best emc practice of high performance electronic device

41
1 August 3, 2017 ANSYS UGM 2017 © 2017 ANSYS, Inc. Best EMC Practice of High Performance Electronic Device 陈海平 Desmond Tan ANSYS Singapore

Upload: others

Post on 01-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

1 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Best EMC Practice of High Performance Electronic Device

陈海平 Desmond Tan

ANSYS Singapore

2 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Summary

• Far-Field EMI Analysis Methodology and

Verification on SSD Boards

• Simulate with accuracy for high speed

connector

3 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Far-Field EMI Analysis Methodology

and Verification on SSD Boards

4 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Contents

• Introduction

• Far-Field EMI Simulation Methodology

− Proposed EMI simulation flow

− PCB-level EMI solution

• Correlation

− Simulation vs. Measurement

• Relationship Between Board Design and Far-Field EMI

• Q & A

5 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Trends of Data Storage

• Hard Disk Drive (HDD) Solid-State Drive (SSD) − Higher read/write rate, Faster access time, Lower power consumption

Source: www.google.com Source: www.samsung.com

SSD HDD Different

Media NAND FLASH Magnetic Platters

Read/Write Speed Sequential [MB/s] 540 / 330 60 / 160 ⅹ9 / 2

Random [IOPS*] 98000 / 70000 450 / 400 ⅹ217 / 175

Data Access Time [ms] 0.1 10~12 ⅹ100~120

Power Consumption

Active(Idle) [W] 0.127(0.046) 1.75(0.8) ⅹ13 ↓(ⅹ17 ↓)

6 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Potential EMI Risk in SSD Products

• Speed and density are continuously increasing ...

Source: High-speed digital system design

Source: www.google.com

Electromagnetic interference (EMI) becomes a critical issue !

7 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

EMI Simulation Methodology

• Measurement-based EMI verification requires additional cost and time to debug

∙ Firmware Solution ∙ Operating Frequency Change ∙ Spread Spectrum Clock ∙ Shielding Solution ∙ Design Revision

Product Design

Fabrication

EMI Test Product

Re-Design

Mass Production

PASS FAIL

Product Design

Fabrication

EMI Test Product

Re-Design

Mass Production

PASS FAIL

EMI

Simulation

∙ PCB Deign Improvement

Conventional Flow

Improved Flow

8 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

EMI Noises in SSD Products

• Various devices in SSD

NAND, DRAM, Controller, PMIC, ...

Operated with different speed and voltage

• Interfaces

DRAM ↔ Controller Interface

Controller ↔ Host interface

NAND ↔ Controller Interface

- Higher supply voltage, Longer board routing

Source: www.samsung.com

9 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Proposed Far-Field EMI Simulation Flow

• Far-field EMI simulation methodology [Ref. APEMC2015, Benson Wei et. Al.]

• Propose 3 items to enhance simulation accuracy and efficiency

− EMI source extraction

− Package and reference plane modeling

− Huygens’ box optimization for near- to far-field transform

EMI Source Extraction

Structure Modeling

EM Solving Based on Huygens’ Principle

ANSYS HFSS

ANSYS SIwave

10 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Stage 1: EMI Source Extraction

• Read operation at 460 Mbps

(NAND ↔ controller interface)

• Block diagram − NAND Flash I/O buffer

− Controller I/O buffer

− SSD board model (S-parameter)

• Input stimulus

− Data: PRBS 27-1

− Strobe/clock: periodic pattern

(5% duty cycle for power noise modeling)

11 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Stage 2: Structure Modeling (1)

• EM simulation with package and board together

− Impractical solution due to simulation time and hardware resources

• Propose virtual package model with metal plane

Real PKG model

Virtual PKG model

Both simulation results have similar tendency

12 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Stage 2: Structure Modeling (2)

Ground Reference

Power /Ground Reference

13 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Stage 3: EM Solving Based on Huygens’ Principle

• Near- to far-field transform method based on Huygens’ principle

− Radiated energy simulation at 3-m distance from micro-unit SSD board

N/F Simulation – 2.5D EM solver (ANSYS SIwave)

Attach I/O current as EMI source Maximum electric field calculation at 3-m sphere surface

F/F Simulation – 3D EM solver (Ansys HFSS)

How to optimize Huygens’ box size?

3m

Huygens’ box

15 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Stage 3: EM Solving Based on Huygens’ Principle (cont’d)

• Huygens’ box size optimization

− Optimized box size is necessary to minimize simulation error for near- to far-field transform

− Radiated field is saturated from 10-mm box size

16 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Correlation with Far-Field Measurement Results

• Read operation at 460 Mbps (NAND ↔ Controller Interface)

• Good agreement up to 1GHz between simulation and measurement results

Measurement (Vertical)

Measurement (Horizontal)

17 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Case Analysis (1)

• Relationship between board design and far-field EMI

− Routing scheme: Inner layer < Outer layer

− Signalling scheme: Fully differential < Pseudo differential

18 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Case Analysis (1)

• Relationship between board design and far-field EMI

− Number of layer: 12 layer < 10 layer

− Number of channel: 4 channel < 8 channel

19 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Conclusion

• Far-Field EMI Simulation Methodology on Commercial SSD Products

− EMI source extraction

− PCB structure modeling

− EM solving method based on Huygens’ principle

• Good Correlation Between Simulation and Measurement Results

• Relationship Between Board Design and Far-Field EMI

− Routing scheme, signal scheme, number of board layer and channel

• EMI Analysis in the Design Stage Prior to the Manufacturing Process

20 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Simulate with accuracy for high

speed connector

21 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Objective

• Correlate simulation and measurement data of

customized Molex SAS-3 plug 78695 mated

with Molex SAS-3 receptacle.

• Both Differential S parameter and TDR are

extracted for correlation.

22 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Connector Used

SAS-3 plug – 2.5” Right angle surface mount plug

– Molex S/#: 78695

SAS-3 receptacle – Standard vertical surface mount receptacle

– Molex S/#: 78715

Test Fixtures

Designed Plug PCB

Designed Receptacle PCB

Connector Model

23 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Differential S-Parameter Correlation Results

24 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11DiffIL (S2 & S3)

Curve Info

Measured

SAS-3 spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11DiffIL (S5 & S6)

Curve Info

Measured

SAS-3 spec

Simulation

Port 1 pair 1 (S2 & S3)

Port 1 pair 2 (S5 & S6)

Insertion Loss

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11DiffIL (S9 & S10)

Curve Info

Measured

SAS-3 spec

Simulation

Port 2 pair 1 (S9 & S10)

Port 2 pair 2 (S12 & S13)

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11DiffIL (S12 & S13)

Curve Info

Measured

SAS-3 spec

Simulation

25 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11DiffRL (S12 & S13)

Curve Info

Measured

SAS-3 spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Ma

gn

itu

de

[d

B]

Measurement_results_IL_RL_SCC11DiffRL (S9 & S10)

Curve Info

Measured

SAS-3 spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11DiffRL (S5 & S6)

Curve Info

Measured

SAS-3 spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Ma

gn

itu

de

[d

B]

Measurement_results_IL_RL_SCC11DiffRL (S2 & S3)

Curve Info

Measured

SAS-3 spec

Simulation

Port 1 pair 1 (S2 & S3)

Port 1 pair 2 (S5 & S6)

Return Loss

Port 2 pair 1 (S9 & S10)

Port 2 pair 2 (S12 & S13)

26 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11SCC11 (S9 & S10)

Curve Info

Measured

SAS-3spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11SCC11 (S9 & S10)

Curve Info

Measured

SAS-3spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11SCC11 (S5 & S6)

Curve Info

Measured

SAS-3spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_IL_RL_SCC11SCC11 (S2 & S3)

Curve Info

Measured

SAS-3spec

Simulation

Port 1 pair 1 (S2 & S3)

Port 1 pair 2 (S5 & S6)

Common Mode

Port 2 pair 1 (S9 & S10)

Port 2 pair 2 (S12 & S13)

27 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00F [GHz]

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_NEXTPort2_DDNEXT_recep side(Agg S9S10/VicS12S13)

Curve Info

Measured

Seagate spec

Simulation

SAS-3spec

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00F [GHz]

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_NEXTPort2_DDNEXT_plug side(Agg S9S10/VicS12S13)

Curve Info

Measured

Seagate spec

Simulation

SAS-3spec

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00F [GHz]

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_NEXTPort1_DDNEXT_recep side(Agg S2S3/VicS5S6)

Curve Info

Measured

Seagate spec

Simulation

SAS-3spec

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00F [GHz]

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_NEXTPort1_DDNEXT_plug side(Agg S2S3/VicS5S6)

Curve Info

Measured

Seagate spec

Simulation

SAS-3spec

Port1pair1 Driven / Port1pair2 Victim (Plug side)

Port1pair1 Driven / Port1pair2 Victim (Receptacle side)

DDNEXT

Port2pair1 Driven / Port2pair2 Victim (Plug side)

Port2pair1 Driven / Port2pair2 Victim (Receptacle side)

28 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-120.00

-110.00

-100.00

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Ma

gn

itu

de

[d

B]

Measurement_results_FEXTDDFEXT_recepdrivenAgg S12S13/VicS5S6plug

Curve Info

Measured

SAS-3spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-120.00

-110.00

-100.00

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Magnitude [

dB

]

Measurement_results_FEXTDDFEXT_recepdrivenAgg S5S6/VicS12S13plug

Curve Info

Measured

SAS-3spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-120.00

-110.00

-100.00

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Ma

gn

itu

de

[d

B]

Measurement_results_FEXTDDFEXT_plugdrivenAgg S9S10/VicS2S3recep

Curve Info

Measured

SAS-3spec

Simulation

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00Freq [GHz]

-120.00

-110.00

-100.00

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Mag

nitu

de

[dB

]

Measurement_results_FEXTDDFEXT_plugdrivenAgg S2S3/VicS9S10recep

Curve Info

Measured

SAS-3spec

Simulation

Port1pair1 Plug Side Driven / Port2pair1 Receptacle Side Victim

Port2pair1 Plug Side Driven / Port1pair1 Receptacle Side Victim

DDFEXT

Port1pair2 Receptacle Side Driven / Port2pair2 Plug Side Victim

Port2pair2 Receptacle Side Driven / Port1pair2 Plug Side Victim

29 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

• The measured data correlated well with the simulated

results with both sets of plots displaying similar shape and

profile across the 20GHz bandwidth.

• The results had shown that the mated connector system

will meet SAS-3 T10 requirements for SI.

Observations

30 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Differential TDR Correlation Results

31 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Differential TDR Risetime Definition

Risetime (10% - 90%) at end of 1m cable is approximately 42ps.

32 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Measurement (from Tektronix)

Simulation (from HFSS)

112.5 Ω

88.0 Ω

TDR Plots @ 42ps (10% - 90%) – Port 1 pair 1 (S2 & S3)

109 Ω

77.7 Ω

Accuracy:3% for high TDR and 12% for low TDR.

33 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Model Comparison

Original Model

Modified Model

Add Nickel as a Finite Conductivity Boundary on Connector pins surface

34 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Modified Model

112 Ω

85.0 Ω

Blue – Modified ModelRed – Original ModelAccuracy

0.4% for high TDR and 3.4% for low TDR.

35 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Measurement (from Tektronix)

Simulation (from HFSS)

TDR Plots @ 42ps (10% - 90%) – Port 1 pair 2 (S5 & S6)

Accuracy:1.35% for high TDR and 11% for low TDR.

110.9 Ω

86.7 Ω

77 Ω

109.4 Ω

36 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Modified Model

111.6 Ω

83.6 Ω

Accuracy0.63% for high TDR and 3.57% for low TDR.

Blue – Modified ModelRed – Original Model

37 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Measurement (from Tektronix)

Simulation (from HFSS)

TDR Plots @ 42ps (10% - 90%) – Port 2 pair 1 (S9 & S10)

Accuracy:8.4% for high TDR and 12.7% for low TDR.

101.5 Ω

86.0 Ω

75.1 Ω

92.9 Ω

38 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Modified Model

103.2 Ω

86.3 Ω

Accuracy1.6% for high TDR and 0.35% for low TDR.

Blue – Modified ModelRed – Original Model

39 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Measurement (from Tektronix)

Simulation (from HFSS)

TDR Plots @ 42ps (10% - 90%) – Port 2 pair 1 (S12 & S13)

Accuracy:7.9% for high TDR and 12.6% for low TDR.

101 Ω

86.0 Ω

75.2 Ω

93 Ω

40 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

Modified Model

103.3 Ω

86.4 Ω

Accuracy2.2% for high TDR and 0.46% for low TDR.

Blue – Modified ModelRed – Original Model

41 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

• The measured Differential TDR correlated well with the

simulated results with both sets of plots displaying similar

shape and profile across the 400ps.

• The results had shown that the mated connector system

will meet SAS-3 T10 requirements for TDR.

Observations

42 August 3, 2017 ANSYS UGM 2017© 2017 ANSYS, Inc.

感谢聆听