behind the coronagraphic mask

15
Behind the coronagraphic mask Frantz Martinache CEAO Research Fellow Subaru Telescope Paris, 10/10/29, Spirit of Lyot 2010 A new approach to look for companions in the so-called “super resolution” regime

Upload: frantz-martinache

Post on 14-Jun-2015

1.218 views

Category:

Education


2 download

DESCRIPTION

Slides of a talk I gave at the second Lyot conference held in Paris in 2010. Presentation slides are the only conference proceedings for this meeting. This is the first talk I gave on the new high angular resolution technique I proposed, called Kernel-phase: the presentation shows that new information can be extracted from readily available archive data from the Hubble Space Telescope.

TRANSCRIPT

Page 1: Behind the Coronagraphic Mask

Behind the coronagraphic mask

Frantz MartinacheCEAO Research FellowSubaru Telescope Paris, 10/10/29, Spirit of Lyot 2010

A new approach to look for companions in the so-called “super resolution” regime

Page 2: Behind the Coronagraphic Mask

Take care of an ill-posed problem

I = O ⊗ PSF Eliminate the PSF out of the equation

the ADI way... the exAO way...

Thalman et al, 2009, ApJ, 707, 123 Guyon et al, 2009, PASP, 122, 71

Page 3: Behind the Coronagraphic Mask

... or use interferometry!

Page 4: Behind the Coronagraphic Mask

Interferometry produces good observable quantities

1

Φ2-1

Φ3-2

Φ1-3

2

3

Not about producing the best image possible, but

about extractingobservable quantities

(closure-phase) that do not depend on

phase residuals

Φ(2-1) = Φ(2-1)0 + (φ2-φ1)

Φ(3-2) = Φ(3-2)0 + (φ3-φ2)

Φ(1-3) = Φ(1-3)0 + (φ1-φ3)

measured = intrinsic + atmospheric

Σ

Jennison, R. C. 1958, MNRAS, 118, 276

Page 5: Behind the Coronagraphic Mask

Ditch these dirty images, keep clean information only!

Example of Palomar closure-phase data

40 % strehl0.3 deg scatter

stability ~ λ/1000all passive !

The best “picture” you can give of one or more companions around a star is a series of astrometric data:

separation, PA, contrast with associated uncertainties

Page 6: Behind the Coronagraphic Mask

A new regime of angular separations

50 100 150 200 250Projected separation (mas)

5.0

5.5

6.0

6.5

L co

ntra

st li

mit

GJ 517

GJ 559.1GJ 617B

HD 108767B

HD 187748

V383 Lac

NIRC2 L’interferogram

powerspectrum

HD 187748

2 3 4 5 6 7Projected separation (AU)

0

20

40

60

80

Com

pani

on m

ass

dete

ctio

n lim

it (M

J)

50 Myr

150 Myr

V383 Lac

2 3 4 5 6Projected separation (AU)

0

20

40

60

80

Com

pani

on m

ass

dete

ctio

n lim

it (M

J) 50 Myr 150 Myr

HD 108767B

2 3 4 5 6Projected separation (AU)

0

20

40

60

80

Com

pani

on m

ass

dete

ctio

n lim

it (M

J)

40 Myr

260 Myr

GJ 617B

0.5 1.0 1.5 2.0 2.5Projected separation (AU)

0

20

40

60

80

Com

pani

on m

ass

dete

ctio

n lim

it (M

J)

100 Myr

1000 Myr

GJ 559.1

2 4 6 8Projected separation (AU)

0

20

40

60

80

Com

pani

on m

ass

dete

ctio

n lim

it (M

J)

20 Myr

120 Myr

GJ 517

1 2 3 4Projected separation (AU)

0

20

40

60

80

Com

pani

on m

ass

dete

ctio

n lim

it (M

J)

50 Myr 50 Myr

Martinache et al, in prep

examples of NRM detection limits:

Page 7: Behind the Coronagraphic Mask

Strengths and limitations of NRM

Self-calibration properties of closure phase make NRM “bullet-proof”

! "!! #!! $!! %!! &!! '!! (!! )!!

*+,-.-/0123435-6

%

'

)

"!

"#

"%

&76085-39:;3<12/.-6/3435-820/=>+6

!"!

#"!

!"!

#""!

!""!

#"!

!""!

#""!

9:;?3"3>-@3<-A3>+A-@B3CDEFGH*

9:;?3"3>-@3<-A3>+A-@B3CDE

I%)";7JIH33:K"!!3

"3.+6+A/3K3"#&35-6

LM*J3N,+./=.+3;-6O0283PLN;Q3J+-5

9H:C-53%R%=5.1AA76=S/.-</+>&76085-

ITE;3""R%=53$76085-

EU-6+35-6O3P.-

V33<1

2/.-6/Q

NRM onboard JWST in the TGS-TFI.

If anything goes wrong with the primary, this might be the only instrument that

will still work

But: it requires a non-redundant pupil.Is there anything comparable we could do

without masking at all?

Sivaramakrishnan et al, Astro2010T, 40

Page 8: Behind the Coronagraphic Mask

Φ(2-1) = Φ(2-1)0 + (φ2-φ1)Φ(3-2) = Φ(3-2)0 + (φ3-φ2)Φ(1-3) = Φ(1-3)0 + (φ1-φ3)

... ... ... ... ... ...Φ(k-l) = Φ(k-l)0 + (φk-φl)

... ... ... ... ... ...

Matrix form anyone?

A more “general” formalism

Φ Φ0= + φA ×

measured Fourierphase

“true” Fourierphase

transfermatrix

pupilphaseerrors

For a non-redundant array:The transfer matrix is essentially filled with zeroesExcept: per line, one +1, one -1

Closure phase relations are one example of a left-hand operator K, so that KxA produces rows of zeros.

Page 9: Behind the Coronagraphic Mask

Redundant scenarios

non-redundant

full aperture

Φ = Φ0 + 1 Δφ

Φ = Φ0 + Arg(ejΣi Δφi)

Im

Re

Additionof phasors

BUT: with a reasonably well corrected aperture, this complicated (non sortable) expression can be linearized, and becomes:

Φ = Φ0 + Σi ΔφiOur linear model still holds... just need a slightly more filled transfer matrix.

Page 10: Behind the Coronagraphic Mask

Determine the HST transfer matrix

0 50 100 150 200 250

0

50

100

150

200

250

discretize the HST pupil0 50 100 150

0

50

100

150

NICMOS Image

0 50 100 150

0

50

100

150

(u,v)-plane Ker-phase histogram

-200 -100 0 100 200Ker-phases (degree)

0

10

20

30

40

50

60

70

# in

bin

CalibratorBinary (GJ164)

GJ 164 Ker-phases

-200 -100 0 100 200Kernel-phases (degrees)

-200

-100

0

100

200

Best

fit b

inar

y m

odel

(deg

ree)

corresponding UV coverage

Count the baselines contributing to each

UV pointand fill up a line of A

with -1, 0, 1

A =

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... 0 +1 -1 ... 0 -1 ...

In this example,A is a rectangular 155 x 366 matrix, manageable on a

netbook

Page 11: Behind the Coronagraphic Mask

Kernel-phase

Idea: construct a new operator K so that KxA = 0, but how?By hand? Painful, but manageable if not too big...Or use a tool more versatile: Singular Value Decomposition (SVD)

Rows of K form a basis for the left null space of A

The SVD of AT= U x W x VT gives it all: the columns of V that correspond to zero singular values (Wi = 0) do the trick

These new closure-phase relations are called Ker-phases

Martinache, 2010, ApJ, 724, 464

Page 12: Behind the Coronagraphic Mask

For each frame:Read the Fourier-phase informationAssemble into Ker-phases using the relations identified earlier... Then:do some statistics (frame-to-frame variability), propagate errors... and you’re done!

NIC1 datacube

Data reduction

FT

uv-plane

Page 13: Behind the Coronagraphic Mask

0 50 100 150

0

50

100

150

NICMOS Image

0 50 100 150

0

50

100

150

(u,v)-plane Ker-phase histogram

-200 -100 0 100 200Ker-phases (degree)

0

10

20

30

40

50

60

70

# in

bin

CalibratorBinary (GJ164)

GJ 164 Ker-phases

-200 -100 0 100 200Kernel-phases (degrees)

-200

-100

0

100

200

Best

fit b

inar

y m

odel

(deg

ree)

NICMOS 1 data analysis

Martinache, 2010, ApJ, 724, 464

- 4 frame dataset on SAO 179809 (1998)- 8 frame dataset on GJ 164 (2004)

Best fit Parameters:Separation: 88.2 masP.A: 100.6 degreescontrast: 9.1

Page 14: Behind the Coronagraphic Mask

Performance of the approach

Projected probability density function

70 80 90 100Angular sep (mas)

98

100

102

104

Posi

tion

Angl

e (d

eg)

70 80 90 100

98

100

102

104

Projected probability density function

70 80 90 100Angular sep (mas)

4

6

8

10

12

Con

trast

ratio

70 80 90 100

4

6

8

10

12

Projected probability density function

98 100 102 104Position Angle (deg)

4

6

8

10

12

Con

trast

ratio

98 100 102 104

4

6

8

10

12

NICMOS data contrast detection limits

100 150 200 250 300 350Angular separation (mas)

200

400

600

Con

trast

ratio

0.900

0.900 0.900

0.990

0.990

0.999

0.999

Detection Detection limits

Parameters:Separation: 88.2 +/- 3 masP.A: 100.6 +/- 0.3 degreecontrast: 9.1 +/- 1.2

1.1 λ/D

Limits based on MC simulationsfrom errors measured on a dataset acquired on a single star.

Martinache, 2010, ApJ, 724, 464

Page 15: Behind the Coronagraphic Mask

Concluding remarks

The technique is still at an early stage but is usable today

Moderate contrast detection with good astrometric precision was demonstrated within λ/D

- dozens of NICMOS archive datasets await re-analysis:> new detections in the super-resolution regime> improved detection limits

- new ground based L- and M-band observing programs should also benefit this technique