PN

_HU

MA

N$k

LN(�

892.

318)

YTL

SQ

GH

RV

VLR

N12

8K

now

nH

ex3H

exN

Ac2

781.

916

4�

2.8

$NA

N(�

2042

.720

)ˆSS

PV

AsT

TPS

AS

ATT

NP

AS

ATT

LDQ

Sk

N42

Nov

elH

ex4H

exN

Ac4

Neu

Ac2

1095

.276

5�

0.3

Alp

ha-N

-ace

tylg

luco

sam

inid

ase

AN

AG

_HU

MA

N$S

VY

N(�

1257

.450

)cS

GE

AcR

GhN

RS

PLV

RN

503

Pot

entia

lH

ex4H

exN

Ac3

954.

927

41.

1A

ngio

poi

etin

-2A

NG

P2_

HU

MA

N$k

IVTA

TVN

(�56

8.21

2)N

SV

LQk

N24

0P

oten

tial

Hex

1Hex

NA

c268

9.64

54

�0.

3$S

GhT

TNG

IYTL

TFP

N(�

1038

.375

)STE

EIk

N30

4P

oten

tial

Hex

3Hex

NA

c2d

Hex

176

3.56

55

�1.

4A

ttra

ctin

ATR

N_H

UM

AN

$DLD

MFI

N(�

1241

.455

)AS

kN

1198

Kno

wn

Hex

3Hex

NA

c3d

Hex

194

8.45

03

6.7

$GcS

cFS

DW

QG

PG

cSV

PV

PA

N(�

1095

.397

)QS

FWTR

N32

5P

oten

tial

Hex

3Hex

NA

c310

77.7

084

�2.

1$G

cScF

SD

WQ

GP

GcS

VP

VP

AN

(�89

2.31

7)Q

SFW

TRE

EY

SnL

kN

325

Pot

entia

lH

ex3H

exN

Ac2

1040

.061

5�

2.4

Cad

herin

-2C

AD

H2_

HU

MA

N$E

QIA

RFH

LRA

HA

VD

InG

NQ

VE

NP

IDIV

INV

IDM

ND

NR

PE

FLH

QV

WN

(�17

51.6

24)G

TVP

EG

Sk

N27

3K

now

nH

ex4H

exN

Ac4

Neu

Ac1

930.

011

92.

8

Cad

herin

-5C

AD

H5_

HU

MA

N$E

N(�

1054

.370

)ˆIS

EY

HLT

AV

IVD

kN

112

Kno

wn

Hex

4Hex

NA

c281

5.14

64

0.7

$ELD

RE

VY

PW

YN

(�12

41.4

55)L

TVE

Ak

N44

2K

now

nH

ex3H

exN

Ac3

dH

ex1

954.

972

410

.0C

D10

9an

tigen

CD

109_

HU

MA

N$L

NLY

LDS

VN

(�10

38.3

75)ˆE

TQFc

VN

IPA

VR

N13

55N

ovel

Hex

3Hex

NA

c2d

Hex

193

8.44

74

1.5

$kkN

(�15

40.5

29)IT

kN

279

Pot

entia

lH

ex7H

exN

Ac2

793.

410

4�

0.9

$QN

(�18

48.6

40)ˆS

TMFS

LTP

EN

SW

TPk

N51

3N

ovel

Hex

8Hex

NA

c2d

Hex

110

72.7

194

1.0

CD

59gl

ycop

rote

inC

D59

_HU

MA

N$T

AV

N(�

1954

.704

)ˆcsS

DFD

AcL

ITk

N43

Kno

wn

Hex

4Hex

NA

c5N

euA

c110

77.7

084

9.1

Com

ple

men

tfa

ctor

IC

FAI_

HU

MA

N$F

LNN

(�10

54.3

70)G

TcTA

EG

kN

103

Kno

wn

Hex

4Hex

NA

c293

9.09

43

�4.

0$L

ISN

(�35

34.2

44)ˆc

Sk

N49

4P

oten

tial

Hex

8Hex

NA

c6d

Hex

1Neu

Ac3

1207

.501

45.

7C

AP

-Gly

dom

ain-

cont

aini

nglin

ker

pro

tein

1C

LIP

1_H

UM

AN

$GE

N(�

1257

.450

)ˆAS

Ak

N12

63N

ovel

Hex

4Hex

NA

c380

2.35

93

�1.

4

$GE

N(�

1784

.635

)AS

Ak

N12

63N

ovel

Hex

6Hex

NA

c497

0.43

73

10.7

$EP

SA

TPP

ISN

(�21

88.7

41)L

TkN

187

Nov

elH

ex11

Hex

NA

c299

9.19

24

�6.

9$A

NE

N(�

1200

.428

)ˆAS

FLQ

kSIE

DM

TVk

N97

1N

ovel

Hex

4Hex

NA

c2d

Hex

198

0.72

44

2.6

$AN

EN

(�12

16.4

23)ˆA

SFL

QkS

IED

MTV

kN

971

Nov

elH

ex5H

exN

Ac2

985.

232

411

.0$A

NE

N(�

1257

.449

)AS

FLQ

kSIE

DM

TVk

N97

1N

ovel

Hex

4Hex

NA

c398

9.48

94

8.2

$AN

EN

(�14

44.5

34)A

SFL

QkS

IED

MTV

kN

971

Nov

elH

ex3H

exN

Ac4

dH

ex1

1036

.764

49.

3E

phr

inty

pe-

Are

cep

tor

2E

PH

A2_

HU

MA

N$T

AS

VS

IN(�

892.

317)

QTE

PP

kVR

LEG

RN

435

Kno

wn

Hex

3Hex

NA

c285

6.69

44

�0.

4Fi

bro

ussh

eath

-int

erac

ting

pro

tein

2FS

IP2_

HU

MA

N$I

GW

EY

ES

TN(�

1751

.624

)ISR

N14

23N

ovel

Hex

4Hex

NA

c4N

euA

c185

8.37

34

0.8

$TIT

FSA

N(�

1362

.481

)VS

SH

EhT

Yk

N16

75N

ovel

Hex

5Hex

NA

c2d

Hex

191

2.92

34

3.0

$GG

IN(�

892.

318)

ISG

QG

SIIS

AQ

VS

PTR

N21

5N

ovel

Hex

3Hex

NA

c210

20.5

093

1.5

$EN

SN

(�12

00.4

28)F

SQ

LALS

NE

ILLG

HkE

kN

2216

Nov

elH

ex4H

exN

Ac2

dH

ex1

708.

363

66.

3$m

PIE

N(�

1444

.534

)LS

SIQ

Qk

N28

24N

ovel

Hex

3Hex

NA

c4d

Hex

182

5.39

84

0.8

$YN

(�22

04.7

72)k

N42

7N

ovel

Hex

5Hex

NA

c4N

euA

c210

26.7

793

7.7

N-a

cety

lglu

cosa

min

e-6-

sulfa

tase

GN

S_H

UM

AN

$LV

kRLE

FTG

ELN

(�20

18.7

08)ˆN

TYIF

YTS

DnG

YH

TGQ

FSLP

IDkR

N31

7K

now

nH

ex6H

exN

Ac3

dH

ex1N

euA

c169

6.02

710

�9.

6$G

PG

IkP

N(�

1540

.529

)QTS

kN

362

Pot

entia

lH

ex7H

exN

Ac2

835.

657

4�

0.8

Gol

gin

sub

fam

ilyA

mem

ber

4G

OG

A4_

HU

MA

N$E

LEhV

N(�

1735

.630

)ˆLS

Vk

N16

12N

ovel

Hex

3Hex

NA

c4d

Hex

1Neu

Ac1

848.

139

4�

3.9

$kE

LEH

VN

(�10

38.3

75)L

SV

kN

1612

Nov

elH

ex3H

exN

Ac2

dH

ex1

752.

648

40.

8$k

ELE

HV

N(�

1524

.534

)LS

Vk

N16

12N

ovel

Hex

6Hex

NA

c2d

Hex

187

4.18

64

�1.

6$S

LQE

NkN

(�12

57.4

50)Q

Sk

N58

5N

ovel

Hex

4Hex

NA

c377

7.39

14

10.2

$TR

ILE

LES

SLE

kSLQ

EN

kN(�

1216

.423

)QS

kN

585

Nov

elH

ex5H

exN

Ac2

938.

686

5�

2.3

Inte

rcel

lula

rad

hesi

onm

olec

ule

2IC

AM

2_H

UM

AN

$GS

LEV

N(�

2028

.741

)ˆcS

TTcN

QP

EV

GG

LETS

LDk

N47

Kno

wn

Hex

5Hex

NA

c610

39.8

615

5.1

$HY

LVS

N(�

568.

212)

ISH

DTV

LQcH

FTcS

Gk

N82

Kno

wn

Hex

1Hex

NA

c290

5.68

74

�0.

6IC

OS

ligan

dIC

OS

L_H

UM

AN

$IA

RTP

SV

NIG

ccIE

NV

LLQ

QN

(�24

57.8

77)L

TVG

SQ

TGN

DIG

ER

N22

5P

oten

tial

Hex

8Hex

NA

c5d

Hex

172

4.21

99

�5.

4$I

AR

TPS

VN

IGcc

IEN

VLL

QQ

N(�

2594

.937

)ˆLTV

GS

QTG

ND

IGE

RN

225

Pot

entia

lH

ex4H

exN

Ac6

dH

ex1N

euA

c266

7.90

610

0.1

Inte

rleuk

in-6

rece

pto

rsu

bun

itb

eta

IL6R

B_H

UM

AN

$SH

LQN

(�56

8.21

2)Y

TVN

ATk

LTV

NLT

ND

RY

LATL

TVR

NLV

Gk

N37

9K

now

nH

ex1H

exN

Ac2

725.

691

76.

5

Glycoproteomics of the Endothelial Secretome

12 Molecular & Cellular Proteomics 12.4

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEII—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDP

eptid

eG

lyco

site

Typ

eG

lyca

nsO

bse

rved

m/z

Z�

Mas

s(p

pm

)

$SH

LQN

(�56

8.21

2)Y

TVN

ATk

LTV

NLT

ND

RY

LATL

TVR

NLV

Gk

N37

9K

now

nH

ex1H

exN

Ac2

1015

.568

59.

4$L

TVN

(�14

60.5

29)L

TND

RY

LATL

TVR

NLV

Gk

N39

0K

now

nH

ex4H

exN

Ac4

877.

848

5�

8.4

$QN

(�56

8.21

2)cS

QH

ES

SP

DIs

HFE

RN

818

Nov

elH

ex1H

exN

Ac2

733.

814

48.

8In

tegr

inal

pha

-3IT

A3_

HU

MA

N$D

VR

kLLL

SIN

(�89

2.31

7)V

TNTR

N65

6P

oten

tial

Hex

3Hex

NA

c210

28.5

543

�2.

2$A

HcV

WLE

cPIP

DA

PV

VTN

(�13

62.4

81)V

TVk

N92

6P

oten

tial

Hex

5Hex

NA

c2d

Hex

186

4.22

35

8.3

Inte

grin

bet

a-1

ITB

1_H

UM

AN

$kN

kNV

TN(�

1444

.534

)ˆRS

kN

97P

oten

tial

Hex

3Hex

NA

c4d

Hex

188

8.71

04

2.8

Junc

tiona

lad

hesi

onm

olec

ule

CJA

M3_

HU

MA

N$I

WN

(�15

81.5

55)V

TRR

DS

ALY

RcE

VV

AR

ND

RN

104

Pot

entia

lH

ex6H

exN

Ac3

1139

.528

4�

4.8

$IW

N(�

892.

318)

ˆVTR

N10

4P

oten

tial

Hex

3Hex

NA

c264

3.30

33

�0.

7Ly

soso

me-

asso

ciat

edm

emb

rane

glyc

opro

tein

1LA

MP

1_H

UM

AN

$GH

TLTL

N(�

1378

.476

)FTR

N10

3K

now

nH

ex6H

exN

Ac2

921.

421

3�

0.4

$GH

TLTL

N(�

1540

.529

)FTR

N10

3K

now

nH

ex7H

exN

Ac2

975.

439

3�

0.4

$YN

VS

GTN

GTc

LLA

SM

GLQ

LN(�

2042

.720

)ˆLTY

ER

kDN

TTV

TRLL

nIN

PN

kN

241

Kno

wn

Hex

4Hex

NA

c4N

euA

c273

4.66

110

6.4

$kD

N(�

2059

.735

)TTV

TRN

249

Kno

wn

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

861.

641

41.

0$k

DN

(�22

04.7

72)T

TVTR

N24

9K

now

nH

ex5H

exN

Ac4

Neu

Ac2

898.

156

45.

8$k

DN

(�23

50.8

30)T

TVTR

N24

9K

now

nH

ex5H

exN

Ac4

dH

ex1N

euA

c293

4.41

44

�0.

2$k

DN

(�25

69.9

05)T

TVTR

N24

9K

now

nH

ex6H

exN

Ac5

Neu

Ac2

989.

440

46.

2$k

DN

(�25

70.9

25)T

TVTR

N24

9K

now

nH

ex6H

exN

Ac5

dH

ex2N

euA

c198

9.69

04

1.0

$kD

N(�

2571

.946

)TTV

TRN

249

Kno

wn

Hex

6Hex

NA

c5d

Hex

498

9.69

04

�2.

4$k

DN

(�27

15.9

63)ˆT

TVTR

N24

9K

now

nH

ex6H

exN

Ac5

dH

ex1N

euA

c210

31.1

904

�2.

0$k

DN

(�27

15.9

63)T

TVTR

N24

9K

now

nH

ex6H

exN

Ac5

dH

ex1N

euA

c210

25.6

964

�0.

9$k

DN

(�27

17.9

78)T

TVTR

N24

9K

now

nH

ex8H

exN

Ac7

1025

.949

4�

1.2

$kD

N(�

2861

.000

)TTV

TRN

249

Kno

wn

Hex

6Hex

NA

c5N

euA

c310

62.2

114

3.1

$kD

N(�

2864

.036

)TTV

TRN

249

Kno

wn

Hex

8Hex

NA

c7d

Hex

110

62.4

664

1.2

$kD

N(�

3007

.058

)TTV

TRN

249

Kno

wn

Hex

6Hex

NA

c5d

Hex

1Neu

Ac3

1098

.476

44.

4$A

AN

(�17

02.5

81)G

SLR

N32

2K

now

nH

ex8H

exN

Ac2

872.

711

32.

6$A

AN

(�18

64.6

34)G

SLR

N32

2K

now

nH

ex9H

exN

Ac2

926.

395

33.

5Ly

soso

me-

asso

ciat

edm

emb

rane

glyc

opro

tein

2LA

MP

2_H

UM

AN

$EkP

EA

GTY

SV

NN

GN

(�10

54.3

70)D

TcLL

ATm

GLQ

LNIT

QD

kN

229

Kno

wn

Hex

4Hex

NA

c210

48.5

065

0.8

Lyso

som

alal

pha

-glu

cosi

das

eLY

AG

_HU

MA

N$Q

VV

EN

(�10

95.3

97)ˆM

TRA

HFP

LDV

QW

ND

LDY

MD

SR

N39

0K

now

nH

ex3H

exN

Ac3

905.

408

50.

9$G

AY

TQV

IFLA

RN

(�10

54.3

70)N

TIV

NE

LVR

N88

2K

now

nH

ex4H

exN

Ac2

918.

718

41.

4P

rote

in-l

ysin

e6-

oxid

ase

LYO

X_H

UM

AN

$AE

N(�

1054

.370

)QTA

PG

EV

PA

LSN

LRN

144

Pot

entia

lH

ex4H

exN

Ac2

762.

369

48.

1$D

PG

AA

VP

GA

AN

AS

AQ

QP

RTP

ILLI

RD

N(�

2432

.884

)RN

97P

oten

tial

Hex

3Hex

NA

c6d

Hex

1Neu

Ac2

1106

.316

5�

5.0

Lym

pha

ticve

ssel

end

othe

lial

hyal

uron

icac

idre

cep

tor

1LY

VE

1_H

UM

AN

$AN

(�13

62.4

81)D

SN

PN

EE

Skk

TDk

N28

9N

ovel

Hex

5Hex

NA

c2d

Hex

198

4.72

74

5.8

Lyso

som

alal

pha

-man

nosi

das

eM

A2B

1_H

UM

AN

$GFk

DH

FTFc

QQ

LN(�

892.

317)

ISIc

PLS

QTA

AR

FQV

IVY

nPLG

Rk

N49

7P

oten

tial

Hex

3Hex

NA

c298

7.50

46

�1.

2H

epat

ocyt

egr

owth

fact

orre

cep

tor

ME

T_H

UM

AN

$TLL

RN

(�17

51.6

24)ˆS

sGcE

AR

RD

EY

RN

405

Pot

entia

lH

ex4H

exN

Ac4

Neu

Ac1

1040

.946

46.

4$V

IVQ

PD

QN

(�20

42.7

20)ˆˆ

FTG

LIA

GV

VS

ISTA

LLLL

LGFF

LWLk

kRk

N93

0P

oten

tial

Hex

4Hex

NA

c4N

euA

c288

6.22

58

3.5

$VIV

QP

DQ

N(�

2174

.799

)ˆFTG

LIA

GV

VS

ISTA

LLLL

LGFF

LWLk

kRN

930

Pot

entia

lH

ex5H

exN

Ac6

dH

ex1

1140

.772

64.

0In

ters

titia

lcol

lage

nase

MM

P1_

HU

MA

N$A

FQLW

SN

(�20

34.7

03)ˆV

TPLT

FTk

N14

3N

ovel

Hex

7Hex

NA

c3N

euA

c110

65.9

924

3.1

$AFQ

LWS

N(�

2059

.735

)VTP

LTFT

kN

143

Nov

elH

ex5H

exN

Ac4

dH

ex1N

euA

c110

65.9

994

0.3

$AFQ

LWS

N(�

2075

.730

)ˆVTP

LTFT

kN

143

Nov

elH

ex6H

exN

Ac4

Neu

Ac1

1076

.245

40.

2$A

FQLW

SN

(�20

75.7

30)V

TPLT

FTk

N14

3N

ovel

Hex

5Hex

NA

c4d

Hex

2Neu

Gc1

1070

.250

41.

4$A

FQLW

SN

(�20

76.7

50)V

TPLT

FTk

N14

3N

ovel

Hex

6Hex

NA

c4d

Hex

210

70.2

514

�1.

0$A

FQLW

SN

(�20

92.7

45)V

TPLT

FTk

N14

3N

ovel

Hex

7Hex

NA

c4d

Hex

210

74.2

514

0.2

$AFQ

LWS

N(�

2350

.830

)ˆVTP

LTFT

kN

143

Nov

elH

ex5H

exN

Ac4

dH

ex1N

euA

c211

44.7

694

�0.

3$A

FQLW

SN

(�23

50.8

30)V

TPLT

FTk

N14

3N

ovel

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

1139

.021

4�

1.9

$AFQ

LWS

N(�

2351

.851

)VTP

LTFT

kN

143

Nov

elH

ex5H

exN

Ac4

dH

ex3N

euA

c111

39.2

774

�0.

9

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 13

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEII—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDP

eptid

eG

lyco

site

Typ

eG

lyca

nsO

bse

rved

m/z

Z�

Mas

s(p

pm

)

Mul

timer

in-1

MM

RN

1_H

UM

AN

$IN

ALk

kPTV

N(�

1200

.428

)LTT

VLI

GR

N10

20K

now

nH

ex4H

exN

Ac2

dH

ex1

957.

031

41.

5$G

AR

LFV

LLS

SLW

SG

GIG

LN(�

1241

.455

)ˆNS

kN

21P

oten

tial

Hex

3Hex

NA

c3d

Hex

110

01.0

064

�3.

0$L

FVLL

SS

LWS

GG

IGLN

(�56

8.21

2)N

Sk

N21

Pot

entia

lH

ex1H

exN

Ac2

756.

162

4�

0.8

$ID

N(�

1095

.397

)ˆIS

LTV

ND

VR

NTY

SS

LEG

kN

344

Kno

wn

Hex

3Hex

NA

c397

6.97

34

�1.

1$I

nN(�

568.

212)

LTV

SLE

ME

kN

576

Pot

entia

lH

ex1H

exN

Ac2

803.

746

3�

1.8

$kIE

N(�

892.

317)

LTS

AV

NS

LNFI

IkN

680

Pot

entia

lH

ex3H

exN

Ac2

868.

469

4�

3.4

$LN

QS

NFQ

kmY

QM

FN(�

2262

.815

)ˆETT

SQ

VR

N82

8P

oten

tial

Hex

5Hex

NA

c5d

Hex

1Neu

Ac1

1069

.470

52.

0$A

LEA

kSIH

LSIn

FFS

LN(�

568.

212)

kN

921

Pot

entia

lH

ex1H

exN

Ac2

819.

195

4�

5.2

$SIH

LSIN

FFS

LN(�

892.

318)

ˆkN

921

Pot

entia

lH

ex3H

exN

Ac2

721.

609

4�

6.7

C-t

ype

man

nose

rece

pto

r2

MR

C2_

HU

MA

N$V

TPA

cN(�

2059

.735

)TS

LPA

QR

N69

Kno

wn

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

925.

654

4�

2.1

$SN

(�20

59.7

35)V

TkN

954

Pot

entia

lH

ex5H

exN

Ac4

dH

ex1N

euA

c110

20.1

223

0.2

Nck

-ass

ocia

ted

pro

tein

5N

CK

P5_

HU

MA

N$E

RG

PQ

GQ

GH

GR

MA

LNLQ

LSD

TDD

N(�

2018

.708

)ˆE

TFD

ELH

IES

SD

Ek

N58

5N

ovel

Hex

6Hex

NA

c3d

Hex

1Neu

Ac1

1127

.492

6�

3.7

Lyso

som

alp

rote

inN

CU

-G1

NC

UG

1_H

UM

AN

$LLH

TAD

TcQ

LEV

ALI

GA

sPR

GN

(�12

41.4

54)R

N23

0P

oten

tial

Hex

3Hex

NA

c3d

Hex

110

10.2

234

�1.

4N

atur

alcy

toto

xici

tytr

igge

ring

rece

pto

r3

ligan

d1

NR

3L1_

HU

MA

N$L

N(�

2172

.745

)SS

QE

DP

GTV

YQ

cVV

RH

AS

LHTP

LRN

216

Pot

entia

lH

ex10

Hex

NA

c2d

Hex

110

73.4

775

�4.

3

Neu

rona

lcel

lad

hesi

onm

olec

ule

NR

CA

M_H

UM

AN

$IP

AN

(�27

15.9

63)k

N10

09P

oten

tial

Hex

6Hex

NA

c5d

Hex

1Neu

Ac2

927.

404

4�

1.4

$IP

AN

(�29

60.0

68)ˆˆ

kN

1009

Pot

entia

lH

ex5H

exN

Ac7

dH

ex1N

euA

c210

00.1

814

6.5

$FN

(�13

78.4

76)H

TQTI

QQ

kN

223

Pot

entia

lH

ex6H

exN

Ac2

768.

611

40.

9$F

N(�

1378

.476

)HTQ

TIQ

Qk

N22

3P

oten

tial

Hex

6Hex

NA

c210

24.4

803

2.2

$SS

RE

RP

PTF

LTP

EG

N(�

1710

.598

)AS

Nk

N27

6K

now

nH

ex5H

exN

Ac3

Neu

Ac1

1062

.994

4�

0.4

Nuc

lear

rece

pto

r-in

tera

ctin

gp

rote

in3

NR

IP3_

HU

MA

N$L

ME

TN(�

568.

212)

LSk

N72

Nov

elH

ex1H

exN

Ac2

651.

345

38.

7

Pla

smin

ogen

activ

ator

inhi

bito

r1

PA

I1_H

UM

AN

$GN

(�16

94.6

03)ˆM

TRLP

RLL

VLP

kFS

LETE

VD

LRk

N28

8K

now

nH

ex4H

exN

Ac3

dH

ex1N

euA

c110

63.9

535

3.4

$GN

(�20

59.7

35)M

TRN

288

Kno

wn

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

955.

394

30.

5$G

N(�

2350

.830

)ˆmTR

N28

8K

now

nH

ex5H

exN

Ac4

dH

ex1N

euA

c279

9.31

34

�3.

7$G

N(�

2351

.851

)ˆmTR

N28

8K

now

nH

ex5H

exN

Ac4

dH

ex3N

euA

c179

8.81

44

�5.

6P

late

let-

der

ived

grow

thfa

ctor

sub

unit

BP

DG

FB_H

UM

AN

$LLH

GD

PG

EE

DG

AE

LDLN

(�18

64.6

34)m

TRS

HS

GG

ELE

SLA

RG

RR

N63

Nov

elH

ex9H

exN

Ac2

1176

.921

5�

5.5

Sec

reto

ryp

hosp

holip

ase

A2

rece

pto

rP

LA2R

_HU

MA

N$M

QD

TSG

HG

VN

TsD

MY

PM

PN

TLE

YG

N(�

2204

.772

)ˆˆR

TYk

N11

23N

ovel

Hex

5Hex

NA

c4N

euA

c210

14.9

136

�1.

9

Pro

colla

gen-

lysi

ne,2

-ox

oglu

tara

te5-

dio

xyge

nase

2

PLO

D2_

HU

MA

N$Y

FN(�

1856

.656

)YTV

kVLG

QG

EE

WR

N63

Pot

entia

lH

ex5H

exN

Ac3

dH

ex1N

euA

c110

74.7

444

0.2

Pho

spho

lipid

tran

sfer

pro

tein

PLT

P_H

UM

AN

$qLL

YW

FFY

DG

GY

IN(�

2157

.783

)ˆAS

AE

GV

SIR

TGLE

LSR

N11

7P

oten

tial

Hex

4Hex

NA

c6N

euA

c111

18.8

985

0.2

$IY

SN

(�14

03.5

07)H

SA

LES

LALI

PLQ

AP

LkN

398

Kno

wn

Hex

4Hex

NA

c3d

Hex

110

33.7

824

1.5

Ple

xin-

C1

PLX

C1_

HU

MA

N$I

AN

(�15

24.5

34)ˆF

TSD

VE

YS

DD

Hch

LILP

DS

EA

FQD

VQ

GkR

HR

N13

08N

ovel

Hex

6Hex

NA

c2d

Hex

112

03.3

425

�1.

8$I

AN

(�22

04.7

73)F

TSD

VE

YS

DD

hcH

LILP

DS

EA

FQD

VQ

GkR

N13

08N

ovel

Hex

5Hex

NA

c4N

euA

c263

8.68

910

5.9

$VIL

GE

N(�

1298

.476

)LTS

NcP

EV

IYE

IkN

407

Kno

wn

Hex

3Hex

NA

c498

5.48

34

�1.

8$E

LcQ

N(�

1378

.476

)kN

548

Pot

entia

lH

ex6H

exN

Ac2

873.

730

38.

0$D

VcI

QFD

GG

NcS

SV

GS

LSY

IALP

HcS

LIFP

ATT

WIS

GG

QN

(�14

03.5

08)ˆI

TMM

GR

N77

1P

oten

tial

Hex

4Hex

NA

c3d

Hex

160

7.27

911

0.5

$EN

DN

FN(�

1054

.370

)ISk

N87

1N

ovel

Hex

4Hex

NA

c286

1.72

53

�4.

1$E

ND

NFN

(�25

22.9

16)ˆI

Sk

N87

1N

ovel

Hex

5Hex

NA

c7N

euA

c110

19.4

384

7.5

Tyro

sine

-pro

tein

kina

se-l

ike

7P

TK7_

HU

MA

N$S

AN

(�30

07.0

58)A

SFN

IkN

116

Kno

wn

Hex

6Hex

NA

c5d

Hex

1Neu

Ac3

1102

.722

42.

1$S

AN

(�30

26.0

90)A

SFN

IkN

116

Kno

wn

Hex

9Hex

NA

c7d

Hex

111

07.4

794

1.3

$ATV

FAN

(�17

10.5

98)G

SLL

LTQ

VR

PR

N28

3K

now

nH

ex5H

exN

Ac3

Neu

Ac1

945.

458

40.

0$R

QD

VN

(�16

86.5

86)IT

VA

TVP

SW

LkN

405

Pot

entia

lH

ex7H

exN

Ac2

dH

ex1

991.

485

43.

2P

entr

axin

-rel

ated

pro

tein

PTX

3P

TX3_

HU

MA

N$A

TDV

LN(�

1419

.502

)kTI

LFsY

GTk

N22

0P

oten

tial

Hex

5Hex

NA

c398

6.47

44

�4.

0

Glycoproteomics of the Endothelial Secretome

14 Molecular & Cellular Proteomics 12.4

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEII—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDP

eptid

eG

lyco

site

Typ

eG

lyca

nsO

bse

rved

m/z

Z�

Mas

s(p

pm

)

Pro

activ

ator

pol

ypep

tide

SA

P_H

UM

AN

$TN

(�10

38.3

75)S

TFV

QA

LVE

HV

kN

215

Kno

wn

Hex

3Hex

NA

c2d

Hex

110

20.8

473

1.2

$LID

NN

(�12

16.4

23)k

TEk

N33

2K

now

nH

ex5H

exN

Ac2

988.

825

3�

0.7

$LID

NN

(�13

78.4

76)k

TEk

N33

2K

now

nH

ex6H

exN

Ac2

1042

.510

30.

7$L

IDN

N(�

1694

.603

)kTE

kN

332

Kno

wn

Hex

4Hex

NA

c3d

Hex

1Neu

Ac1

861.

415

4�

0.8

$N(�

2245

.800

)ˆSTk

N42

6K

now

nH

ex4H

exN

Ac5

Neu

Ac2

1056

.113

3�

0.8

$NLE

kN(�

1378

.476

)STk

N42

6K

now

nH

ex6H

exN

Ac2

995.

485

32.

5H

isto

ned

eace

tyla

seco

mp

lex

sub

unit

SA

P30

SA

P30

_HU

MA

N$N

(�10

95.3

97)k

SD

LkN

209

Nov

elH

ex3H

exN

Ac3

824.

751

3�

3.7

$GG

DA

AA

AV

AA

VV

AA

AA

AA

AsA

GN

(�15

89.5

71)G

TGA

GTG

AE

VP

GA

GA

VS

AA

GP

PG

AA

GP

GP

GQ

LccL

RN

34N

ovel

Hex

3Hex

NA

c4N

euA

c168

2.81

510

�0.

7

Ser

pin

H1

SE

RP

H_H

UM

AN

$SLS

N(�

1378

.476

)ˆSTA

RN

120

Pot

entia

lH

ex6H

exN

Ac2

821.

017

3�

1.4

$SLS

N(�

1378

.476

)STA

RN

120

Pot

entia

lH

ex6H

exN

Ac2

813.

358

31.

9$S

LSN

(�15

40.5

29)S

TAR

N12

0P

oten

tial

Hex

7Hex

NA

c286

7.37

13

�3.

6$S

LSN

(�17

02.5

81)S

TAR

N12

0P

oten

tial

Hex

8Hex

NA

c292

2.06

23

1.6

$SLS

N(�

1864

.634

)STA

RN

120

Pot

entia

lH

ex9H

exN

Ac2

975.

414

34.

5$N

(�15

40.5

29)V

TWk

N12

5P

oten

tial

Hex

7Hex

NA

c287

9.39

93

�0.

5$N

(�17

02.5

81)V

TWk

N12

5P

oten

tial

Hex

8Hex

NA

c293

3.41

83

0.6

Tyro

sine

-pro

tein

pho

spha

tase

non-

rece

pto

rty

pe

sub

stra

te1

SH

PS

1_H

UM

AN

$LQ

LTW

LEnG

N(�

1200

.428

)VS

RN

292

Kno

wn

Hex

4Hex

NA

c2d

Hex

173

9.84

74

�3.

5

$LQ

LTW

LEN

GN

(�18

72.6

51)ˆV

SR

N29

2K

now

nH

ex6H

exN

Ac3

Neu

Ac1

912.

893

4�

11.5

SP

AR

CS

PR

C_H

UM

AN

$VcS

ND

N(�

1622

.582

)kN

116

Kno

wn

Hex

5Hex

NA

c497

0.42

53

3.5

$VcS

ND

N(�

1767

.619

)kN

116

Kno

wn

Hex

4Hex

NA

c4N

euG

c110

19.1

073

4.9

$VcS

ND

N(�

1768

.640

)kN

116

Kno

wn

Hex

5Hex

NA

c4d

Hex

110

18.4

393

0.0

$VcS

ND

N(�

1864

.634

)kN

116

Kno

wn

Hex

9Hex

NA

c210

51.1

083

2.2

$VcS

ND

N(�

1913

.677

)ˆkN

116

Kno

wn

Hex

5Hex

NA

c4N

euA

c180

6.33

64

�1.

4$V

cSN

DN

(�19

13.6

77)k

N11

6K

now

nH

ex5H

exN

Ac4

Neu

Ac1

800.

591

4�

0.3

$VcS

ND

N(�

1913

.677

)kN

116

Kno

wn

Hex

5Hex

NA

c4N

euA

c110

66.7

833

�1.

7$V

cSN

DN

(�19

14.6

97)k

N11

6K

now

nH

ex5H

exN

Ac4

dH

ex2

800.

844

4�

2.5

$VcS

ND

N(�

1914

.697

)kN

116

Kno

wn

Hex

5Hex

NA

c4d

Hex

210

67.1

253

0.6

$VcS

ND

N(�

2059

.735

)ˆkN

116

Kno

wn

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

842.

598

4�

3.0

$VcS

ND

N(�

2059

.735

)kN

116

Kno

wn

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

836.

857

43.

1$V

cSN

DN

(�20

59.7

35)k

N11

6K

now

nH

ex5H

exN

Ac4

dH

ex1N

euA

c111

15.4

723

1.6

$VcS

ND

N(�

2350

.830

)kN

116

Kno

wn

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

909.

629

40.

3S

tab

ilin-

1S

TAB

1_H

UM

AN

$ELL

QH

HG

LVP

QIE

AA

TAY

TIFV

PTn

RS

LEA

QG

N(�

2366

.825

)ˆSS

HLD

AD

TVR

N11

78P

oten

tial

Hex

6Hex

NA

c4N

euA

c273

2.44

310

3.2

$ELk

GD

GP

FTIF

VP

HA

DLM

SN

(�56

8.21

2)LS

QD

ELA

RIR

N16

26K

now

nH

ex1H

exN

Ac2

1097

.310

4�

5.4

$LLP

AH

sGLS

LIIS

DA

GP

DN

(�89

2.31

7)S

SW

AP

VA

PG

TVV

VS

RN

2424

Kno

wn

Hex

3Hex

NA

c265

5.46

47

�7.

8$I

LTM

AnQ

VLA

VN

(�10

95.3

97)IS

EE

GR

N60

6P

oten

tial

Hex

3Hex

NA

c382

0.39

04

�9.

4$G

N(�

1216

.423

)cS

DG

IQG

NG

AcL

cFP

DY

kN

745

Pot

entia

lH

ex5H

exN

Ac2

975.

155

4�

10.2

Sup

pre

ssor

ofG

2al

lele

ofS

KP

1ho

mol

ogS

UG

T1_H

UM

AN

$RA

MN

(�56

8.21

2)kS

FME

SG

GTV

LSTN

WsD

VG

kN

329

Nov

elH

ex1H

exN

Ac2

981.

480

46.

2

Ang

iop

oiet

in-1

rece

pto

rTI

E2_

HU

MA

N$I

SN

(�56

8.21

2)IT

HS

SA

VIs

WTI

LDG

YS

ISS

ITIR

N64

9P

oten

tial

Hex

1Hex

NA

c276

2.38

25

�3.

1Te

tras

pan

in-3

TSN

3_H

UM

AN

$TY

N(�

1825

.661

)GTN

PD

AA

SR

AID

YV

QR

N12

7P

oten

tial

Hex

5Hex

NA

c510

41.4

544

�7.

9Th

rom

bos

pon

din

-1TS

P1_

HU

MA

N$V

VN

(�19

13.6

77)S

TTG

PG

EH

LRN

1067

Kno

wn

Hex

5Hex

NA

c4N

euA

c187

7.14

14

0.2

Vas

cula

ren

dot

helia

lgro

wth

fact

orre

cep

tor

1V

GFR

1_H

UM

AN

$RIIW

DS

RkG

FIIS

N(�

892.

317)

ATY

kN

196

Pot

entia

lH

ex3H

exN

Ac2

934.

508

48.

1$S

VN

(�89

2.31

8)TS

VhI

YD

kAFI

TVk

N32

3P

oten

tial

Hex

3Hex

NA

c287

6.46

64

10.2

$WFW

HP

cNH

N(�

1419

.502

)HS

EA

RcD

FcS

NN

EE

SFI

LD

AD

SnM

GN

RN

474

Pot

entia

lH

ex5H

exN

Ac3

1017

.415

61.

3

$mA

ITkE

hSIT

LNLT

IMN

(�12

57.4

50)ˆV

SLQ

DS

GTY

AcR

AR

N62

5P

oten

tial

Hex

4Hex

NA

c310

51.7

025

�0.

2

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 15

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

TAB

LEII—

cont

inue

d

Pro

tein

nam

eU

niP

rot

IDP

eptid

eG

lyco

site

Typ

eG

lyca

nsO

bse

rved

m/z

Z�

Mas

s(p

pm

)

von

Will

ebra

ndfa

ctor

VW

F_H

UM

AN

$YFN

(�20

59.7

35)ˆk

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

776.

330

4�

4.7

$YFN

(�20

59.7

35)ˆk

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

1034

.440

3�

1.2

$YFN

(�20

59.7

35)k

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

1027

.114

3�

0.1

$YFN

(�20

59.7

36)k

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

770.

587

4�

0.6

$YFN

(�22

04.7

72)k

N15

6P

oten

tial

Hex

5Hex

NA

c4N

euA

c210

75.7

983

3.0

$YFN

(�22

21.7

89)k

N15

6P

oten

tial

Hex

6Hex

NA

c4d

Hex

1Neu

Ac1

1081

.467

30.

8$Y

FN(�

2350

.830

)ˆˆk

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

854.

851

4�

3.2

$YFN

(�23

50.8

30)ˆk

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

848.

856

4�

0.9

$YFN

(�23

50.8

30)ˆk

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

1131

.473

3�

0.2

$YFN

(�23

50.8

30)k

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

843.

362

40.

5$Y

FN(�

2350

.830

)kN

156

Pot

entia

lH

ex5H

exN

Ac4

dH

ex1N

euA

c211

24.1

453

�0.

7$Y

FN(�

2350

.831

)ˆkN

156

Pot

entia

lH

ex5H

exN

Ac4

dH

ex1N

euA

c284

8.85

74

0.0

$YFN

(�23

50.8

31)k

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

843.

362

41.

2$Y

FN(�

2351

.851

)ˆkN

156

Pot

entia

lH

ex5H

exN

Ac4

dH

ex3N

euA

c184

9.61

34

�0.

2$Y

FN(�

2366

.825

)ˆkN

156

Pot

entia

lH

ex5H

exN

Ac4

dH

ex1N

euA

c1N

euG

c185

3.09

84

�9.

4

$YFN

(�23

66.8

25)k

N15

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

Neu

Gc1

1129

.813

30.

5

$YFN

(�27

15.9

63)ˆk

N15

6P

oten

tial

Hex

6Hex

NA

c5d

Hex

1Neu

Ac2

940.

387

4�

3.7

$YFN

(�27

15.9

63)k

N15

6P

oten

tial

Hex

6Hex

NA

c5d

Hex

1Neu

Ac2

934.

643

4�

0.8

$YFN

(�27

16.9

83)k

N15

6P

oten

tial

Hex

6Hex

NA

c5d

Hex

3Neu

Ac1

934.

898

4�

1.5

$YFN

(�28

61.0

01)k

N15

6P

oten

tial

Hex

6Hex

NA

c5N

euA

c397

1.40

94

3.7

$YFN

(�30

07.0

58)k

N15

6P

oten

tial

Hex

6Hex

NA

c5d

Hex

1Neu

Ac3

1007

.667

4�

2.2

$YFN

(�30

09.0

74)k

N15

6P

oten

tial

Hex

8Hex

NA

c710

07.9

234

0.6

$YFN

(�30

26.0

89)k

N15

6P

oten

tial

Hex

9Hex

NA

c7d

Hex

110

12.6

764

�2.

0$Y

FN(�

3372

.190

)kN

156

Pot

entia

lH

ex7H

exN

Ac6

dH

ex1N

euA

c310

98.9

514

�0.

9$G

DIL

QR

VR

EIR

YQ

GG

N(�

1378

.476

)RN

1574

Kno

wn

Hex

6Hex

NA

c290

9.43

94

�0.

2$G

DIL

QR

VR

EIR

YQ

GG

N(�

568.

212)

RTN

TGLA

LRN

1574

Kno

wn

Hex

1Hex

NA

c291

2.98

44

�4.

0$Y

QG

GN

(�20

59.7

35)R

N15

74K

now

nH

ex5H

exN

Ac4

dH

ex1N

euA

c199

3.41

13

1.2

$AS

PP

SS

ScN

(�20

59.7

35)IS

SG

Em

Qk

N21

1P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

1073

.955

4�

2.4

$AS

PP

SS

ScN

(�23

50.8

30)ˆI

SS

GE

mQ

kN

211

Pot

entia

lH

ex5H

exN

Ac4

dH

ex1N

euA

c211

51.7

364

8.9

$AS

PP

SS

ScN

(�23

50.8

30)IS

SG

Em

Qk

N21

1P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

1146

.231

40.

3$N

(�20

59.7

35)V

ScP

QLE

VP

VcP

SG

FQLS

ckN

2546

Kno

wn

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

984.

037

5�

3.6

$GQ

VY

LQcG

TPcN

(�20

59.7

35)L

TcR

N66

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac1

1053

.444

40.

9$G

QV

YLQ

cGTP

cN(�

2075

.730

)LTc

RN

666

Pot

entia

lH

ex6H

exN

Ac4

Neu

Ac1

1057

.695

42.

2$G

QV

YLQ

cGTP

cN(�

2076

.750

)LTc

RN

666

Pot

entia

lH

ex6H

exN

Ac4

dH

ex2

1058

.193

4�

0.6

$GQ

VY

LQcG

TPcN

(�23

50.8

30)L

TcR

N66

6P

oten

tial

Hex

5Hex

NA

c4d

Hex

1Neu

Ac2

1126

.222

44.

5B

ovin

ep

rote

ins

Alp

ha-1

-aci

dgl

ycop

rote

inA

1AG

_BO

VIN

$QN

(�28

61.0

00)ˆG

TLS

kN

104

Pot

entia

lH

ex6H

exN

Ac5

Neu

Ac3

1020

.428

40.

4$Q

N(�

2861

.000

)GTL

Sk

N10

4P

oten

tial

Hex

6Hex

NA

c5N

euA

c310

14.9

344

1.8

$QN

(�28

80.0

31)G

TLS

kN

104

Pot

entia

lH

ex9H

exN

Ac7

1019

.690

40.

5$N

PE

YN

(�28

14.0

10)ˆˆ

kN

57P

oten

tial

Hex

5Hex

NA

c7N

euA

c210

18.9

234

6.2

Alp

ha-f

etop

rote

inFE

TA_B

OV

IN$A

EN

(�12

00.4

28)A

TEcF

ETk

N19

7P

oten

tial

Hex

4Hex

NA

c2d

Hex

198

3.42

83

�5.

8$A

EN

(�22

04.7

72)A

TEcF

ETk

N19

7P

oten

tial

Hex

5Hex

NA

c4N

euA

c298

8.91

34

0.1

$AN

(�22

04.7

72)F

TEIQ

kN

251

Pot

entia

lH

ex5H

exN

Ac4

Neu

Ac2

901.

651

42.

5A

lpha

-2-H

S-g

lyco

pro

tein

FETU

A_B

OV

IN$k

LcP

DcP

LLA

PLN

(�22

04.7

72)D

SR

N15

6K

now

nH

ex5H

exN

Ac4

Neu

Ac2

905.

409

50.

3$k

LcP

DcP

LLA

PLN

(�28

61.0

00)D

SR

N15

6K

now

nH

ex6H

exN

Ac5

Neu

Ac3

1036

.654

5�

1.0

$LcP

DcP

LLA

PLN

(�22

04.7

72)D

SR

N15

6K

now

nH

ex5H

exN

Ac4

Neu

Ac2

1043

.195

4�

1.7

Pep

tide

mod

ifica

tion

sym

bol

s:$,

N-t

erm

inal

TMT0

lab

ellin

g(�

224.

152)

;ˆ,N

aad

duc

ton

glyc

an(�

21.9

82);

ˆˆ,2

Na

add

ucto

ngl

ycan

(�43

.964

);c,

carb

amid

omet

hyla

tion

ofcy

stei

ne(�

57.0

21);

h,ox

idat

ion

ofhi

stid

ine

(�15

.995

);k,

TMT0

lab

elin

gof

lysi

ne(�

224.

152)

;m,o

xid

atio

nof

met

hion

ine

(�15

.995

);n,

dea

mid

atio

nof

asp

arag

ine

(�0.

984)

;q,G

ln-�

pyr

o-G

luan

dlo

ssof

TMT0

(�24

1.17

9);

s,p

hosp

hory

latio

nof

serin

e(�

79.9

66).

Und

erlin

edgl

ycop

eptid

esw

ere

also

det

ecte

dvi

ath

eP

NG

ase

F�

H218O

met

hod

(sup

ple

men

talT

able

S4)

.

Glycoproteomics of the Endothelial Secretome

16 Molecular & Cellular Proteomics 12.4

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

ture, sugars tend to be arranged in branched polymers, re-sulting in an exponential increase of possible polysaccharidecombinations. Theoretically, just six monosaccharides can

give rise to 1012 different glycan structures. This high diversityof protein-bound glycans requires a combination of differenttechniques. For example, new MS-based methods were de-

FIG. 3. HCD-pd-ETD fragmentation. Full MS showing the different glycoforms of the same peptide sequence (A). Characteristic oxoniumion detected by HCD at m/z � 204.09 (B). This HexNAc signature triggered an ETD scan to identify the peptide sequence and confirm theglycosylation site (C).

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 17

COLOR

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

veloped to profile the cell surface N-glycoproteome as adifferentiation marker for stem cells (32). We applied a com-bination of different glycoproteomics techniques to furtherenrich for secreted and shed membrane proteins and revealpotential glycosylation sites within the endothelial secretome.Glycoproteins play important roles in many biological pro-cesses related to ECs, such as angiogenesis, in which thestructural change of the glycans will determine the attachment

property of cells and influence cell-to-cell interactions (33).Interestingly, vWF is a glycoprotein produced uniquely by ECsand megakaryocytes. Previous publications investigatingvWF isolated from plasma failed to identify glycosylation siteswithin the propeptide (29). In plasma, the concentration of thepropeptide is about one-tenth of the concentration of maturevWF (34, 35). In the conditioned medium of ECs, however, weobserved several glycopeptides of the propeptide. Thus, the

FIG. 4. Comparison of HCD-pd-ETD and HCD-alt-ETD. The two methods, HCD-pd-ETD (blue) and HCD-alt-ETD (red), displayed distinctdistributions of the observed m/z, charge state, mass of identified peptides (M�H), and glycan mass, as well as the intensity of the precursorions and the ByonicsTM score (all y-axes). The x-axes represent index numbers after proteins were sorted by their corresponding y-axis valuefrom lower to higher (A). There was limited overlap in the identified glycopeptides (B). C, the HCD-pd-ETD method preferentially identifiedcomplex/hybrid glycans.

Glycoproteomics of the Endothelial Secretome

18 Molecular & Cellular Proteomics 12.4

COLOR

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

endothelial secretome allowed us to interrogate the glycosy-lation sites of von Willebrand antigen 2, the N-terminal cleav-age product of vWF that aids N-terminal multimerization andprotein compartmentalization of mature vWF in storagegranules.

Conventional Methods for Glycoproteomics—As reviewedelsewhere (36), conventional glycoproteomic methods involvethe enrichment of glycoproteins (typically with lectins likeConA and wheat germ agglutinin), cleavage of the glycans,and identification of the remaining peptide sequence. Themost widely used method for detecting N-glycopeptides isdigestion by PNGase F. PNGase F cleaves the GlcNAc mol-

ecule closest to the peptide (37). After PNGase F treatment,formerly N-linked glycosylated peptides are identified basedon the conversion of Asn to Asp (deamidation) in the consen-sus motif for N-linked glycosylation (sequence N-X(not P)-S/T). This method has two major caveats. The first of these is ahigh false positive rate due to spontaneous deamidation. Asn-Gly sites, in particular, are prone to spontaneous deamidation(38–40). To reduce false positives, PNGase F treatment isperformed in 18O water, adding a larger tag of 2.99 Da.Importantly, all known glycosyltransferases that mediate N-linked glycosylation are supposed to recognize a consensusmotif, and this consensus sequence for N-linked glycosylation

FIG. 5. Glycoprotein enrichment for validation. A, spectral count of input, glycoprotein-enriched fraction (GP), and flow-through fraction(FT) from representative glycoproteins and non-glycoproteins. B, complementarity of the different methods (HCD-ETD, PNGase F � H2

18Otreatment, and glycoprotein enrichment). Only 18 glycoproteins were consistently identified.

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 19

COLOR

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

FIG. 6. Sequence coverage for vWF. A, schematic illustration of vWF sequence. Coverage is highlighted in green, and potentialglycosylation sites are shown in red. A large hexagon indicates a glycosylation site with a reference in the Uniprot database. By using theHCD-ETD (H) or PNGase F (P) method, we confirmed six N-glycosylation sites on vWF. B, ETD spectra of glycopeptides identified via HCD-ETD(N156, N211, N666, N1574). The following abbreviations are used: a, y, g, k � TMT modified Ala, Tyr, Gly, and Lys, respectively; c �carboxyamidomethylation of Cys; m � oxidation of Met.

Glycoproteomics of the Endothelial Secretome

20 Molecular & Cellular Proteomics 12.4

COLOR

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

must be taken into consideration (41). 2) The second caveat isthat after PNGase F cleavage, the released sugars can beanalyzed separately, but the link to the identified peptideswith deamidated amino acids is lost (42, 43). Ideally, intactglycopeptides are analyzed directly via MS/MS even in com-plex biological samples.

Novel HCD-ETD Method—HCD fragmentation mostlybreaks glycosidic bonds, whereas ETD preserves the glycanattachment and fragments the peptide backbone, providingmore complete peptide sequence information. CurrentMS/MS acquisition strategies for glycopeptide analysis relyon the acquisition of MS/MS spectra for all precursor ions. Inthis study, HCD was employed to generate glycan oxoniumions and trigger an ETD spectrum in a data-dependent man-ner. HCD presents the sugar signatures within the low m/zrange, which are otherwise lost as a result of the one-third ruleof ion trap fragmentation (44). Glycopeptides with terminalHexNAc generate typically an m/z 204.0864 oxonium ion andits fragments at m/z 168.0653 and 138.0550. The oxonium ionand its fragments are measured with the high mass accuracyof the Orbitrap analyzer, and the unambiguous identificationof the glycan oxonium ion generated by the HCD scan servesas a diagnostic marker for glycopeptides. This approach wascompared against conventional HCD-alt-ETD scans using acomplex biological sample. The HCD-alt-ETD preferentiallydetects higher charged and higher intensity precursor ionsthan HCD-pd-ETD. This might be because (i) a higher chargeincreases ETD fragmentation efficiency, resulting in moreidentified glycopeptides; (ii) high-charged precursors did notproduce HCD spectra of sufficient quality to trigger ETDbased on the diagnostic oxonium ions; or (iii) more abundantpeptides were selected in HCD-alt-ETD because the instru-ment duty cycle is less efficient than in HCD-pd-ETD. Overall,the combination of multiple MS methods used in our studyprovides greater confidence in the identification of glycopep-tides than studies relying on a single approach and offerscomplementary advantages in the assessment of the glyco-proteome, notably, the simultaneous identification of the pep-tide sequence, the glycosylation site, and the glycancomposition.

Study Limitations—N-linked and O-linked glycosylation arethe two most common forms of glycosylation in mammals(45). Only N-linked glycosylation was analyzed in the presentstudy. Unlike N-linked glycosylation, O-linked glycosylationhas no consensus site (46). This makes the analysis of O-linked glycopeptides a more daunting task (47). Lectins arewidely used for glycoprotein enrichment. There are manytypes of lectins binding to different sugars, such as ConA(binds to �-D-mannosyl and �-D-glucosyl residues) and wheatgerm agglutinin (binds to GlcNAc�1–4GlcNAc�1–4GlcNAc-and N-acetylneuraminic acid). Here we used only ConA as aproof of principle to demonstrate the complementary resultsof multiple glycoprotein identification methods. ConA isknown to display nonspecific avidity for hydrophobic ligands

such as certain domains of tropomyosin (48). Furthermore,the standard protocol for the ConA glycoprotein enrichmentkit is not optimized for cleanliness, and several known non-glycoproteins were also detected in the eluate samples. Se-quential washes with low- and high-ionic-strength buffersbefore elution might have reduced this contamination (49).Also, mixing different lectins would increase the coverage ofthe glycoproteome in biological samples (39). Additional ef-forts are needed for a complete structural characterization ofprotein glycosylation; in particular, the quantitation of theoccupancy rates and the identification of the glycan structureas complex/hybrid glycans cannot be discerned via our cur-rent MS approach.

CONCLUSIONS

Cardiovascular diseases arise from exposure to risk factorsthat induce complex pathophysiological perturbations of en-dothelial protein secretion. The recent advent of new pro-teomic technologies has enabled us to obtain information onthe dynamic regulation of endothelial protein secretion. Wepresent results from an extensive glycoproteomic analysiswith information on glycan composition obtained via a directMS method. Future proteomics studies linking endothelialsecretory processes to cardiovascular risk factors and endo-thelial dysfunction will provide valuable insights about themechanisms contributing to cardiovascular disease.

Acknowledgment—We thank Dr. Sarah Langley for assistance withthe gene ontology annotation.

* This work was funded by the Department of Health via a NationalInstitute for Health Research (NIHR) Biomedical Research Centreaward to Guy’s and St. Thomas’ NHS Foundation Trust in partnershipwith King’s College London and King’s College Hospital NHS Foun-dation Trust. Dr. M. Mayr is supported by a Senior Research Fellow-ship of the British Heart Foundation.

□S This article contains supplemental material.** To whom correspondence should be addressed: Prof. Manuel

Mayr, Cardiovascular Division, King’s British Heart Foundation Cen-tre, King’s College London, 125 Coldharbour Lane, London SE5 9NU,UK, Tel.: �44 (0) 20 7848 5132, E-mail: [email protected].

REFERENCES

1. Mayr, M., Mayr, U., Chung, Y. L., Yin, X., Griffiths, J. R., and Xu, Q. (2004)Vascular proteomics: linking proteomic and metabolomic changes. Pro-teomics 4, 3751–3761

2. Pula, G., Perera, S., Prokopi, M., Sidibe, A., Boulanger, C. M., and Mayr, M.(2008) Proteomic analysis of secretory proteins and vesicles in vascularresearch. Proteomics Clin. Appl. 2, 882–891

3. Pober, J. S., and Sessa, W. C. (2007) Evolving functions of endothelial cellsin inflammation. Nat. Rev. Immunol. 7, 803–815

4. Cai, H., and Harrison, D. G. (2000) Endothelial dysfunction in cardiovasculardiseases: the role of oxidant stress. Circ. Res. 87, 840–844

5. Libby, P., and Simon, D. I. (2001) Inflammation and thrombosis: the clotthickens. Circulation 103, 1718–1720

6. Ross, R. (1999) Atherosclerosis—an inflammatory disease. N. Engl. J. Med.340, 115–126

7. Pellitteri-Hahn, M. C., Warren, M. C., Didier, D. N., Winkler, E. L., Mirza,S. P., Greene, A. S., and Olivier, M. (2006) Improved mass spectrometricproteomic profiling of the secretome of rat vascular endothelial cells. J.Proteome Res. 5, 2861–2864

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 21

ZSI

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

8. Tunica, D. G., Yin, X., Sidibe, A., Stegemann, C., Nissum, M., Zeng, L.,Brunet, M., and Mayr, M. (2009) Proteomic analysis of the secretome ofhuman umbilical vein endothelial cells using a combination of free-flowelectrophoresis and nanoflow LC-MS/MS. Proteomics 9, 4991–4996

9. Flora, J. W., Edmiston, J., Secrist, R., Li, G., Rana, G. S., Langston, T. B.,and McKinney, W. (2008) Identification of in vitro differential cell secre-tions due to cigarette smoke condensate exposure using nanoflow cap-illary liquid chromatography and high-resolution mass spectrometry.Anal. Bioanal. Chem. 391, 2845–2856

10. Burghoff, S., and Schrader, J. (2011) Secretome of human endothelial cellsunder shear stress. J. Proteome Res. 10, 1160–1169

11. Hocking, S. L., Wu, L. E., Guilhaus, M., Chisholm, D. J., and James, D. E.(2010) Intrinsic depot-specific differences in the secretome of adiposetissue, preadipocytes, and adipose tissue-derived microvascular endo-thelial cells. Diabetes 59, 3008–3016

12. Griffoni, C., Di Molfetta, S., Fantozzi, L., Zanetti, C., Pippia, P., Tomasi, V.,and Spisni, E. (2011) Modification of proteins secreted by endothelialcells during modeled low gravity exposure. J. Cell. Biochem. 112,265–272

13. Brioschi, M., Lento, S., Tremoli, E., and Banfi, C. (2013) Proteomic analysisof endothelial cell secretome: a means of studying the pleiotropic effectsof Hmg-CoA reductase inhibitors. J. Proteomics (In press)

14. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka,Y. (1982) Direct activation of calcium-activated, phospholipid-dependentprotein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257,7847–7851

15. Jacobs, J. M., Waters, K. M., Kathmann, L. E., Camp, D. G., 2nd, Wiley,H. S., Smith, R. D., and Thrall, B. D. (2008) The mammary epithelial cellsecretome and its regulation by signal transduction pathways. J. Pro-teome Res. 7, 558–569

16. Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M.,Mayr, A., Weger, S., Oberhollenzer, F., Bonora, E., Shah, A., Willeit, J.,and Mayr, M. (2010) Plasma microRNA profiling reveals loss of endothe-lial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107,810–817

17. Margariti, A., Zampetaki, A., Xiao, Q., Zhou, B., Karamariti, E., Martin, D.,Yin, X., Mayr, M., Li, H., Zhang, Z., De Falco, E., Hu, Y., Cockerill, G., Xu,Q., and Zeng, L. (2010) Histone deacetylase 7 controls endothelial cellgrowth through modulation of beta-catenin. Circ. Res. 106, 1202–1211

18. Yin, X., Cuello, F., Mayr, U., Hao, Z., Hornshaw, M., Ehler, E., Avkiran, M.,and Mayr, M. (2010) Proteomics analysis of the cardiac myofilamentsubproteome reveals dynamic alterations in phosphatase subunit distri-bution. Mol. Cell. Proteomics 9, 497–509

19. Didangelos, A., Yin, X., Mandal, K., Baumert, M., Jahangiri, M., and Mayr,M. (2010) Proteomics characterization of extracellular space compo-nents in the human aorta. Mol Cell. Proteomics 9, 2048–2062

20. Mayr, M., Grainger, D., Mayr, U., Leroyer, A. S., Leseche, G., Sidibe, A.,Herbin, O., Yin, X., Gomes, A., Madhu, B., Griffiths, J. R., Xu, Q., Tedgui,A., and Boulanger, C. M. (2009) Proteomics, metabolomics, and immu-nomics on microparticles derived from human atherosclerotic plaques.Circ. Cardiovasc. Genet. 2, 379–388

21. Pula, G., Mayr, U., Evans, C., Prokopi, M., Vara, D. S., Yin, X., Astroulakis,Z., Xiao, Q., Hill, J., Xu, Q., and Mayr, M. (2009) Proteomics identifiesthymidine phosphorylase as a key regulator of the angiogenic potential ofcolony-forming units and endothelial progenitor cell cultures. Circ. Res.104, 32–40

22. Urbich, C., De Souza, A. I., Rossig, L., Yin, X., Xing, Q., Prokopi, M.,Drozdov, I., Steiner, M., Breuss, J., Xu, Q., Dimmeler, S., and Mayr, M.(2011) Proteomic characterization of human early pro-angiogenic cells. J.Mol. Cell. Cardiol. 50, 333–336

23. Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., and Roepstorff, P.(2004) A new strategy for identification of N-glycosylated proteins andunambiguous assignment of their glycosylation sites using HILIC enrich-ment and partial deglycosylation. J. Proteome Res. 3, 556–566

24. Saba, J., Dutta, S., Hemenway, E., and Viner, R. (2012) Increasing theproductivity of glycopeptides analysis by using higher-energy collisiondissociation-accurate mass-product-dependent electron transfer disso-ciation. Int. J. Proteomics 2012, 560391

25. Bern, M., Cai, Y., and Goldberg, D. (2007) Lookup peaks: a hybrid of denovo sequencing and database search for protein identification by tan-dem mass spectrometry. Anal Chem. 79, 1393–1400

26. Antonov, A. S., Lukashev, M. E., Romanov, Y. A., Tkachuk, V. A., Repin,V. S., and Smirnov, V. N. (1986) Morphological alterations in endothelialcells from human aorta and umbilical vein induced by forskolin andphorbol 12-myristate 13-acetate: a synergistic action of adenylate cy-clase and protein kinase C activators. Proc. Natl. Acad. Sci. U.S.A. 83,9704–9708

27. Sadler, J. E. (1998) Biochemistry and genetics of von Willebrand factor.Annu. Rev. Biochem. 67, 395–424

28. Matsui, T., Titani, K., and Mizuochi, T. (1992) Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occur-rence of blood group A, B, and H(O) structures. J. Biol. Chem. 267,8723–8731

29. Canis, K., McKinnon, T. A., Nowak, A., Haslam, S. M., Panico, M., Morris,H. R., Laffan, M. A., and Dell, A. (2012) Mapping the N-glycome of humanvon Willebrand factor. Biochem. J. 447, 217–228

30. Simak, J., Holada, K., and Vostal, J. G. (2002) Release of annexin V-bindingmembrane microparticles from cultured human umbilical vein endothelialcells after treatment with camptothecin. BMC Cell Biol. 3, 11

31. Hart, G. W., and Copeland, R. J. (2010) Glycomics hits the big time. Cell143, 672–676

32. Wollscheid, B., Bausch-Fluck, D., Henderson, C., O’Brien, R., Bibel, M.,Schiess, R., Aebersold, R., and Watts, J. D. (2009) Mass-spectrometricidentification and relative quantification of N-linked cell surface glyco-proteins. Nat. Biotechnol. 27, 378–386

33. Leth-Larsen, R., Lund, R. R., and Ditzel, H. J. (2010) Plasma membraneproteomics and its application in clinical cancer biomarker discovery.Mol. Cell. Proteomics 9, 1369–1382

34. Madabhushi, S. R., Shang, C., Dayananda, K. M., Rittenhouse-Olson, K.,Murphy, M., Ryan, T. E., Montgomery, R. R., and Neelamegham, S.(2012) von Willebrand factor (VWF) propeptide binding to VWF D’D3domain attenuates platelet activation and adhesion. Blood 119,4769–4778

35. van Mourik, J. A., Boertjes, R., Huisveld, I. A., Fijnvandraat, K., Pajkrt, D.,van Genderen, P. J., and Fijnheer, R. (1999) von Willebrand factor pro-peptide in vascular disorders: a tool to distinguish between acute andchronic endothelial cell perturbation. Blood 94, 179–185

36. Pan, S., Chen, R., Aebersold, R., and Brentnall, T. A. (2011) Mass spec-trometry based glycoproteomics—from a proteomics perspective. Mol.Cell. Proteomics 10, R110.003251

37. Maley, F., Trimble, R. B., Tarentino, A. L., and Plummer, T. H., Jr. (1989)Characterization of glycoproteins and their associated oligosaccharidesthrough the use of endoglycosidases. Anal. Biochem. 180, 195–204

38. Flatmark, T. (1967) Multiple molecular forms of bovine heart cytochrome c.V. A comparative study of their physicochemical properties and theirreactions in biological systems. J. Biol. Chem. 242, 2454–2459

39. Zielinska, D. F., Gnad, F., Wisniewski, J. R., and Mann, M. (2010) Precisionmapping of an in vivo N-glycoproteome reveals rigid topological andsequence constraints. Cell 141, 897–907

40. Angel, P. M., Lim, J. M., Wells, L., Bergmann, C., and Orlando, R. (2007) Apotential pitfall in 18O-based N-linked glycosylation site mapping. RapidCommun. Mass Spectrom. 21, 674–682

41. Palmisano, G., Melo-Braga, M. N., Engholm-Keller, K., Parker, B. L., andLarsen, M. R. (2012) Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J.Proteome Res. 11, 1949–1957

42. Wuhrer, M., Deelder, A. M., and Hokke, C. H. (2005) Protein glycosylationanalysis by liquid chromatography-mass spectrometry. J. Chromatogr. BAnalyt. Technol. Biomed. Life Sci. 825, 124–133

43. Morelle, W., and Michalski, J. C. (2007) Analysis of protein glycosylation bymass spectrometry. Nat. Protoc. 2, 1585–1602

44. Zhang, M. Y., Pace, N., Kerns, E. H., Kleintop, T., Kagan, N., and Sakuma,T. (2005) Hybrid triple quadrupole-linear ion trap mass spectrometry infragmentation mechanism studies: application to structure elucidationof buspirone and one of its metabolites. J. Mass Spectrom. 40,1017–1029

45. Tissot, B., North, S. J., Ceroni, A., Pang, P. C., Panico, M., Rosati, F.,Capone, A., Haslam, S. M., Dell, A., and Morris, H. R. (2009) Glycopro-teomics: past, present and future. FEBS Lett. 583, 1728–1735

46. Hang, H. C., Yu, C., Kato, D. L., and Bertozzi, C. R. (2003) A metaboliclabeling approach toward proteomic analysis of mucin-type O-linkedglycosylation. Proc. Natl. Acad. Sci. U.S.A. 100, 14846–14851

Glycoproteomics of the Endothelial Secretome

22 Molecular & Cellular Proteomics 12.4

AQ: Q

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018

47. Zhao, P., Viner, R., Teo, C. F., Boons, G. J., Horn, D., and Wells, L. (2011)Combining high-energy C-trap dissociation and electron transfer disso-ciation for protein O-GlcNAc modification site assignment. J. ProteomeRes. 10, 4088–4104

48. Owen, J. B., Di Domenico, F., Sultana, R., Perluigi, M., Cini, C., Pierce,W. M., and Butterfield, D. A. (2009) Proteomics-determined differences inthe concanavalin-A-fractionated proteome of hippocampus and inferior

parietal lobule in subjects with Alzheimer’s disease and mild cognitiveimpairment: implications for progression of AD. J. Proteome Res. 8,471–482

49. Ghosh, D., Krokhin, O., Antonovici, M., Ens, W., Standing, K. G., Beavis,R. C., and Wilkins, J. A. (2004) Lectin affinity as an approach to theproteomic analysis of membrane glycoproteins. J. Proteome Res. 3,841–850

Glycoproteomics of the Endothelial Secretome

Molecular & Cellular Proteomics 12.4 23

tapraid4/zjw-macp/zjw-macp/zjw00413/zjw4413-13a xppws S�4 19/2/13 11:49 4/Color Figure(s) 1–6 ARTNO: M112.024018