b. a. gama, s.-g. kang, and j. w. gillespie, jr. hydrostatic … · 2016-09-28 · 300m/s v 400m/s...

2
© 2010, University of Delaware, all rights reserved s m V I / 100 s m V I / 300 s m V I / 400 s m V I / 800 RESEARCH SCOPE EXPERIMENTAL METHODS IMPACT, DAMAGE, AND PENETRATION MECHANICS BALLISTIC IMPACT AND PENETRATION MECHANICS Fundamental understanding of ballistic damage, perforation, and penetration mechanics LOW VELOCITY IMPACT Numerically evaluate impact, damage, and durability of very thick and large structures QUASI-STATIC SIMULATION Implement MAT162 in ABAQUS for implicit analysis MICRO- & MESO-MECHANICAL DAMAGE MODELING Develop multi-scale homogenized material and damage models FINITE ELEMENT MODEL MODELING STRESS WAVE PROPAGATION PERFORATION OF SPACED THIN LAMINATES MODELING THE IMPACT, DAMAGE AND PENETRATION COMPOSITE DAMAGE MODELING B. A. Gama, S.-G. Kang, and J. W. Gillespie, Jr. University of Delaware . Center for Composite Materials Plug Formation due to Compression-Shear Large Deformation under Combined Tension-Shear Punch Shear and Hydrostatic Compression Matrix Damage and Delamination Thick-Section Composites Multi-Layer Composite Sandwich Incident Bar Momentum Tube Support Plate Specimen Punch Stop Striker Bar Punch Bar Quasi-Static Punch Shear Test (QS-PST) Direct Impact Punch Shear Test (DI-PST) Solid Model Cross-Section Mesh 0 100 200 300 400 500 600 0 20 40 60 80 100 120 140 160 350 m/s 600 m/s Projectile Displacement, H, mm. Projectile Velocity, V, m/s. High Velocity Impact Quasi-Static & Dynamic Loading of Interlayer 0 50 100 150 200 250 300 0 5 10 15 20 25 30 35 40 HS-Envelope 1000 900 800 700 600 500 400 372 362 350 200 V I , m/s P h a s e I - P h a s e I I B o u n d a r y Projectile Displacement, H, mm. Penetration Resistance Force, F P , kN. x E X P X , HH P L c C H Plastic-Front I V P H ** P u ** * 3 P L P X c u * P u * 3 E L X c Elastic-Front Proj-Comp Interface P P u ** * * ** * ** 3 C C C P P L p p u u c * 0 * 0 3 * ** 0 * * ** 3 3 3 ** 0 * ** 3 1 1 P C C L P L I C L C L C L P P P L C L p c c V c c c u c c ** P P D P E P C F Ap Ap Impact Damage as a Function of Impact Velocity Penetration Resistance Force vs. Displacement Velocity vs. Displacement Tension-shear dominated failure Shear and flexural wave propagation Average deceleration and the penetration resistance force can be assumed constant

Upload: duongdieu

Post on 13-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

© 2010, University of Delaware, all rights reserved

smVI /100 smVI /300 smVI /400 smVI /800

RESEARCH SCOPEEXPERIMENTAL METHODSIMPACT, DAMAGE, AND

PENETRATION MECHANICS

BALLISTIC IMPACT AND PENETRATION

MECHANICS

Fundamental understanding of ballistic

damage, perforation, and penetration

mechanics

LOW VELOCITY IMPACT

Numerically evaluate impact, damage, and

durability of very thick and large structures

QUASI-STATIC SIMULATION

Implement MAT162 in ABAQUS for implicit

analysis

MICRO- & MESO-MECHANICAL DAMAGE

MODELING

Develop multi-scale homogenized material and

damage models

FINITE ELEMENT MODELMODELING STRESS WAVE

PROPAGATIONPERFORATION OF SPACED

THIN LAMINATES

MODELING THE IMPACT,

DAMAGE AND PENETRATION

COMPOSITE DAMAGE MODELING

B. A. Gama, S.-G. Kang, and J. W. Gillespie, Jr.

University of Delaware . Center for Composite Materials

Plug Formation due to

Compression-Shear

Large Deformation under

Combined Tension-Shear

Punch Shear and

Hydrostatic Compression

Matrix Damage and

DelaminationThick-Section

Composites

Multi-Layer Composite Sandwich

Incident Bar

Momentum TubeSupport

Plate

Specimen

Punch

Stop

Striker Bar

Punch Bar

Quasi-Static Punch Shear Test (QS-PST)

Direct Impact Punch Shear Test (DI-PST)

Solid Model

Cross-Section

Mesh

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160

350 m/s600 m/s

Projectile Displacement, H, mm.

Pro

jectile

Ve

locity,

V,

m/s

.

High Velocity Impact

Quasi-Static & Dynamic Loading of Interlayer

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

HS-Envelope1000900800700600500400372362350200V

I , m/s

Phase I - Phase IIBoundary

Projectile Displacement, H, mm.

Pe

ne

tra

tio

n R

esis

tan

ce

Fo

rce

, F

P,

kN

.

x

EX

PX

,H H

P

Lc

CH

Plastic-Front

IV

PH

**

Pu

** *

3P L PX c u

*

Pu

*

3E LX c

Elastic-Front

Proj-Comp Interface

P

Pu

** * * ** * **

3C C C P P Lp p u u c

* 0 *0

3

* ** 0 * * **

3 3 3**

0

* **

3

1

1

P

C C LP LI

C L C L C L

P P

P L

C L

p ccV

c c cu

c

c

**P P

D P E P CF A p A p

Impact Damage as a Function of Impact Velocity

Penetration Resistance Force vs. Displacement

Velocity vs. Displacement

Tension-shear dominated failure

Shear and flexural wave propagation

Average deceleration and the

penetration resistance force can be

assumed constant

© 2010, University of Delaware, all rights reserved

t = 2000 us

t = 4000 us

LOW VELOCITY IMPACT SIMULATION FOUR-QUADRANT IMPACT MODELINGCOMPRESSION AFTER IMPACT (CAI)

COMPOSITE DAMAGE MODELING

(Continued)

MESO-MECHANICAL

DAMAGE MODELING

OPEN HOLE COMPRESSION/

TENSIONMICRO-MECHANICAL

DAMAGE MODELINGACKNOWLEDGEMENTS

This work is supported by the

following research funds.

ARL-CMR/CMT

ARL-CART

AP-BAR

ONR-AMIPC

DEPSCoR

GDLS BLAST

CRG Blast SBIR

3TEX Blast SBIR

LGS Innovations

t = 0.5 ms

t = 1.0 ms

t = 1.5 ms

t = 2.0 ms

t = 3.0 ms

t = 4.0 ms

t = 5.0 ms

t = 6.0 ms

-10

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000 30000

= 2.50-mm, L = 152.40-mm

Time, t, s.

Axi

al C

ompr

essi

ve F

orce

, FX, k

N.

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

S = 0.8S = 1.0LVI Experiment

Time, t, ms.

Fo

rce

, F

, lb

f.

IMPACT VELOCITY

= 2.6 M/S

Resistance Force

vs. Time

T = 10 ms, LVI Damage

T = 30 ms, CAI Damage

CAI with respect to

different LVI energy

Plate Size: 16-in x 16-in

Punch Diameter: 1-in

Mass: mP = 350 kg

Velocity: V = 3 mps

Energy: KE = (1/2) mPV2

= 1575 J

Damage Propagation

Interstitial Resin Pockets

Z Fibers

Warp (X) and Fill (Y) Tows

2x2 UCM

0

5

10

15

20

25

30

35

0 0.005 0.010 0.015 0.020 0.025

UCM (ZX

)

-------------0.5125AM4UCM (

YZ)

Inter-laminar Shear Strain, mm/mm.

Inte

r-la

min

ar

Sh

ea

r S

tre

ss,

MP

a.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Square ArrayHexagonal Array

Strain, x, mm.

Te

nsile

Str

ess,

x,

MP

a.

0

200

400

600

800

1000

0 0.005 0.010 0.015 0.020 0.025 0.030

Hexagonal ArraySquare Array

Strain, x, mm.

Co

mp

ressiv

e S

tre

ss,

x,

MP

a.

0

10

20

30

40

50

0 0.01 0.02 0.03 0.04 0.05 0.06

Hexagonal ArraySquare Array

Shear Strain, , mm.

Sh

ea

r S

tre

ss, ,

MP

a.

0

10

20

30

40

50

60

70

80

90

100

110

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FEA w ith A BG

10-m s, 4-m m

FEA w ith A BG

20-m s, 4-m m

S pecim en #4

S pecim en #3

D isplacem ent, , m m

Lo

ad

, P

, k

N

0

10

20

30

40

50

60

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

5000 us, 2 m m

1000 us, 2 m m

500 us, 2 m m

D isplacem ent, , m m .

Se

cti

on

Fo

rce

, F

, k

N.

Unit Cell Model for

3D OWF Composite

Inter-laminar Shear

Response of 3D UCM

Square Array

Hexagonal Array

Tension

Compression

In-plane shear

Open Hole Compression – FE Model and Result

Compact Open Hole Tension – FE Model and Result