beam propagation method in x-ray optics simulationsiwxm.cells.es/docs/iwxm12_krzywinski.pdf · one...

46
Beam propagation method in X-ray optics simulations Jacek Krzywinski SLAC

Upload: others

Post on 21-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Beam propagation method in

    X-ray optics simulations

    Jacek Krzywinski

    SLAC

  • Catch the Wave(front)

    We are talking X-waves(not X-Rays)

  • Credits

    • Jérôme Gaudin - European XFEL GmbH• Andrzej Andrejczuk - University of Bialystok

  • Outline• Introduction• Paraxial approximation of Helmholtz Equation• Propagation of coherent X-rays in vacuum and Fourier

    Optics

    • Thin shifter approximation and propagation of coherent X-rays along beamlines– Example: simulation of LCLS SXR Instrument performance

    • Modeling the interaction of X-rays with optical elements by solving time dependent, 2D Schrödinger equation– Examples: mirrors, gratings, and multilayer focusing optics

    • Outlook

  • Introduction

    • New X-rays sources produce powerful coherent X-rays (waves)

    • Wave propagation, diffraction, and dynamical effects are important for understanding properties of the beam delivered for users

    • There are many methods to tackle this problem. One of them is so called Beam Propagation Method (BPM)

    • Numerical implementation of BPM is extremely simple, yet the method is very powerful!

  • Paraxial approximation

    or

    Paraxial approximation of Helmholtz Equation in

    inhomogenous media

    This image cannot currently be displayed.

    0),,())),,((( 22 =⋅+∇ zyxEzyxnk

    Helmholtz Equation for eiωt harmonic function

    ikzezyxzyxE −⋅= ),,(),,( ψ

    zk

    z ∂∂

  • Paraxial approximation of Helmholtz equation in

    inhomogeneous media: Schrödinger equation

    Length unitLength unitLength unitLength unit

    Identical to 2D, time dependent Identical to 2D, time dependent Identical to 2D, time dependent Identical to 2D, time dependent Schrödinger equationSchrödinger equationSchrödinger equationSchrödinger equation

    solutionsolutionsolutionsolution

    Difference between dielectric constant of vacuum and the media

    2

    for n-1

  • Propagation in vacuum - Fourier Optics

    Could be implemented Could be implemented Could be implemented Could be implemented using using using using FFT!

    Fourier transform

    Spectral methodSpectral methodSpectral methodSpectral method

    2

  • Implementation of the spectral method in

    Matlab is extremely simple (8 lines of code)

  • Propagation in vacuum – Fourier Optics

    Could be implemented Could be implemented Could be implemented Could be implemented using using using using FFT (12 lines of code)!

    Convolution theoremConvolution theoremConvolution theoremConvolution theorem

    Spectral methodSpectral methodSpectral methodSpectral method

    Far Far Far Far zonezonezonezone

    Near Near Near Near zonezonezonezone

    FresnelFresnelFresnelFresnel----Kirchhoff integralKirchhoff integralKirchhoff integralKirchhoff integral

  • LCLS SXR Instrument

    Type Coating and blank

    material

    Dimensions (mm)

    Clear Aperture (mm)

    Radius (m)

    Incidence angle(°)

    Grating period order

    Distance from

    source (m) Enstation

    1 124

    M1 Spherical mirror

    B4C-coated silicon

    250 x 50 185 x 10 1049

    89.20 - 125.1

    G1, G2 Plane VLS grating

    B4C -coated silicon

    220 x 50 180 x 34 ∞ 88.56-89.03 1/100, 1/200 -1

    125.4

    Detector/ Slit

    132.9

    M2 Bent Elliptical mirror

    B4C-coated silicon

    250 x 30 205 x 10 281.6

    89.20 - 137.4

    M3 Bent Elliptical mirror

    B4C-coated silicon

    250 x 30 120 x 10 164.8 89.20 - 137.9

    Endstation 2

    139.4

    P. Heimann et. al., Rev. Sci. Instrum. 82, 093104 (2011)

  • OPDr ⋅=∆λπϕ 2)(r

    ,

    )( twhtw

    Thin phase shifter approximation

    For the small WF curvature case

    )(2 twhOPD ⋅⋅≈ ϑ

    ϑ=angleincident _

    [ ] [ ]st wwyxr ,, ⋅== ϕ

    x

  • ++−

    +++−−++=∆

    22

    20

    20

    0

    ))sin(())()cos((

    ))sin(())()cos(()(

    2)(

    wLwhL

    wRwhRLRwnr

    ββ

    ααλπϕ

    r

    rrr

    ( )...1)( 33220

    +++= wnwnwwnσ

    ,

    )( twhtw

    βα

    L0R

    R0, L are the average radiuses of curvatures of incident and scattered

    wavefronts , β is derivedfrom the grating equation

    x

    Thin phase shifter approximation

    groove density

    function for the

    VLS grating

  • 1 .10 5 1 .10 4 1 .10 3 0.011 .10 6

    1 .10 5

    1 .10 4

    1 .10 3

    0.01

    0.1

    1Power distribution function (PSD) for surface height errors

    spatial frequency [1/um]

    PS

    D [u

    m^3

    ]

    (

    Model of surface roughness

    Fractal model for mid and high frequency errors, based on mirror specifications

    Model for figure errors is based on mirror specification (height, slope error)

    RMS height error: 2 nm

    Generated surface errors

    0.5 m

  • At slit position, no surface errors

    200 150 100 50 0 50 100 150 2000

    0.02

    0.04

    0.06

    999.8 eV

    1000 eV

    1000.2 eV

    microns

    Inte

    nsi

    ty [

    arb

    units

    ]

  • At slit position, 1 nm, 0.25 urad rms surface errors

    200 150 100 50 0 50 100 150 2000

    0.02

    0.04

    0.06

    999.8 eV

    1000 eV 1000.2 eV

    microns

    Inte

    nsity

    [ar

    b un

    its]

  • 200 150 100 50 0 50 100 150 2000

    0.02

    0.04

    999.8 eV1000 eV

    1000.2 eV

    microns

    Inte

    nsity

    [arb

    uni

    ts]

    At slit position, 2 nm, 0.25 urad rms surface errors

  • 200 150 100 50 0 50 100 150 2000

    0.01

    0.02

    0.03

    999.8 eV

    1000 eV

    1000.2 eV

    microns

    Inte

    nsity

    [arb

    uni

    ts]

    At slit position, 3 nm, 0.25 urad rms surface errors

  • At slit position, 4 nm, 0.25 urad rms surface errors

    FRAME 0=

    200 150 100 50 0 50 100 150 2000

    0.005

    0.01

    0.015

    0.02

    999.8 eV1000 eV 1000.2 eV

    microns

    Inte

    nsity

    [arb

    uni

    ts]

  • 10 8 6 4 2 0 2 4 6 8 100

    1000

    2000

    3000X profile

    distance [microns]

    Inte

    nsity

    [a

    rb.

    units

    ]

    10 8 6 4 2 0 2 4 6 8 100

    1000

    2000

    3000

    4000X profile

    distance [microns]

    Inte

    nsity

    [a

    rb.

    units

    ]

    At end station position, no surface errors, pink beam,

    at the focus

    Y profile

  • At end station position, 1 nm, 0.25 urad rms surface errors, pink

    beam, at the focus

    Y profile

    10 8 6 4 2 0 2 4 6 8 100

    1000

    2000

    3000X profile

    distance [microns]

    Inte

    nsi

    ty [

    arb

    . u

    nits

    ]

    10 8 6 4 2 0 2 4 6 8 100

    1000

    2000

    3000X profile

    distance [microns]

    Inte

    nsi

    ty [

    arb

    . u

    nits

    ]

  • 10 8 6 4 2 0 2 4 6 8 100

    500

    1000

    1500X profile

    distance [microns]

    Inte

    nsi

    ty [

    arb

    . u

    nits

    ]

    10 8 6 4 2 0 2 4 6 8 100

    500

    1000

    1500

    2000X profile

    distance [microns]

    Inte

    nsi

    ty [

    arb

    . u

    nits

    ]

    At end station position, 2 nm, 0.25 urad rms surface errors, pink

    beam, at the focus

  • 10 8 6 4 2 0 2 4 6 8 100

    200

    400

    600X profile

    distance [microns]

    Inte

    nsity

    [a

    rb.

    units

    ]

    10 8 6 4 2 0 2 4 6 8 100

    200

    400

    600

    800X profile

    distance [microns]

    Inte

    nsity

    [a

    rb.

    units

    ]

    At end station position, 3 nm, 0.25 urad rms surface errors, pink

    beam, at the focus

    Y profile

  • 10 8 6 4 2 0 2 4 6 8 100

    50

    100

    150X profile

    distance [microns]

    Inte

    nsi

    ty [a

    rb. u

    nits

    ]

    10 8 6 4 2 0 2 4 6 8 100

    100

    200

    300

    400X profile

    distance [microns]

    Inte

    nsi

    ty [a

    rb. u

    nits

    ]

    At end station position, 4 nm, 0.25 urad rms surface errors, pink

    beam, at the focus

    Y profile

  • At end station position, 0.25 urad rms surface errors, pink beam,

    10 cm behind the focusFigure error (rms):

    0 nm 1 nm 2 nm

    AMO

    out

    of focus

    imprint

    100 50 0 50 1000

    1

    2

    3

    4X profile

    distance [microns]

    Inte

    nsity

    [arb

    . uni

    ts]

    100 50 0 50 1000

    1

    2

    3X profile

    distance [microns]

    Inte

    nsity

    [a

    rb.

    units

    ]

    100 50 0 50 1000

    1

    2

    3

    X profile

    distance [microns]In

    ten

    sity

    [a

    rb.

    uni

    ts]

  • Propagation in inhomogeneous media:Flat mirror

    x

    z

  • Split operator method (14 lines of

    code)

    VdzPdzdzVP eee ≈+ )(

    For operators which do not commute For operators which do not commute For operators which do not commute For operators which do not commute :

    VPVP eee ≠+ )(

    but for sufficiently small but for sufficiently small but for sufficiently small but for sufficiently small dzdzdzdz this relation is nearly fulfilled this relation is nearly fulfilled this relation is nearly fulfilled this relation is nearly fulfilled

    andandandand

    ),(),(),(

    222

    zxeedzzxdzzx

    idz

    i

    ψψδε∇

    ≈+

  • Split operator method (14 lines of

    code)function [U_out]=f_prop_grat_prof(conversion_from_SI_units,. ..

    M,X0,delta_eps1,delta_eps2,h_C,x,kx,U_in,dz,prof_ex t)%’kinetic’ part of the Hamiltonian in momentum spac e

    Hk=exp(-i/2*kx.^2*dz);%Fourier transform of the field in the space domain

    G=fftshift(fft(U_in));% the main loop begins herefor k = 1:MG1=G.*Hk;U_out1=ifft(ifftshift(G1));

    %definition of the dielectric constant distributionX1=-prof_ext(k);log_a1=x>X0+X1;log_b1= X0+X1>=x & x>=X0+X1-h_C;delta_eps=log_a1*delta_eps1+log_b1*delta_eps2;

    % ‘potential energy’ part of the HamiltonianHz=exp(i/2*(delta_eps)*dz);U_out = U_out1.*Dz;G= fftshift(fft(U_out));end

  • 50 nm a-C layer on Si substrate,

    Gaussian source, Photon Energy

    290 eV

    α < αα < αα < αα < αc

    α α α α >∼ >∼ >∼ >∼ ααααc α α α α > > > > ααααc

  • α < αc

  • • The same problem as inelastic electron scattering by a potential barrier

    • Incident angle corresponds to electron’s kinetic energy

    |∆Ε||∆Ε||∆Ε||∆Ε|

    Analogy in QM

    e-

  • Grating

    50 nm a-C layer on Si substrate

    a-C

    Si

  • Simulated field distribution

    a-C

    Si

  • • The same problem as electron and the potential barrier

    • Incident angle corresponds to electron’s kinetic energy

    • Position of the barrier depends on time

    DE(t1)

    Rough surface - analogy in QM

    e-

    DE(t2)

  • Efficiency of the grating

    Propagation to far field (FFT)

    Incident

    beam

    m=0

    m=1

    Diffraction orders

  • Benchmarking the BPM code v.s. REFLEC1,2 code

    36

    BPM calculations

    REFLEC code

    Grating: Au, duty factor 0.6, h=5.5 nm

    [2] REFLEC, a program to calculate VUV/X-ray optical elements and synchrotron radiation

    beamline, F. Schaefers, D. Abramsohn and M. Krumrey (BESSY, 2002). The code is based on the

    method described in M. Nevière, P. Vincent and D. Maystre, Appl. Optics 17 (1978) 843

    [1] VN Strocov et.al. High-resolution soft-X-ray beamline ADRESS at Swiss Light Source..http://arxiv.org/pdf/0911.2598

  • Absorbed power density, 2 deg grazing incidence angle

    Interestingly, micro-roughness does not increase the maximum

    of absorbed energy by more than few percent

    The simulation shows that the specific field distribution at the surface leads to

    an enhancement of the absorbed energy at the edge of the laminar grating

    structure.

  • Damage experiment at FLASH

    The model provides a good qualitative and

    quantitative description of the experimental

    results. The measured and simulated damage

    threshold is 3.5 times lower than obtained for the

    flat surface.

    J. Gauden et.al., Optical Letters (2012) , in press

  • Multilayer Laue lenses (MLL)

  • Thick Fresnel Zone Plate, outer zone

    1.5 nm thick

  • Benchmarking w/r to eigenfunctions

    expansion method

    PFEIFFER et al. , Phys. Rev. B 73, 245331 2006

  • MLL wedged lens, outer layer 1 nm

    thick, photon energy 19.5 keV

    16

    microns

    16

    0 m

    icro

    ns

    Focal length 2.6 mm

    Focus size 1.5 nm WHHM

  • Electric field distribution inside MLL

  • Comparison with dynamical diffraction

    theory

    BPM simulation

  • Focusing of thick FZP and wedged MLL,

    outer zone is 1 nm thick

  • Outlook

    • I hope that I convinced you that:• BPM can be applied successfully in the wide

    range or problems

    • It is simple and computationally efficient• It is especially convenient for simulating the

    influence of imperfections as they can be

    naturally included in the model