bernhardt

Upload: mossad-news

Post on 02-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Bernhardt

    1/33

    An Update on theCharged Aerosol Release Experiment

    CARE

    Paul A. BernhardtPlasma Physics DivisionWashington, DC 20375Phone: 202-767-0196

    E-Mail: [email protected]

    12th

    Workshop on thePhysics of Dusty Plasma19 May 2009

  • 7/27/2019 Bernhardt

    2/33

    Charged Aerosol Release ExperimentModified/Enhanced CARE Concept

    Objectives: Examine the effect of artificially-created,charged-particulate layers on the penetration of

    UHF, L-Band and S-Band radars.Design and build a rocket payload with a chemical

    release and instruments to solve the mystery of radar echoes from dusty plasmas

    Description: A series of rocket experiments will beconducted to test the theories for radar scatter from

    charged dust. Rocket Experiment

    Chemical Release (280 km Altitude, 111 kg) Instrumented Payload

    Radio Beacon (CARE I) Ground Radars for Backscatter Observations Launch Sites

    Wallops Island, Virginia (CARE I 2009) Andoya, Norway or Poker Flat, Alaska (CARE II) Kwajalein, Marshall Islands (CARE II Alternate)

    Supporting Theory Chemical Release: Plume Model Particle Dispersal: Monte Carlo Simulations Plasma Turbulence: Electrostatic PIC Code Radar Scatter: Electromagnetic Theory

    Radar and In Situ Diagnostics of

    Artificial Dusty Plasma Cloud

  • 7/27/2019 Bernhardt

    3/33

    CARE Personnel

    Name Affiliation

    Dr. Paul Bernhardt NRL/PI

    Dr. Carl Siefring NRL/Project Scientist

    Matt Wilkens NRL Eng. Support

    Prof. Iain Boyd University of Michigan

    Dr. Jonathan Burt University of Michigan

    Prof. Wayne Scales Virginia Tech

    Prof. Marlene Rosenberg UC San Diego

    Dr. John Ballenthin AFRL/RVBXT

    Dr. Miguel Larson Clemson

    Dr. Erhan Kudeki Illinois/Urbana

    Dr. Julio Urbina PSU

    Dr. Phil Erickson Millstone Hill

    Dr. George Jumper AFRL/RVBYA

    Name Affiliation

    Ted Gass NSROC/MM

    Brent Edwards NSROC/FP

    Christine Power NSROC/FP

    Tom Widmyer NSROC/ME

    Charles Lankford NSROC/EE-TMEric Johnson NSROC/EE-Power

    Valerie Gsell NSROC/GNC

    Cathy Hesh NSROC/VSE

    Adam Sturgis NSROC/SQA

    Greg Ellis NASA/GroundSafety

    Roland Wescott NASA/Flight Safety

    Ron Walsh NASA/PM

    Libby West NASA/SRPO

  • 7/27/2019 Bernhardt

    4/33

    Particulate Release Observations During theSCIFER Mission on 25 January 1995

    25 January 1995 Four Stage Black Brandt XIILaunch from Andoya Norway

    Nihka Motor Fired from 98.7 to 156.3 km Altitude Dust Cloud Observed for 66 Minutes 5.6 GHz Radar Echoes Attenuated by 7 dB

  • 7/27/2019 Bernhardt

    5/33

    ChargedDust

    Ground HF, VHF,

    and UHF Radar

    New Artificial Dust Layer Concept

    RocketTrajectory

    t0

    ChemicalReleaseSource

    Nihka Motor

    Payload

    Large Time Settling of

    Charged Particulates

    350 km

  • 7/27/2019 Bernhardt

    6/33

    Objectives of CARE Program

    Artificial Noctilucent Cloud Formation Physics of Enhanced Radar Scatter Radar, Lidar and Optical Diagnostics Satellite Measurements (AIM)

    Release from Nihka Solid Rocket Motor Large Concentration of Dust Supersonic Injection Velocity

    Experiment Enhancements Ground and Ship Ionosonde Diagnostics Direct Injection by Chemical Release Module

  • 7/27/2019 Bernhardt

    7/33

    Nihka Motor Dust Generator for CARE(111 kg Al 2O3 in 17 Seconds)

    0.4375 m

    1.919 m

    Constituent Mole Fraction Total Mass

    Carbon Monoxide 0.2039 69.1 kg

    Carbon Dioxide 0.0186 9.9 kg

    Monatomic Chlorine 0.0124 5.3 kg

    Hydrogen Chloride 0.1478 65.2 kg

    Hydrogen 0.2712 6.6 kg

    Monatomic Hydrogen 0.0317 0.4 kg

    Water 0.1393 30.4 kg

    Nitrogen 0.0817 27.7 kg

    Aluminum Oxide 0.0897 110.6 kg

    Thrust Port

    WithoutNozzle

  • 7/27/2019 Bernhardt

    8/33

    Truncated Nozzle for Nihka Motor

    390 mm15.35

    Diameter

    Original Nozzle

    Remove Here

    Deleted Nozzle at Throat

  • 7/27/2019 Bernhardt

    9/33

    DSMC Computations of Nozzle Effect on Plume Properties

    for Nihka Motor

    Jonathan Burt and Iain Boyd

    May 2009

  • 7/27/2019 Bernhardt

    10/33

    With Nozzle

    Computational mesh

    10Flow Field Detail at Nozzle

  • 7/27/2019 Bernhardt

    11/33

    With Nozzle

    Streamlines, contours of bulk gas velocity (m/s)

    11Flow Field Detail at Nozzle

  • 7/27/2019 Bernhardt

    12/33

    Nozzle Removed

    Computational mesh

    12

    Nozzle mesh for comparison

    Nozzle is truncated 1.3 cm downstream of the throat

  • 7/27/2019 Bernhardt

    13/33

    Nozzle Removed

    Streamlines, contours of bulk velocity (m/s)

    13

  • 7/27/2019 Bernhardt

    14/33

    Distributions of Solid Rocket Particulates(1) Mueller, A. C. and D. J. Kessler, The Effects of Particulates from Solid Rocket Motors Fired in Space,. Adv. in

    Space Res., 5, 77-86, 1985.(2) Jackman, CH, DB Considine, and EL Fleming, A Global Modeling Study of Solid Rocket Aluminum Oxide

    Emission Effects on Stratospheric Ozone, Geophys. Res. Lett., 25, 907-910, 1998.(3) S Goss, L Hespel, P Gosart and A Delfour, Morphological Characterization and Particle Sizing of Alumina

    Particles in a Solid Rocket Motor, J. Prop. Pwr., 22, 127-135, 2006.

    N0 f R(R)

    1.46 10 18

    1.4 10 19

    6.96 10 17

  • 7/27/2019 Bernhardt

    15/33

    Farfield Comparison Comparison between nozzle ( multicolored lines ) and without nozzle

    (black lines ) cases for axial and radial velocity along outflow boundary

    15

    Axial Velocity (m/s) Radial Velocity (m/s)

  • 7/27/2019 Bernhardt

    16/33

    Farfield Comparison

    Comparison between nozzle (multicolored lines) and without nozzle(black lines) cases for density and temperature along outflowboundary

    16

    Density (kg/m 3) Temperature (K)

  • 7/27/2019 Bernhardt

    17/33

    Thrust Calculation

    Thrust is evaluated by integrating contributions due to pressure and axialmomentum flux from the gas and from each particle size over the farfieldoutflow boundary.

    Case: Nozzle Without nozzle

    Gas contribution (kN) 22.58 13.76

    Particle contribution (kN) 11.75 7.40

    Total (kN) 34.33 21.17

    17

  • 7/27/2019 Bernhardt

    18/33

    Nozzle Nihka Motor Chemical Payload Trajectoryand Radio Propagation Experiment for CARE

    BoatReceiver

    Apogees

    Ignition Cutoff

    ChemicalRelease

    Radio

    Beacon

  • 7/27/2019 Bernhardt

    19/33

    Dynamic Dust Model for CARE

    Dust Charging (Charge Impact, Photo-Detachment)

    Dust Particle Equation of Motion (Drag, Lorentz Force,Electric Fields, Gravity, Mean-Free-Path)

    20

    2 2 2 2 2

    4 , , 8 exp[ ]

    8 [1 ], exp[ ]

    d e d d d d e i p e d e e Te

    e

    i d e d i d i i Ti T r p d e p ab p

    i p

    dQ qQ r I I I I r q n v

    dt KT

    q q I r q n v v v I r q J Q Y

    KT KT

    2

    2

    2 2

    2 3

    ( )( ) ( )- ( , ) ( )

    2 8( , ) , ( )

    ( ) ( ) 3

    4with , , 2 for 3

    d a

    d

    pr T P a p d

    p D n P n

    P p P P p D d p

    Q t d t d t d

    dt dt m dt mV V

    r u L r r L r C r A

    A r m r C r L

    r r rr u E B g

  • 7/27/2019 Bernhardt

    20/33

    Dust Electric Fields

    Quasi-Neutrality

    Ambipolar Electric Field

    Transient Parallel Electric Fields Electron Acceleration? Effect on Ions?

    0; d i i e e d d e i d e

    Qq n q n n Q n n n

    q

    || e i d d || d d|| e||

    e e e e i d d e e i d d

    q n n Q n Qn (z, t)E

    q n (z, t) q q n n Q q q n n Qe ee kT kT kT

  • 7/27/2019 Bernhardt

    21/33

    20 Degree Nozzle Dust Layer

  • 7/27/2019 Bernhardt

    22/33

    Radar Observation Geometry of Rocket Launchesfrom Wallops Island by the Millstone Hill Radar

    440 MHz UHF Radar Fully Steerable 150 foot Dish Line of Sight Densities, Drifts,

    and Temperatures

    Millstone Hill Incoherent ScatterRadar at MIT Haystack, MA

  • 7/27/2019 Bernhardt

    23/33

    CARE Ground Radars and Lidars

    HF Radar Wallops Ionosonde (Digisonde and Dynasonde)

    SuperDARN (Virginia Tech) Dr. Raymond A. Greenwald, Ruohoniemi Mike, Joseph Baker

    Data Products HF Backscatter Background Ionosphere

    VHF Radar 50 MHz Penn State/U. Illinois

    Professor Julio Urbina Data Product

    Background Irregularities VHF Backscatter

    UHF Radar 440 MHz Millstone Hill Radar, Haystack, MA

    Phil Erickson, Frank Lind, John Foster Data Products

    UHF Backscatter Background Ionosphere

    LIDAR (Laser and Telescope) NRL Optical Test Facility, MRC, VA

    0.5, 1.0, 1.5 micron Lasers with 5 ps Pulse Linda Thomas and Ray Burris

    Data Products Particle Size Distribution Transport of Dust

    NRL Optical Test Facility

    MIT Millstone Hill Radar

    NASA WallopsDynasonde Antenna

  • 7/27/2019 Bernhardt

    24/33

    Ground Diagnostic Sites for CARE

  • 7/27/2019 Bernhardt

    25/33

    CARE Chemical Release Position Relative to theMillstone Hill UHF Radar for Nihka with Nozzle

  • 7/27/2019 Bernhardt

    26/33

    Single Nihka Motor Payload

    Nihka Gross Mass: 399 kg (879 lb), Empty

    Mass: 70 kg (154 lb). Propellants: Solid. Thrust (vac): 50.500 kN (11,353 lbf). Isp: 285 sec., Burn time: 17 sec.

    Total Chemical Payload Mass Gross Nihka Mass 400 kg Supporting Hardware 190 kg Total Mass 590 kg

    Payload Apogee 350 km CARE Release Point ~280 km on

    Downleg

    Chemical Payload Descending at 1km/s Exhaust Injection at 2 km/s Downward Full Dust Cloud Released in 17

    Seconds

    Payload Components

    Launch Specifications

    Planar Langmuir

    Probe

  • 7/27/2019 Bernhardt

    27/33

    NRL CERTO Rocket BeaconPaul Bernhardt, Matt Wilkens

    Plasma Measurements

    Radio Beacon(Bernhardt) Radio Scintillations at

    VHF and UHF Background Electron

    Density Electron Removal by

    Chemical Release

    AFRL Planar Langmuir Probe

  • 7/27/2019 Bernhardt

    28/33

    AFRL Planar Langmuir ProbeJohn Balenthin, PI

    Ion Density at Nihka Motor Section Backplate

    1/2", 5"x5" Square Aluminum 4"x4" Raised Portion Flush to Skin.

    Behind Probe 1/8" thick aluminum Teflon (1/8" flat plate) for High Temperature G10 epoxy board for Low Temperature

    Gold Conductor Square 2.3" x 2.3

    Circle 1.5 Diameter 1/4" thick

    Gold Plated Stainless Steel 304 grade Attached by Screws Through Back Panel

    Connector Pins Pin 1: Ch1+ 6000s/s A/D channel Pin 9: Twisted pair or shield ground for Pin1 Pin 2: Ch1- 1000s/s A/D channel Pin 10: Twisted pair or shield ground for Pin2 Pin 7: +28VDC Pin 14: 28V Return Pin 8: +28VDC Pin 15: 28V Return

    d h d f

  • 7/27/2019 Bernhardt

    29/33

    Instrumented Thomas Reed Boat for CARE

    1 0 m

  • 7/27/2019 Bernhardt

    30/33

    Instrumented Thomas Reed Boat for CARE

  • 7/27/2019 Bernhardt

    31/33

    Instrumented Boat Station

    BoatLocation

    NihkaImpact

    BlackBrant

    Impact

  • 7/27/2019 Bernhardt

    32/33

    Satellite Sensor for CARE Diagnostics of CARE Artificial

    Dust Cloud AIM Panoramic UV Nadir Imaging

    System

    Global Transport of Dust Layer

  • 7/27/2019 Bernhardt

    33/33

    CARE Launch Window Requirements

    Clear Skies at 3 Observation Sites Moon Below Horizon Evening Sun at 12 to 18 Degrees Depression Angle No Sporadic-E One Hour Before Launch

    Sporadic-E Will Interfere with Dust Radar Scatter Observations Launch Window

    Release Time Date 8-19 September 2009 Release Time 19:18 to 19:00 EST (Date Dependent)

    Optical Observation Period Date 8-19 September 2009 Viewing Until 19:50 to 19:31 EST (Date Dependent) Viewing Time ~ 30 Minutes

    Sporadic E is Bad in August so September Chosen