zelda: a zernike phase mask sensor for coronagraphic ......phase-contrast technique • measurement...

13
ZELDA: a Zernike phase mask sensor for coronagraphic aberrations Wavefront sensing and control for Exoplanet Imaging, Pasadena, February 1213, 2015 STScI: Mamadou N’Diaye, R. Soummer, L. Pueyo, and the HiCAT team LAM/ONERA: K. Dohlen, T. Fusco, A. CosSlle, A. Caillat, F. Madec, L. Mugnier, B. Paul, J.F. Sauvage, A. Vigan U. Liège: A. Jolivet Collaborators: JPL: J. K. Wallace Work parSally supported by : Funding from French CNRSINSU and InsStute Carnot STAR NASA Grants NNX12AG05G and NNX14AD33G (APRA)

Upload: others

Post on 19-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • ZELDA: a Zernike phase mask sensor for coronagraphic aberrations

    Wavefront  sensing  and  control  for  Exoplanet  Imaging,  Pasadena,  February  12-‐13,  2015

    STScI:  Mamadou  N’Diaye,  R.  Soummer,  L.  Pueyo,  and  the  HiCAT  teamLAM/ONERA:  K.  Dohlen,  T.  Fusco,  A.  CosSlle,  A.  Caillat,  F.  Madec,  L.  Mugnier,  B.  Paul,  J.-‐F.  Sauvage,  A.  ViganU.  Liège:  A.  Jolivet

    Collaborators:  JPL:  J.  K.  Wallace

    Work  parSally  supported  by  :-‐  Funding  from  French  CNRS-‐INSU  and  InsStute  Carnot  STAR-‐  NASA  Grants  NNX12AG05G  and  NNX14AD33G  (APRA)

  • Principle

    • Conversion of the phase aberrations into intensity variations ‣ Ic=α sin φ + β

    • Small aberrations:‣ Closed-loop during high-contrast

    observations‣ simplicity of the phase retrieval

    algorithm

    2

    A B C

    Focal plane mask (FPM)π/2 phase shift

    Entrance pupil Camera

    Angel 1994, Bloemhof & Wallace 2003, Dohlen 2004, Guyon 2005

    Small aberrations: Ic =αφ + β

    Zernike phase mask sensor

  • Properties

    3N’Diaye et al. SPIE 2014

    • Capture range with ZOPD=λ/4‣ max: 340nm @ λ=680nm‣ -85nm < range < 255nm

    • Smaller phase shift:‣ more symmetric range‣ reduced sensitivity

    • Larger mask:‣ larger sensitivity ‣ larger variability across the pupil

    Trade-offs between linearity, sensitivity, and variability across the pupil for the Zernike sensor design

    0"

    0.5"

    1"

    1.5"

    2"

    2.5"

    3"

    3.5"

    4"

    )0.5" )0.4" )0.3" )0.2" )0.1" 0" 0.1" 0.2" 0.3" 0.4" 0.5"

    ZELD

    A&intensity

    &(arbitrary&un

    it)&

    Wavefront&aberra7on&(lambda)&

    0.1"lambda"

    0.25"lambda"

    0.4"lambda"

    -λ/8 3λ/8dynamic range

    for λ/4 OPD mask

    Mask OPD

    ZOPD=0.4λ

    ZOPD=λ/4

    ZOPD=0.1λ

    Large aberrations: Ic=α sin φ + β

    Mask diameter d∼1λ/D

  • Manufacturing aspects

    • Mask dimensions: ‣ ZOPD=λ0/4 and d=1.06λ0F‣ λ0=680nm, F=91

    • Fabrication on silica substrate by photolithography

    • Quality of the components‣ roughness: ~1 nm‣ mask transition width: ~1 µm

    4N’Diaye et al. A&A 2010, SPIE 2011

    SEM of a phase mask prototype

    d=64.4μm

    z=0.366μm

    Marseille’s prototype

  • Implementation example: SPHERE

    5

    Deformable mirror

    Stellar coronagraph

    Image post processing

    Image formation of an exoplanetWavefront

    sensorReal timecomputer

    Extreme adaptive optics (ExAO)

    Measurement

    Science

    Non common path aberrationsTelescope

    Speckles ZELDA

    Optics

    Optics

    • Our proposal: ‣ ZELDA a concept based on

    phase-contrast technique

    • Measurement strategies:‣ VLT/SPHERE: off-line phase diversity‣ GPI: Mach-Zehnder interferometer behind

    coronagraph

    Sauvage et al. 2007, Wallace et al. 2010

    Zernike sensor for Extremely accurate measurements of Low-level Differential Aberrations

  • ZELDA prototype in SPHERE

    • Goal: improve SPHERE performance by implementing high-order NCPA calibration as a future path upgrade

    6

    ZELDA in coronagraph wheel

    Installation during SPHERE integration at Paranal in April 2014

    Diameter D=70.7μmDepth z=0.815μm

    λ0=1.62μm (H-band)F/40 beam

  • Preliminary tests

    • Scan of the internal point source image across the ZELDA mask‣ modification of the reference slopes of the differential tip tilt sensor in front of

    the coronagraph wheel‣ tilt ramp with steps of 0.5 to 1 pixel of 12.5mas (0.3λ/D @ 1.6µm) on the sensor

    7N’Diaye et al. SPIE 2014

    Pixel by pixel analysis for wavefront maps obtained with Zelda in H-band

    Experiment before the first SPHERE commissioning run (May 2014)

    -200

    -100

    0

    100

    200

    -6-4-20246

    Near-zero tilt 19 mas tilt 31 mas tilt

    nm

  • Preliminary results

    • Evolution of the low-order aberrations in the presence of tilt ramp‣ Wavefront map decomposition on the Zernike polynomial basis

    8

    • Linear behavior of the tilt ramp for small aberrations • Parabolic evolution of focus and astigmatism with stationary values

    around zero because of the limited ZELDA dynamic range

    Tilt

  • Implementation: general considerations

    • Zernike sensor for low-order aberrations‣ behind a reflective coronagraph FPM

    (hole):- option adopted at STScI on HiCAT with

    Hybrid SP/APLC solutions

    ‣ in the same plane as the coronagraph FPM- currently developed at JPL (See Fang

    Shi)

    ‣ after a beam splitter upstream the coronagraph FPM

    • Zernike sensor for Mid/High order aberrations‣ downstream the FPM using a pupil

    imaging arm

    ‣ in the plane of the coronagraph FPM at a sensing wavelength different from science wavelength

    9

    Closed-loop around the null WFE with ZS

    Stroke Minimization for open-loop calibration

    Pre-compensation with ZS using its capture range

    Example of possible LOWFSC strategy

  • 4D Fizeau interferometer

    O1

    O2

    O5

    O6O34

    ApodO7

    O8FPM

    DM1DM2

    O9Lyot stop

    Pupil camera

    Image camera

    O10 Space for phase retrieval

    Beam launcher

    2.4m x 1.2m (8x4 ft) optical table

    Pupil mask

    4D Fizeau interferometer

    Lens

    10

    Apodizer

    Focal plane maskLyot stop

    Zernike sensors in HiCAT

    Zernike LOWFS

    Zernike LOWFS

    or HOWFS

    335μm size

    FPM from Lyot project, courtesy of R. Oppenheimer

  • Combination with Hybrid Shaped Pupil/APLC coronagraphs

    • APLC with Shaped pupil apodization to produce broadband star image

    • Implementation of this type of solution on HiCAT with reflective FPM

    • Use of the FPM transmitted light to feed a Zernike sensor for LOWFS measurements

    11

    Aperture

    -12

    -10

    -8

    -6

    -4

    -2

    -6-4-20246

    10% broadband coronagraphic image

    Shaped pupil

    Lyot stop Intensity at λ0 before stop

    Intensity at λ0 after stoplog

    scale

    0 10 20 30 40 50-12

    -10

    -8

    -6

    -4

    -2

    Angular separation in l0êD

    Normalized

    intensityinlogscale

    mê2= 4.00l0êDri= 3.5l0êD ro= 20.0l0êD

    20% central obstruction10% bandwidth

    N’Diaye et al. ApJ 2015 and in prep

  • OAP1

    OAP2

    PAR34

    IrisAOPUP

    OAP5OAP6

    Apod

    TRD7

    BOS1

    BOS2

    TRD8

    FPM

    SPH9

    Lyot

    CamP

    CamF

    Fold1Fold2

    BS

    LpLfFiber

    12

    HiCAT (STScI High-contrast imaging testbed)- Design with room for static/dynamic Zernike sensors - Static prototype already available- Implementation in the forthcoming year

    Room for Zernike LOWFS behind the

    reflectiveFPM

    DM characterization images, 01/30/2015, credit Mazoyer & N’Diaye

    Final delivery (two kilo-DM) in Oct 2014Integration in Spring

  • Conclusion and future prospects

    • ZELDA: ‣ is a Zernike phase mask sensor‣ is a precision WFS for near-coronagraph NCPA calibration ‣ helps to extend the discovery space of directly imaged exoplanets with current and future

    high-contrast instruments

    • ZELDA in VLT/SPHERE: ‣ Prototype installed in April 2014, ‣ Promising preliminary results with intern source‣ On-sky tests expected in 2015 for potential future upgrade on the instrument‣ Combination with coronagraphic phase diversity (COFFEE, Paul et al. 2013)

    • Zernike sensors in HiCAT (STScI high-contrast testbed, N’Diaye et al. 2013, 2014): ‣ Integration of a static and/or dynamic Zernike WFS for low-order aberration measurements‣ Static prototype already available in our laboratory‣ implementation in the forthcoming year

    13DM characterization images, 01/30/2015, credit Mazoyer & N’Diaye