automation & robotics research institute (arri) the

37
F.L. Lewis, Assoc. Director for Research Moncrief-O’Donnell Endowed Chair Head, Controls, Sensors, MEMS Group Automation & Robotics Research Institute (ARRI) The University of Texas at Arlington Wireless Sensor Networks Organized and invited by Jing Bing Zhang Sponsored by SIMTech & IEEE Singapore Control Chapter

Upload: others

Post on 12-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

F.L. Lewis, Assoc. Director for ResearchMoncrief-O’Donnell Endowed Chair

Head, Controls, Sensors, MEMS GroupAutomation & Robotics Research Institute (ARRI)

The University of Texas at Arlington

Wireless Sensor Networks

Organized and invited by Jing Bing Zhang

Sponsored bySIMTech &IEEE Singapore Control Chapter

Automation & Robotics Research Institute (ARRI)The University of Texas at Arlington

F.L. Lewis, Assoc. Director for ResearchMoncrief-O’Donnell Endowed Chair

Head, Controls, Sensors, MEMS Group

http://ARRI.uta.edu/acs

Wireless Sensor Networks

Wireless MEMS Sensor Networks

• Machinery monitoring & Condition-Based Maintenance (CBM / PHM / RUL)• Remote site biochemical warfare (BCW) toxin monitoring• Personnel monitoring and secure area denial• Optical MEMS human biosensors

New Initiative at ARRI$180K in ARO/ UTA/ Texas funding to set up ARRI MEMS lab $240K in MEMS & Network related Grants from NSF and ARO

Contact Frank [email protected]://arri.uta.edu/acs

Contact Frank [email protected]://arri.uta.edu/acs

[email protected]://mems.uta.edu

C&C UserInterface forwireless networks-

WirelessData Collection Networks

Wireless Sensor

Machine Monitoring

Security Personnel and Vehicle Monitoring

C

O O

HH2O

h+

h+

h+

H2OC

O O

H

C

O O

H

C

O O

HC

O O

H h+

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

e-

e-

e-

e-

TiO2TiO2

Ni

C

O O

H

C

O O

HH2O

h+

h+h+

h+

H2OC

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

HC

O O

H

CO O

H h+

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

e-

e-

e-

e-

TiO2TiO2

Ni

Biochemical Monitoring

EnvironmentalMonitoring

WirelessData Collection Networks

Wireless Sensor

Machine Monitoring

Security Personnel and Vehicle Monitoring

C

O O

HH2O

h+

h+

h+

H2OC

O O

H

C

O O

H

C

O O

HC

O O

H h+

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

e-

e-

e-

e-

TiO2TiO2

Ni

C

O O

H

C

O O

HH2O

h+

h+h+

h+

H2OC

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

HC

O O

H

CO O

H h+

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

C

O O

H

e-

e-

e-

e-

TiO2TiO2

Ni

Biochemical Monitoring

EnvironmentalMonitoring

PDA

BSC(Base Station

Controller, Preprocessing)BST

WirelessSensor

Machine Monitoring

Medical Monitoring

Wireless SensorWireless

Data Collection Networks

Wireless(Wi-Fi 802.11 2.4GHz

BlueToothCellular Network, -

CDMA, GSM)

Printer

Wireland(Ethernet WLAN,

Optical)

Animal Monitoring

Vehicle Monitoring

Onlinemonitoring Server

transmitter

Any where, any time to access

Notebook Cellular Phone PC

Ship Monitoring

Wireless Sensor Networks

RovingHumanmonitor

Data Distribution Network

Management Center(Database large storage,

analysis)Data Acquisition

Network

Paul Baran, Rand Corp.Network of Networks

Principal Problems in Army Communications

Paul Baran, Rand Corp.

• COTS Wireless SensorsBerkeley CrossbowMicrostrain

• Wireless NetworksCellular networkWLANOther short range RF networksMultiple linked networks

Wireless CBM Research Areas• Sensor Technology

MEMS ?• Node Technology

DSPPowerRF link

• Remote Access TerminalsWireless PDA, Wireless LaptopCellphone, Internet

• Data managementSensor data storageDSPData Access

• Fault & Diagnostic Decision-Making• Alarming

Cellular Technologies

2G Systems

2.5G Systems

3G Systems

Other Short-range Technologies

Home RF

Bluetooth

IrDA

IEEE 802.11

Wireless LAN Technology

• 2.4 GHz Wireless LAN

• 5 GHz Wireless LAN

• Ad-hoc Mode

• Infrastructure Mode

Long Range Technologies

Which Technology?

IEEE 1451 Standard for Smart Sensor Networks

Cordless Telephony (cellphone)Internet

Berkeley Crossbow

Sensor

Crossbow transceiver

Which Hardware?

Crossbow Berkeley Motes

Berkeley Crossbow

Sensor

Crossbow transceiver

Microstrain V-Link

Transceiver

MicrostrainTransceiver

Connect to PC

MicrostrainG-Sensor

http://www.microstrain.com/index.cfm

Microstrain Wireless Sensors

RFID node

MicrostrainG-Sensor

MicrostrainTransceiver

Connect to PC

Microstrain V-Link

Transceiver

http://www.pctechguide.com/29network.htm

FDDI- Fibre Distributed Data Interface specifies a 100 Mbit/s token-passing, dual-ring LAN using fibre-optic cable.

Network Topology

Self Healing Net – Dual Ring

http://www.fiber-optics.info/articles/its-networks.htm

Bus Network with Backbone Interconnections Between Different Network Types

Token Ring Network Topology Self-healing Ring TopologyTwo rings

Star Network Topology

Network Topology

Ethernet LANFDDI: Fiber Distributed Data Interface100 Mbps

Moshe Zalcberg and Benny Matityaho, Tel Aviv Universityhttp://www2.rad.com/networks/1994/networks/preface.htm

Paul Baran, Rand Corp.The Spider Web Net

Paul Baran, Rand Corp.

Centralized, Decentralized, Distributed

Neighbor Connectivity and RedundancyNetwork Topology

Paul Baran, Rand Corp.Connectivity and Number of Links

Number of links increases exponentially

Basic 4-link ring element

Two ways to interconnect two rings

Two 2-D mesh networks

Mesh Networks

Standard ManhattanNew TopologyAlternating 1-way streets

Edge Binding- J.W. Smith, Rand Corp.In any network, much of the routing power of peripheral stations is wasted simply because peripheral links are unused. Thus, messages tend to reflect off the boundary into the interior or to move parallel to the periphery.

The Problem of Complexity

Communication Protocols in a network must be restricted and organized to avoid Complexity problems

e.g. in ManufacturingThe general job shop allows part flows between all machinesThe Flow Line allows part flows only along specific Paths

We have shown that the job shop is NP-complete

but the reentrant flow line is of polynomial complexity

Think of the military chain of command

Hierarchical Networks

Hierarchical ClusteringDual-Ring Hierarchical

Structure for level 2

Designation of Primary Communication Ring

Hierarchical Clustering of 8x8 meshshowing level 3 primary communication ring

Hierarchical Clustering of 8x8 meshshowing all four communication rings

4 x 4 Mesh Net

Disable some links

Same structure--ConsistentHierarchy

Disable some links to reduce complexity

The disabled links can be used as backups in case of failures

Note- this dual ring structureIs a self-healing ring

EthernetEthernet was developed in the mid 1970's by the Xerox Corporation, and in 1979 Digital Equipment Corporation DEC) and Intel joined forces with Xerox to standardisethe system. The Institute of Electrical and Electronic Engineers (IEEE) released the official Ethernet standard in 1983 called the IEEE 802.3 after the name of the working group responsible for its development, and in 1985 version 2 (IEEE 802.3a) was released. This second version is commonly known as "Thin Ethernet" or 10Base2, in this case the maximum length is 185m even though the "2" suggest that it should be 200m.

Fast EthernetFast Ethernet was officially adopted in the summer of 1995, two years after a group of leading network companies had formed the Fast Ethernet Alliance to develop the standard. Operating at ten times the speed of regular 10Base-T Ethernet, Fast Ethernet -also known as 100BaseT - retains the same CSMA/CD protocol and Category 5 cabling support as its predecessor higher bandwidth and introduces new features such as full-duplex operation and auto-negotiation.

http://www.pctechguide.com/29network.htm

http://www.pctechguide.com/29network.htm

FDDIDeveloped by the American National Standards Institute (ANSI) standards committee in the mid-1980s - at a time when high-speed engineering workstations were beginning to tax the bandwidth of existing LANs based on Ethernet and Token Ring - the Fibre Distributed Data Interface (FDDI) specifies a 100 Mbit/s token-passing, dual-ring LAN using fibre-optic cable.

Token RingIn 1984, IBM introduced the 4 Mbit/s Token Ring network. Instead of the normal plug and socket arrangement of male and female gendered connectors, the IBM data connector (IDC) was a sort of hermaphrodite, designed to mate with itself. Although the IBM Cabling System is to this day regarded as a very high quality and robust data communication media, its large size and cost - coupled with the fact that with only 4 cores it was less versatile than 8-core UTP - saw Token Ring continue fall behind Ethernet in the popularity stakes. It remains IBM's primary LAN technology however and the compatible and almost identical IEEE 802.5 specification continues to shadow IBM's Token Ring development.

Gigabit EthernetThe next step in Ethernet's evolution was driven by the Gigabit Ethernet Alliance, formed in 1996. The ratification of associated Gigabit Ethernet standards was completed in the summer of 1999, specifying a physical layer that uses a mixture of proven technologies from the original Ethernet Specification and the ANSI X3T11 Fibre Channel Specification:

Use of the same variable-length (64- to 1514-byte packets) IEEE 802.3 frame format found in Ethernet and Fast Ethernet is key to the ease with which existing lower-speed Ethernet devices can be connected to Gigabit Ethernet devices, using LAN switches or routers to adapt one physical line speed to the other.

http://www.pctechguide.com/29network.htm

Client-ServerClient-server networking architectures became popular in the late 1980s and early 1990s as many applications were migrated from centralised minicomputers and mainframes to networks of personal computers. The design of applications for a distributed computing environment required that they effectively be divided into two parts: client (front end) and server (back end). The network architecture on which they were implemented mirrored this client-server model, with a user's PC (the client) typically acting as the requesting machine and a more powerful server machine - to which it was connected via either a LAN or a WAN - acting as the supplying machine.

Peer-to-peerIn a Peer-to-peer networking architecture each computer (workstation) has equivalent capabilities and responsibilities. There is no server, and computers simply connect with each other in a workgroup to share files, printers, and Internet access. It is practical for workgroups of a dozen or less computers, making it common in many SOHOenvironments, where each PC acts as an independent workstation that stores data on its own hard drive but which can share it with all other PCs on the network.

P2P computingBy early 2000 a revolution was underway in an entirely new form of peer-to-peer computing. Sparked by the phenomenal success of a number of highly publicisedapplications, "P2P computing" - as it is commonly referred to - heralded a new computing model for the Internet age and had achieved considerable traction with mainstream computer users and members of the PC industry in a very short space of time.

The Napster MP3 music file sharing application went live in September 1999, and attracted more than 20 million users by mid-2000

IEEE 802.11The Institute of Electrical and Electronics Engineers (IEEE) ratified the original 802.11 specification in 1997 as the standard for WLANs. That version of 802.11 provided for 1 Mbit/s and 2 Mbit/s data rates and a set of fundamental signallingmethods and other services. The data rates supported by the original 802.11 standard were too slow to support most general business requirements with and did little to encourage the adoption of WLANs. Recognising the critical need to support higher data-transmission rates, the autumn of 1999 saw the IEEE ratify the 802.11b standard (also known as 802.11 High Rate) for transmissions of up to 11 Mbit/s.

http://www.erg.abdn.ac.uk/users/gorry/course/intro-pages/osi-example.html

The OSI reference model specifies standards for describing "Open Systems Interconnection" with the term 'open' chosen to emphasise the fact that by using these international standards, a system may be defined which is open to all other systems obeying the same standards throughout the world. The definition of a common technical language has been a major catalyst to the standardisation of communications protocols and the functions of a protocol layer.

OSI-Open Systems Interconnection

http://www.cs.cf.ac.uk/User/O.F.Rana/data-comms/comms-lec1.pdf

http://ieee1451.nist.gov/intro.htm

ProblemTransducers, defined here as sensors or actuators, serve a wide variety of industry's needs- manufacturing, industrial control, automotive, aerospace, building, and biomedicine are but a few. Many sensor control networks or fieldbus implementations are currently available.

A problem for transducer manufacturers is the large number of networks on the market today. Currently, it is too costly for transducer manufacturers to make unique smart transducers for each network on the market. Therefore a universally accepted transducer interface standard, the IEEE P1451 standard, is proposed to be developed to address these issues.

Objective of IEEE 1451The objective of this project is to develop a smart transducer interface standard IEEE 1451. This standard is to make it easier for transducer manufacturers to develop smart devices and to interface those devices to networks, systems, and instruments by incorporating existing and emerging sensor- and networking technologies.

IEEE 1451 Standard for Smart Sensor Networks

History of IEEE-1451In September 1993, the National Institute of Standards and Technology (NIST) and the Institute of Electrical and Electronics Engineers (IEEE)'s Technical Committee on Sensor Technology of the Instrumentation and Measurement Society co-sponsored a meeting to discuss smart sensor communication interfaces and the possibility of creating a standard interface. The response was to establish a common communication interface for smart transducers. Four technical working groups have been formed to address different aspects of the interface standard.

P1451.1 working group aims at defining a common object model for smart transducers along with interface specifications for the components of the model.

P1451.2 working group aims at defining a smart transducer interface module (STIM), a transducer electronic data sheet (TEDS), and a digital interface to access the data.

P1451.3 working group aims at defining a digital communication interface for distributed multidrop systems.

P1451.4 working group aims at defining a mixed-mode communication protocol for smart transducers.

The working groups created the concept of smart sensors to control networks interoperability and to ease the connectivity of sensors and actuators into a device or field network.

http://ieee1451.nist.gov/intro.htm

Network Independent

Hardware interface

Conway & Heffernan, Univ. Limerickhttp://wwww.ul.ie/~pei

IEEE 1451 Standard for Smart Sensor Networks

NetEntry-inviteresponseponter

StartupNodeID nr.

Neighborinfo

I R P

Dist.toNeigh-bors

Comm link mesh info Position grid info

(x,y) coords.and OriginNode ID

Hier.routingnr.

extra

T frame

repeat nextTDMA frame

NetEntry-inviteresponseponter

StartupNodeID nr.

Neighborinfo

I R P

Dist.toNeigh-bors

Comm link mesh info Position grid info

(x,y) coords.and OriginNode ID

Hier.routingnr.

extra

T frame

repeat nextTDMA frame

TDMA frame for both communication protocols and relative positioning

Node Relative Positioning & LocalizationAd hoc network- scattered nodes

Nodes must self organize

Calibrated network-Each node knows its relative position

1 2d12 x

a. Two nodes- define x & y axes

y

b. 3 node closed kinematic chain-compute (x3, y3)

O 1 2d12 x

d23d13

3

y

x3

y3

θ213 θx23O1 2d12 x1 2d12 x

a. Two nodes- define x & y axes

y

b. 3 node closed kinematic chain-compute (x3, y3)

O 1 2d12 x

d23d13

3

y

x3

y3

θ213 θx23O 1 2d12 x

d23d13

3

y

x3

y3

θ213 θx23O

Integrating new nodes into relative positioning grid

1 2A12 x’

A23

A13

3

y’

O’

x

y

O

TOO’

A14

A34

A24

4

1 2A12 x’

A23

A13

3

y’

O’

x

y

O

TOO’

A14

A34

A24

4

⎥⎦

⎤⎢⎣

⎡=

10ii

i

pRA

One can write the relative location in frame O of the new point 3 in two ways. The triangle shown in the figure is a closed kinematic chain of the sort studied in [Liu and Lewis 1993, 1994]. The solution is obtained by requiring that the two maps T13and T123 be exact at point 3.

Kinematicstransformation

Recursive closed-kinematic chain procedure for integrating new nodes

⎣ ⎦∑ −−−=j

Njcjf sdTcjTtwts )()( /δ

where w(t) is the basic pulse of duration approx. 1ns, often a wavelet or a Gaussian monocycle, and Tf is the frame or pulse repetition time. In a multi-node environment, catastrophic collisions are avoided by using a pseudorandom sequence cj to shift pulses within the frame to different compartments, and the compartment size is Tcsec. Data is transmitted using digital pulse position modulation (PPM), where if the data bit is 0 the pulse is not shifted, and if the data bit is 1 the pulse is shifted by d. The same data bit is transmitted Ns times, allowing for very reliable communications with low probability of error.

Ultra Wideband Sensor WebUWB

Precise time of flight measurement is possible.Use UWB for all three:

CommunicationsNode Relative positioningTarget localization

1 2

3

T

d d2

d3

x

y y

1 2

3

T

d d2

d3

x

x’y’

θ213

a. Target, transmitter node, and 2 receiving nodes b. Ellipsoid solution for multi-static target localizing

1 2

3

T

d d2

d3

x

y

1 2

3

T

d d2

d3

x

y y

1 2

3

T

d d2

d3

x

x’y’

θ213

1 2

3

T

d d2

d3

x

x’y’

θ213

a. Target, transmitter node, and 2 receiving nodes b. Ellipsoid solution for multi-static target localizing

Multi-Static Radar Target Localization

22122 ,2/,2/)( sabdsdda −==+=

Intersection of two ellipses with semimajor and semiminor axes

Simultaneous solution of two quadratic equations, one for each ellipse

11

=

=

BXXAXX

T

T

Uses time of flight

gives position of target.