bayesian joint estimation of the multifractality parameter...

1
BAYESIAN JOINT ESTIMATION OF THE MULTIFRACTALITY PARAMETER OF IMAGE PATCHES USING GAMMA MARKOV RANDOM FIELD PRIORS S. Combrexelle 1 , H. Wendt 1 , Y. Altmann 2 , J.-Y. Tourneret 1 , S. McLaughlin 2 and P. Abry 3 1 IRIT, CNRS, Toulouse Univ., France [email protected] 2 School Engineering Physical Sci., Heriot-Watt Univ., Edinburgh, UK, [email protected] 3 Physics Dept., CNRS, ENS Lyon, France [email protected] Summary Multifractal (MF) analysis enables homogeneous image texture to be modeled and studied via the regularity fluctuations of image amplitudes. In this work, we propose a Bayesian approach for the local (patch-wise) MF analysis of images with heterogeneous MF properties. To this end, a joint Bayesian model for image patches is formulated using spatially smoothing gamma Markov Random Field priors, yielding a fast algorithm and significantly improving the state-of-the-art performance. Numerical simulations based on synthetic MF images illustrate the benefits of the proposed MF analysis procedure for images. Multifractal analysis - H ¨ older exponent: Roughness of image X around t 0 -! comparison to a local power law behavior -! ||X (t) - X (t 0 )|| C ||t - t 0 || C> 0, > 0 -! largest such : older exponent h(t 0 ) X (t 0 ) rough h(t 0 ) 0 smooth h(t 0 ) 1 - Multifractal spectrum: D (h) = dim Hausdor{t : h(t)= h} -! geometric structure of iso-H¨ older sets of points t i t i h(t i ) = 0.2 0.2 D(h) h 0 d - Wavelet-leaders: Local supremum of wavelet coecients d (m) X (j, k ) – 2D DWT coecients (m =1, 2, 3) 9λ j,k – dyadic cube centred at k 2 j and its 8 neighbors l (j, k )= sup m2(1,2,3),λ 0 9λ j,k |d (m) X (λ 0 )| - Multifractal formalism: - D (h) 1 - (h - c 1 ) 2 /(2|c 2 |)+ ··· C p (j )= c 0 p + c p ln 2 j x p-th cumulant of ln l (j, k ) - c 2 multifractality parameter c 1 c 2 D(h) h 0 d C 2 (j ) = Var [ln l (j, k )] = c 0 2 + c 2 ln 2 j -! classical estimation by linear regression (LF) Statistical model for log-leaders - Time-domain statistical model: [Combrexelle15] Centered log-leaders ` j = [log l (j, ·)] Gaussian random field – radial symmetric covariance model % j (Δk ; ) – parametrized by =[1 , 2 ] T =[c 2 ,c 0 2 ] T – assuming independence between scales: p(`|)= j 2 Y j =j 1 p(` j |) / j 2 Y j =j 1 |()| - 1 2 e - 1 2 ` T j () -1 ` j , ` =[` T j 1 , ..., ` T j 2 ] T () - covariance matrix induced by % j (Δk ; ) Whittle approximation of p(` j |) p(` j |) / exp - X m log φ j (m; )+ y j (m)y j (m) φ j (m; ) y j = DFT (` j ) - Fourier transform of centered log-leaders φ j (m; ) - spectral density associated with % j (Δk ; ) - Data augmented model in the Fourier domain: 1 [Combrexelle16] – statistical interpretation of Whittle approximation -! -! y =[y T j 1 , ..., y T j 2 ] T complex Gaussian random variable reparametrization v = () 2 R +2 ? y CN (v 1 ˜ F + v 2 ˜ G) independent positivity contraints on v i ˜ F and ˜ G - diagonal, positive-definite, known and fixed data augmentation of the model ( y |μ,v 2 CN (μ,v 2 ˜ G) observed data μ|v 1 CN (0,v 1 ˜ F ) hidden mean -! associated with augmented likelihood p(y , μ|) / v 2 -N Y exp - 1 v 2 (y - μ) H ˜ G -1 (y - μ) v 1 -N Y exp - 1 v 1 μ H ˜ F -1 μ p inverse-gamma IG priors on v i are conjugate [Robert05] Monte Carlo Statistical Methods, Springer, New York, USA, 2005 [Dikmen10] Gamma Markov Random Fields for Audio Source Modeling, IEEE T. Audio, Speech, and Language Proces., vol. 18, no. 3, pp. 589-601, March 2010 [Combrexelle15] Bayesian estimation of the multifractality parameter for image texture using a Whittle approximation, IEEE T. Image Proces., vol. 24, no. 8, pp. 2540-2551, Aug. 2015 [Combrexelle16] A Bayesian framework for the multifractal analysis of images using data augmentation and a Whittle approximation, Proc. ICASSP, Shanghai, China, March 2016 ICIP 2016 – Phoenix, Arizona, USA — September 25-28, 2016 . Bayesian model for image patches - Likelihood: - {X k=(k x ,k y ) } - partition of image X into non-overlapping patches - Y = {y k } - collection of Fourier coecients - M = {μ k } - collection of latent variables - V i = {v i,k } - collection of MF parameters + assuming indepence between patches -! p(Y , M |V ) / Y k p(y k , μ k |v k ), V = {V 1 , V 2 } - Gamma Markov random field (GMRF) prior: - assuming smooth spatial evolution of MF parameters - positive auxiliary variables Z = {Z 1 , Z 2 }, Z i = {z i,k }, i =1, 2 -! induce positive correlation between neighbouring v i,k - each v i,k is connected to 4 variables z i,k 0 k 0 2 V v (k )= {(k x ,k y )+(i x ,i y )} i x ,i y =0,1 via edges with weights a i - each z i,k is connected to 4 variables v i,k 0 k 0 2 V z (k )= {(k x ,k y )+(i x ,i y )} i x ,i y =-1,0 k x k y v i,k z i,k - associated distribution [Dikmen10] p(V i , Z i |a i )= 1 C (a i ) Y k e -(4a i +1) log v i,k e (4a i -1) log z i,k e - a i v i,k P k 0 2V v (k) z i,k 0 p conditionals for v i,k (z i,k ) are inverse-gamma IG (gamma G ) - Posterior distribution & Bayesian estimator: - Posterior distribution via Bayes’ theorem p(V , Z , M |Y ,a i ) / p(Y |V 2 , M ) p(M |V 1 ) | {z } augmented likelihood Y i p(V i , Z i |a i ) | {z } independent GMRF priors - Marginal posterior mean (MMSE) estimator V MMSE i = E[V i |Y ,a i ] | {z } untractable 1 N mc - N bi X N mc q =N bi V (q ) i with {V (q ) i } N mc q =1 distributed according to p(V , Z , M |Y ,a i ) -! computation via Markov chain Monte Carlo algorithm - Gibbs sampler: [Robert05] -! iterative sampling according to conditional distributions μ k | Y ,V CN v 1,k ˜ F Γ -1 v k y k , (v 1,k ˜ F ) -1 +(v 2,k ˜ G) -1 -1 v 1,k | M ,Z 1 IG N Y +4a i , μ H k ˜ F -1 μ k + β 1,k v 2,k | Y ,M ,Z 2 IG N Y +4a i , (y k - μ k ) H ˜ G -1 (y k - μ k )+ β 2,k z i,k | V i G (4a i , ˜ β i,k ) with β i,k = a i P k 0 2V v (k) z i,k 0 and ˜ β i,k =(a i P k 0 2V z (k) v -1 i,k 0 ) -1 p standard distributions -! no acceptance/reject moves . Numerical experiments - Scenario - synthetic multifractal 2048 2048 image -! 2D multifractal random walk (MRW) -piece-wise constant values of c 2 2 {-0.04, -0.02} - decomposition into non-overlapping 64 64 patches - Illustration on a single realization - estimates of c 2 - k-means classification - Estimation performance evaluated on 100 realizations of heterogeneous 2D MRW |bias| STD RMSE classification % time (s) LF 0.0055 0.0406 0.0413 54.2 10 IG 0.0018 0.0123 0.0125 76.5 50 GMRF 0.0027 0.0032 0.0044 94.6 50 Conclusion & Future work Take-away message - smooth joint estimation of c 2 for image patches - GMRF prior inducing positive correlation - STD/RMSE reduced by 4 - 10 vs. state-of-the-art estimators -ecient MCMC algorithm (only 5 times LF) Future work - automatic estimation of a i - additional MF parameters (c 1 , c 3 ,...)

Upload: dangkhanh

Post on 12-Mar-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BAYESIAN JOINT ESTIMATION OF THE MULTIFRACTALITY PARAMETER ...Herwig.Wendt/data/Poster_ICIP2016.pdf · BAYESIAN JOINT ESTIMATION OF THE MULTIFRACTALITY PARAMETER OF ... conditionals

BAYESIAN JOINT ESTIMATION OF THE MULTIFRACTALITY PARAMETER OFIMAGE PATCHES USING GAMMA MARKOV RANDOM FIELD PRIORS

S. Combrexelle1, H. Wendt1, Y. Altmann2, J.-Y. Tourneret1, S. McLaughlin2 and P. Abry31 IRIT, CNRS, Toulouse Univ., France [email protected]

2 School Engineering Physical Sci., Heriot-Watt Univ., Edinburgh, UK, [email protected] Physics Dept., CNRS, ENS Lyon, France [email protected]

SummaryMultifractal (MF) analysis enables homogeneous image texture to be modeled and studied via the regularity fluctuations of

image amplitudes. In this work, we propose a Bayesian approach for the local (patch-wise) MF analysis of images with

heterogeneous MF properties. To this end, a joint Bayesian model for image patches is formulated using spatially smoothinggamma Markov Random Field priors, yielding a fast algorithm and significantly improving the state-of-the-art performance.

Numerical simulations based on synthetic MF images illustrate the benefits of the proposed MF analysis procedure for images.

Multifractal analysis-Holder exponent:

Roughness of image X around t0�! comparison to a local power law behavior

�! ||X(t)�X(t0)|| C||t� t0||↵ C > 0, ↵ > 0

�! largest such ↵: Holder exponent h(t0)

X(t0)

⇢rough h(t0) ⇠ 0

smooth h(t0) ⇠ 1

-Multifractal spectrum:

D(h) = dimHausdor↵{t : h(t) = h}�! geometric structure of iso-Holder sets of points ti

ti

h(ti) = 0.2

0.2

D(h)

h0

d

-Wavelet-leaders:

Local supremum of wavelet coe�cients

d(m)X (j,k) – 2D DWT coe�cients (m = 1, 2, 3)

9�j,k – dyadic cube centred at k2j and its 8 neighbors

l(j,k) = supm2(1,2,3),�0⇢9�j,k

|d(m)X (�0)|

-Multifractal formalism:

-D(h) 1� (h�c1)2/(2|c2|)+ · · ·

Cp(j) = c0p + cp ln 2j

x p-th cumulant of ln l(j,k)- c2 – multifractality parameter c1

c2

D(h)

h0

d

C2(j) = Var [ln l(j,k)] = c02 + c2 ln 2j

�! classical estimation by linear regression (LF)

Statistical model for log-leaders-Time-domain statistical model: [Combrexelle15]

Centered log-leaders `j = [log l(j, ·)] ⇠ Gaussian random field

– radial symmetric covariance model %j(�k;✓)– parametrized by ✓ = [✓1, ✓2]

T = [c2, c02]T

– assuming independence between scales:

p(`|✓) =j2Y

j=j1

p(`j|✓)/j2Y

j=j1

|⌃(✓)|�12 e

⇣�12`

Tj ⌃(✓)�1`j

, ` = [`Tj1, ..., `Tj2]T

⌃(✓) - covariance matrix induced by %j(�k;✓)

– Whittle approximation of p(`j|✓)

p(`j|✓) / exp⇣�X

m

log �j(m;✓) +y⇤j(m)yj(m)

�j(m;✓)

yj = DFT (`j) - Fourier transform of centered log-leaders

�j(m;✓) - spectral density associated with %j(�k;✓)

-Data augmented model in the Fourier domain:

1 [Combrexelle16]– statistical interpretation of Whittle approximation

�! �! y = [yTj1, ...,yT

j2]T complex Gaussian random variable

– reparametrization v = (✓) 2 R+2?

y ⇠ CN (v1F + v2G)

independent positivity contraints on viF and G - diagonal, positive-definite, known and fixed

– data augmentation of the model(y|µ, v2 ⇠ CN (µ, v2G) observed data

µ|v1 ⇠ CN (0, v1F ) hidden mean

�! associated with augmented likelihood

p(y,µ|✓) / v2�NY exp

⇣� 1

v2(y � µ)HG

�1(y � µ)

⇥ v1�NY exp

⇣� 1

v1µHF

�1µ⌘

pinverse-gamma IG priors on vi are conjugate

[Robert05] Monte Carlo Statistical Methods, Springer, New York, USA, 2005

[Dikmen10] Gamma Markov Random Fields for Audio Source Modeling, IEEE T. Audio,

Speech, and Language Proces., vol. 18, no. 3, pp. 589-601, March 2010

[Combrexelle15] Bayesian estimation of the multifractality parameter for image texture using

a Whittle approximation, IEEE T. Image Proces., vol. 24, no. 8, pp. 2540-2551, Aug. 2015

[Combrexelle16] A Bayesian framework for the multifractal analysis of images using data

augmentation and a Whittle approximation, Proc. ICASSP, Shanghai, China, March 2016

ICIP 2016 – Phoenix, Arizona, USA — September 25-28, 2016

.Bayesian model for image patches- Likelihood:

-{Xk=(kx,ky)} - partition of imageX into non-overlapping patches

-Y ={yk} - collection of Fourier coe�cients-M ={µk} - collection of latent variables

-V i={vi,k} - collection of MF parameters

+ assuming indepence between patches

�! p(Y ,M |V ) /Y

k

p(yk,µk|vk), V = {V 1,V 2}

- Gamma Markov random field (GMRF) prior:

- assuming smooth spatial evolution of MF parameters

- positive auxiliary variables Z = {Z1,Z2}, Z i = {zi,k}, i = 1, 2

�! induce positive correlation between neighbouring vi,k

- each vi,k is connected to 4 variables zi,k0

k0 2 Vv(k) = {(kx, ky) + (ix, iy)}ix,iy=0,1via edges with weights ai

- each zi,k is connected to 4 variables vi,k0

k0 2 Vz(k) = {(kx, ky) + (ix, iy)}ix,iy=�1,0

kx

ky

vi,k

zi,k

−→−→

−→−→

- associated distribution [Dikmen10]

p(V i,Z i|ai)=1

C(ai)

Yke�(4ai+1) log vi,k e(4ai�1) log zi,k ⇥e

� aivi,k

Pk02Vv(k) zi,k0

pconditionals for vi,k (zi,k) are inverse-gamma IG (gamma G)

- Posterior distribution & Bayesian estimator:

- Posterior distribution via Bayes’ theorem

p(V ,Z,M |Y , ai) / p(Y |V 2,M ) p(M |V 1)| {z }augmented likelihood

⇥Y

ip(V i,Z i|ai)| {z }

independent GMRF priors

-Marginal posterior mean (MMSE) estimator

V MMSEi = E[V i|Y , ai]| {z }

untractable

⇡ 1

Nmc �Nbi

XNmc

q=Nbi

V (q)i

with {V (q)i }Nmc

q=1 distributed according to p(V ,Z,M |Y , ai)

�! computation via Markov chain Monte Carlo algorithm

- Gibbs sampler: [Robert05]

�! iterative sampling according to conditional distributions

µk |Y ,V⇠CN⇣v1,kF��1

vkyk,

⇣(v1,kF )�1+(v2,kG)�1

⌘�1⌘

v1,k |M ,Z1⇠IG⇣NY+4ai,µ

Hk F

�1µk+�1,k

v2,k |Y ,M ,Z2⇠IG⇣NY+4ai, (yk � µk)

HG�1(yk � µk)+�2,k

zi,k |V i⇠G(4ai, �i,k)

with �i,k=aiP

k02Vv(k)zi,k0 and �i,k=(ai

Pk02Vz(k)

v�1i,k0)�1

pstandard distributions �! no acceptance/reject moves

.Numerical experiments-Scenario

- synthetic multifractal 2048⇥ 2048 image

�! 2D multifractal random walk (MRW)

-piece-wise constant values of c2 2 {�0.04,�0.02}- decomposition into non-overlapping 64⇥ 64 patches

- Illustration on a single realization

- estimates of c2

- k-means classification

-Estimation performance

evaluated on 100 realizations of heterogeneous 2D MRW

|bias| STD RMSE classification % time (s)

LF 0.0055 0.0406 0.0413 54.2 ⇠ 10IG 0.0018 0.0123 0.0125 76.5 ⇠ 50

GMRF 0.0027 0.0032 0.0044 94.6 ⇠ 50

Conclusion & Future workTake-away message- smooth joint estimation of c2 for image patches

-GMRF prior inducing positive correlation

- STD/RMSE reduced by ⇠ 4� 10 vs. state-of-the-art estimators

- e�cient MCMC algorithm (only ⇠ 5 times LF)

Future work- automatic estimation of ai- additional MF parameters (c1, c3, . . . )