bctm 06 sean slides wergwer ewrgwe ewgwe wergweg

Upload: jitendr-kumar

Post on 03-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    1/19

    Sean Nicolson, BCTM 2006

    Design and Scaling of SiGe BiCMOS

    VCOs Above 100GHz

    S. T. Nicolson1, K.H.K Yau1, K.A. Tang1, P. Chevalier2, A. Chantre2

    B. Sautreuil2, and S. P. Voinigescu1

    1) Edward S. Rogers Sr. Dept. of Elec. & Comp. Eng., Univ. of Toronto2) STMicroelectronics

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    2/19

    Sean Nicolson, BCTM 2006

    Outline

    Motivation for W-band SiGe integrated circuits VCO design methodology for low phase noise in W-band

    Layout considerations

    Measurement results Conclusions and future work

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    3/19

    Sean Nicolson, BCTM 2006

    Motivation for W-band SiGe ICs Typical applications: 77GHz auto radar, 94GHz weather radar, imaging

    Central to these applications is the low phase noise VCO

    Process development: NFmin, Rn & Ysopt difficult to measure in W-band Use VCO as a process monitorfor the noise performance of SiGe technologies

    Explore VCO scaling/yield in SiGe

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    4/19

    Sean Nicolson, BCTM 2006

    VCO Topology

    No cascode

    lower phase noise, lower supply voltage

    Colpitts topology maximize foscrelative to other topologies

    Augment Cbe with Cext Reduces phase noise

    Add negative Miller capacitors Increases foscby cancelling Cm

    Differential tuning reduces supply induced noise

    24mA

    CM

    VCC

    LB

    Cext

    Cvar

    Q1

    VTUNE+

    VTUNE-LEE

    REE CEE

    LC

    VBB

    2.5 V

    VTUNE

    RB

    rpcpbib

    E

    CB

    Cext

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    5/19

    Sean Nicolson, BCTM 2006

    W-Band VCO Design Methodology

    Use smallest realizable LB with adequate Q

    Given fosc, maximize tuning range using large Cext

    Negative resistance

    Phase noise formula

    Phase noise trade-off when HBT pushed to limit

    Minimize HBT noise bias at NFmin current density

    Maximize Vtankand Cext bias at peak fT current density

    22

    var

    2

    2

    tank

    2

    1

    1

    12

    p

    p

    C

    CC

    CC

    V

    IS

    ext

    ex t

    n

    out

    m

    p

    p CCCC

    CCCC

    ext

    ex teq

    var

    var

    eqB

    oscCL

    fp2

    1

    var2 CVIC

    VIRRTCFext

    TCBneg

    Max. Rnegoccurs at

    peak fT/fMAXbias

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    6/19

    Sean Nicolson, BCTM 2006

    VCO Fabrication

    Fabricated in three technology splits:

    All VCO layouts and bias currents are identical no redesign

    Directly compare VCOs fabricated in different processes

    Use the VCO to optimize HBT profile Noise parameters from phase noise

    fMAX from VCO output power

    BiC9

    fT = 150GHz

    fMAX = 160GHz

    emitter

    45mm0.17mm

    BipX

    fT = 230GHz

    fMAX = 300GHz

    emitter

    45mm0.13mm

    BipX1

    fT = 270GHz

    fMAX = 260GHz

    emitter

    45mm0.13mm

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    7/19 Sean Nicolson, BCTM 2006

    VCO Layout

    VCO core area: 100mm 100mm

    Spiral inductors where necessary to reduce area Plenty of supply decoupling (MiM and metal-metal)

    70mm

    100mm

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    8/19 Sean Nicolson, BCTM 2006

    Technology Overview fT/fMAX Scaling Peak fT/fMAX current density increases at each technology node

    0.17mm SiGe JpeakfT = 7mA/mm2 where fT = 150GHz

    0.13mm SiGe JpeakfT = 14mA/mm2 where fT = 230GHz (or 250GHz)

    Contrast with CMOS

    JpfT = 0.3mA/mm, JpfMAX = 0.2mA/mm, JNFmin = 0.15mA/mm for 180-65nm nodes

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    9/19 Sean Nicolson, BCTM 2006

    Measurement Results

    VCO performance comparison in 3 SiGe technologies

    Phase noise performance

    Temperature testing

    Wafer mapping

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    10/19

    Sean Nicolson, BCTM 2006

    Performance Comparison Across Technology

    LC-oscillator frequency insensitive to technology fT/fMAX

    MOS varactors give less phase noise than HBT (CBC

    ) varactors

    Higher fMAX more output power, higher frequency

    BipX1 results in lowest phase noise

    BiCMOS9

    MOS var.

    BiCMOS9

    HBT var.

    BipX

    HBT var.

    BipX1

    HBT var.

    Tech. fT/fMAX(GHz)

    150/160 150/160 230/300 250/260

    Differential Pout

    (dBm)

    +0.7 -1.3 +2.7 +2.5

    SSB PN @

    1MHz (dBc/Hz)

    -101.6 -80 -98 -101.3

    Osc. Freq. (GHz) 96 100 106 104

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    11/19

    Sean Nicolson, BCTM 2006

    Phase Noise Performance

    Oscillation frequency of 104GHz

    Phase noise of 101.3dBc/Hz @ 1MHz offset

    90nm CMOS

    fT=200GHzfmax=275GHz

    fT=175

    fmax=275

    130nmCMOS

    fT=175

    fmax=275fT=205

    fmax=290

    fT=206

    fmax=197

    fT=150

    fmax=160

    fT=270

    fmax=260

    fT=155

    fmax=155

    fT=230

    fmax=300

    -110

    -105

    -100

    -95

    -90

    -85

    -80

    65 70 75 80 85 90 95 100 105 110

    Oscillation frequency (GHz)

    Phasenoiseat1MHzoff

    s

    (dBc/Hz)

    Averaged Spectral PlotPhase Noise in W-Band

    SiGe VCOs

    **References provided in abstract**

    FMCW modulation

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    12/19

    Sean Nicolson, BCTM 2006

    Biasing W-Band VCOs for Low Noise

    NFmin current density scales with technology and fosc Emitter width J

    NFmin

    (scales with JpeakfT

    )

    Frequency JNFmin (gets closer to JpeakfT)

    Noise correlation further increases JNFmin [K. Yau, SiRF, 2006]

    The B and C shot noise

    currents are correlated

    1exp2* nCnCnB jqIii

    cp bibC

    RB

    E

    B

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    13/19

    Sean Nicolson, BCTM 2006

    phase

    noise

    JNFMIN increases

    with frequency

    output

    power

    CM

    VCC

    LB

    Cext

    Cvar

    Q1

    VTUNE+

    VTUNE-LEE

    REE CEE

    LC

    VBB

    2.5 V

    Phase Noise Performance Across Bias What is the minimum phase noise current density in W-band VCOs?

    Measure output power and phase noise w.r.t current density (vary VBB

    )

    Looks like phase noise is minimum at peak fT current density

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    14/19

    Sean Nicolson, BCTM 2006

    -6

    -4

    -2

    0

    2

    92 96 100 104 108

    Center frequency (GHz)

    Outputpower(dBm)

    25C

    70C

    25C

    50C

    125C

    70C

    25C

    BiC9

    MOS var.BiC9

    HBT var. BipX

    W-Band Manufacturability Challenges Manufacturability specifications for automotive radar are stringent

    Outdoors wide temperature variations

    Must last for cars lifetime

    Low cost per part requires high yield

    Is SiGe on the way to meeting such challenges?

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    15/19

    Sean Nicolson, BCTM 2006

    Wafer Mapping BiCMOS9

    Wafer 1 2 3 4

    Center freq. (GHz) 94.7 94.9 94.9 95.0

    Tuning range (GHz) 4.6 4.6 4.6 4.6

    Output power (dBm) 0.2 0.7 0.6 0.8

    DC power (mW) 133.8 133.2 137.3 132.6

    Wafer 1 2 3 4

    Center freq. (GHz) 99.6 100.5 100.1 100.5

    Tuning range (GHz) 3.4 3.6 3.6 3.7

    Output power (dBm) -1.1 -1 -1.4 -0.9

    DC power (mW) 133.0 133.0 136.2 132.8

    Tested 120 VCOs on 4 wafers

    Summary of BiC9 VCOs with MOS varactors (60 dice averaged)

    Summary of BiC9 VCOs with HBT varactors (60 dice averaged)

    4 VCOs had significantly below average performance (outliers)

    2 of the 4 outlier VCOs failed to oscillate entirely

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    16/19

    Sean Nicolson, BCTM 2006

    Wafer Mapping BipX

    VCO not present

    Die not tested

    < -98 dBc/Hz

    -95 -98 dBc/Hz

    -92 -95 dBc/Hz

    > -92 dBc/Hz

    Oscillation Frequency Phase Noise at 1MHz offset

    VCO not presentDie not tested

    104.5-105.0 GHz

    104.0-104.5 GHz

    103.5-104.0 GHz

    103.0-103.5 GHz

    Wafer flat

    Location of

    VCO in reticule

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    17/19

    Sean Nicolson, BCTM 2006

    Figures of Merit Comparison of our work to other state of the art W-Band VCOs

    References [1] Huang P. et al, ISSCC 2006 [2] Kobayashi K. W. et al, JSSC 1999

    [3] Tang K. W. et al. CSICS 2006 [4] Huang P. et al, ISSCC 2006

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    18/19

    Sean Nicolson, BCTM 2006

    Conclusions

    Demonstrated a design methodology for low phase noise in W-Band

    VCOs Biasing at JpeakfT minimizes phase noise in W-band VCOs

    Performed a direct comparison of identical VCOs fabricated in different

    technologies

    LC-oscillator frequency is insensitive to technology scaling

    Higher fT technology yielded VCO with lower phase noise

    Higher fMAX technology yielded VCO with improved output power

    Future work is required to fully support these conclusions

    Noise figure measurements in the W-Band (correlate to Y-parameter method)

    Verify JNFmin in the W-Band and support biasing near JpeakfT for min. phase noise

  • 7/29/2019 Bctm 06 Sean Slides wergwer ewrgwe ewgwe wergweg

    19/19

    Sean Nicolson, BCTM 2006

    Technology Overview fT/fMAX Scaling Improvement in peak fT/fMAX has two contributions

    Layout stripe contact, decreased emitter width 0.17mm to 0.13m

    Vertical profile and processing doping, materials, epitaxy, etc.

    How much of the speed improvement is due to each contribution?

    Measure the 0.13mm HBT layouts fabricated in the 0.17mm process