bio engineering, enzyme catalysis.pdf

Upload: sabila-robbani

Post on 03-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    1/40

    Bioprocess Engineering

    ENZYME CATALYSIS

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    2/40

    Definition

    Essential macromolecules that have a keyrole in the catalyzing the chemicaltransformations that occur in all livingsystems metabolisms

    The nature and specifity of their catalyticactivity is primarily due to the threedimensional structure of the folded proteinwhich is determined by the sequence of theamino acids that make up the enzyme and theactivity may be regulated by one ore moresmall non protein molecules (cofactors)which cause small conformation changes in

    the enzyme structure.

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    3/40

    Cofactor type consit of metal ions and organic molecules (co-enzyme)

    Apoenzyme : catalytically inactive enzyme

    Haloenzyme : active enzyme that tightly bounded cofactors

    Haloenzyme

    cofactor

    Inactive site

    Active Site

    ENZYME MECHANISM

    Apoenzyme

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    4/40

    Enzyme Classification Oxidoreductase, catalyze the transfer of hydrogen or

    oxygen atoms or electrons from one substrate to another

    (alcohol dehydrogenase, fatty acid desaturase, glucoseoxidase, peroxidase)

    Transferase, catalyze the group transfer reactions(aspartase, transaminase, dextransucrase,phosphorylase)

    Hydrolases, catalyze the hydrolitic reactions(amylase,lipase, protease, cellulase, isoamylase, urease,papain)

    Lyases, catalyze the non hydrolytic removal of groupsfrom substrate (lactase, tannase, aspartase,

    tryptophanase) Isomerase, catalyze isomerization reactions (glucose

    isomerase)

    Ligases, catalyze the synthesis of various type of bondswhere the reaction are coupled with breakdown of

    energy containig materials (microbial enzyme,carbamate kinase)

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    5/40

    Enzyme Activity Enzyme are specific in function; the reaction of an

    enzyme with certain substrate involves theformation of an intermediate which then reactsfurther with another substrates or decompose toform products.

    Activity is given by the amount of product formed

    or substrate consumed in the reaction mixtureunder specified conditions ( T, pH, buffer type,substrate)

    Enzyme concentration was defined as the amountof enzyme which gives a certain amount of catalyticactivity under specified condition

    ionconcentratenzymeactivityactivityspecific

    ml

    enzymemmoleml

    productmmole

    min

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    6/40

    Kinetics of Single Substrate ReactionsL. Michaelis and M. L. Menten (1913)

    ESSEk

    k

    1

    1

    EPESk

    2

    ESEE 0

    ESESkk

    kES

    kk

    kES

    ESkkESkES

    ES

    dtd

    dtd

    0

    21

    1

    21

    1

    211

    0

    ;00ES

    M

    dtd

    dtd

    KS

    SP

    k

    kk

    S

    SEkESkP

    max

    1

    21

    022

    Michaelis - Menten Mechanism

    Derivatived Equation of Michalis-Menten Mechanism

    S

    k

    kk

    SE

    Skk

    k

    SEkk

    k

    ES

    1

    21

    0

    21

    1

    021

    1

    1

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    7/40

    Haloenzyme

    Inactive site

    Active Site

    Apoenzyme

    substrate

    cofactor

    product

    MECHANISM SCHEME

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    8/40

    W.P. Jenks and J. Carriuolo, 1961Jenks-Carriuolo Mechanisms

    Derivatived Equation of Jenks-Carriuolo Mechanism

    ESSEk

    k

    1

    1

    EPESk

    2

    ''ESESp

    p

    k

    k

    ;0', 00 ESES '0 ESESEE

    ''

    '

    0',

    2

    11

    ESkkESkES

    ESkkESkESkES

    ESES

    ppdtd

    ppdtd

    dtd

    dtd

    0

    '

    1

    2

    1

    2

    ESkkESkk

    kkESk

    ESkk

    kES

    p

    p

    p

    p

    p

    p

    0' 12

    10

    ESkkES

    kk

    kkSkESESE p

    p

    p

    p

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    9/40

    Haloenzyme

    Inactive I site

    inactive II Site

    Apoenzyme

    substrate

    cofactor

    product

    MECHANISM SCHEME

    Active Sitesubstrate

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    10/40

    2

    1

    2

    1

    2

    1

    01

    2

    1

    2

    1

    01

    2

    1

    2

    101

    1

    2

    1

    2

    0

    1

    1

    1

    0

    kk

    kk

    kk

    kkkk

    S

    S

    kk

    kk

    EkES

    kk

    kkkkS

    kk

    kk

    ESkES

    ESkk

    k

    kESkkESkk

    k

    ESSkESk

    ESkkESkk

    kkSkES

    kk

    kESE

    p

    p

    p

    p

    pp

    p

    p

    p

    p

    pp

    p

    p

    p

    p

    pp

    p

    p

    p

    p

    p

    p

    p

    p

    ESkk

    kkESkP

    dt

    d

    p

    p

    2

    2

    2 '

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    11/40

    2

    1

    2

    1

    2

    0

    2

    2

    1

    1

    kkkk

    kk

    kkkk

    S

    S

    kk

    k

    E

    kk

    kkP

    dt

    d

    p

    p

    p

    p

    pp

    p

    pp

    p

    2

    1

    2

    221102

    2

    2

    2

    1

    2

    2102

    2

    2

    2

    1

    2

    2102

    2

    2

    1

    1

    1

    1

    1

    1

    kk

    k

    k

    kk

    kkkkkkkkkk

    S

    SEk

    kk

    k

    kk

    k

    Pdt

    d

    kkkk

    kk

    kkkkkk

    S

    SEk

    kk

    k

    kk

    k

    Pdt

    d

    kk

    kk

    kk

    kkkkkk

    S

    SEk

    kk

    k

    kk

    k

    Pdt

    d

    p

    p

    p

    pppppp

    p

    p

    p

    p

    p

    p

    p

    pppp

    p

    p

    p

    p

    p

    p

    p

    pppp

    p

    p

    p

    p

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    12/40

    2

    1

    1

    2

    2

    1

    02

    2

    2

    2

    1

    2

    22102

    2

    2

    1

    1

    1

    kk

    kkk

    kk

    kkk

    S

    SEk

    kk

    k

    kk

    k

    Pdt

    d

    kkkk

    kk

    kkkkk

    S

    SEk

    kk

    k

    kk

    k

    Pdt

    d

    p

    p

    p

    p

    p

    p

    p

    p

    p

    p

    p

    pp

    p

    p

    p

    p

    2

    1

    1

    2

    2

    1

    02

    2

    2

    max

    max

    1

    :

    kk

    kkk

    kk

    kkk

    KdanEk

    kk

    k

    kk

    k

    Pdt

    d

    here

    KS

    SP

    dt

    dP

    dt

    d

    p

    p

    p

    p

    M

    p

    p

    p

    p

    M

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    13/40

    Briggs-Haldane (1925)

    Briggs-Haldane Mechanism

    Derivatived Equation of Briggs-Haldane Mechanism

    ESSEk

    k

    1

    1

    EPESk

    2

    ""' ESESESq

    q

    p

    p

    k

    k

    k

    k

    ;0",', 00 ESESES "'0 ESESESEE

    "'"

    ''

    '

    0",',

    2

    11

    ESkkESkES

    ESkESkES

    ESkkESkESkES

    ESESES

    qqdtd

    ppdtd

    ppdtd

    dtd

    dtd

    dtd

    k

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    14/40

    "'

    0

    0

    '

    '"

    0

    1

    1

    1

    1

    11

    11

    2

    ESESESESk

    kES

    ES

    k

    kES

    ESkESk

    ESkkESk

    kkESk

    ESk

    kES

    ESkk

    kES

    p

    p

    p

    p

    p

    p

    q

    q

    ESkk

    k

    k

    kES

    k

    kESES

    k

    kES

    ESkk

    k

    k

    k

    ESk

    k

    kk

    k

    ES

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    p

    p

    q

    q

    2

    0

    1

    1

    22"

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    15/40

    S

    kk

    kkk

    kk

    kk

    kk

    k

    k

    k

    k

    k

    ES

    Skk

    k

    k

    k

    k

    k

    k

    k

    ESES

    kk

    k

    k

    k

    k

    kS

    k

    k

    ESk

    k

    ES

    ESk

    k

    kk

    k

    k

    k

    k

    kS

    k

    kES

    q

    q

    p

    p

    p

    pq

    q

    p

    p

    p

    p

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    p

    p

    1

    1

    2

    2

    0

    2

    1

    1

    0

    21

    1

    0

    1

    1

    0

    1

    1

    21

    1

    1

    11

    11

    11

    11

    ESkk

    kk

    k

    kES

    k

    k

    kk

    kkESkP

    dt

    d

    q

    q

    p

    p

    p

    p

    q

    q

    2

    2

    2

    22 "

    S

    k

    k

    kk

    k

    k

    k

    k

    k

    ES

    kk

    k

    k

    k

    k

    k

    kk

    kk

    k

    k

    ESkk

    kk

    k

    kP

    dt

    d

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    q

    q

    p

    p

    1

    1

    2

    0

    2

    2

    2

    2

    2

    1

    1

    1

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    16/40

    S

    kk

    k

    k

    k

    k

    k

    k

    k

    S

    kk

    k

    k

    k

    k

    k

    Ekk

    kk

    k

    k

    Pdt

    d

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    2

    1

    1

    2

    0

    2

    2

    1

    1

    SK

    SPdt

    d

    Pdt

    d

    M

    max

    2

    1

    1

    2

    0

    2

    2

    max1

    ,

    1

    :

    kk

    k

    k

    k

    k

    k

    k

    k

    Kdan

    kk

    k

    k

    k

    k

    k

    Ekk

    kk

    k

    k

    Pdt

    d

    here

    q

    q

    p

    p

    p

    p

    M

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    b (k )

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    17/40

    0

    max

    EkPdt

    dcat

    Turnover Number (kcat) Catalytic center activity rate constant

    The maximum number of substrate molecules that can be converted to productper unit time per active site on the enzyme (S >> KM)

    Jenks-Carriuolo

    Michaelis-Menten

    2kkcat

    2

    2

    2

    1

    k

    kk

    k

    kk

    k

    k

    p

    p

    p

    p

    cat

    2

    2

    2

    1

    k

    kk

    k

    k

    k

    k

    k

    kk

    k

    k

    k

    k

    q

    q

    p

    p

    p

    p

    q

    q

    p

    p

    cat

    Briggs-Haldane

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    18/40

    In case of k-p was assumed very small, then:

    Jenks-Carriuolo

    Michaelis-Menten

    2

    22

    2

    2

    2

    1

    1

    1

    k

    k

    k

    k

    k

    k

    kk

    k

    k

    k

    k

    k

    k

    k

    k

    k

    k

    k

    qp

    p

    q

    q

    p

    p

    p

    p

    q

    p

    p

    cat

    Briggs-Haldane

    In case of k-q was assumed very small, then:

    If k-p and kq was equal, then:

    2

    21

    1

    k

    kkcat

    pqpq

    cat

    kkk

    k

    k

    k

    k

    kk

    111

    1

    1

    1

    2

    2

    22

    pp

    p

    p

    cat

    kk

    k

    k

    kk

    k

    k

    k

    k

    k11

    1

    1

    1

    1

    2

    22

    2

    2

    2

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    19/40

    Multiple intermediete Mechanism

    Turnover Number

    pqrz

    cat

    kkkkk

    k111

    ...11

    1

    2

    EPESESESESSE

    kzz

    krkqkpk

    pk

    k

    k

    21

    1..."'

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    20/40

    J. F. Andrews (1968)

    Inhibitory Substrate Mechanisms

    ESSEk

    k

    1

    1

    2

    2

    2

    ESSESk

    k

    EPESk

    3

    Derivatived Equation of Inhibitory Substrate Mechanism

    ;0, 020 ESES 20 ESESEE

    2031

    1

    31

    1

    2

    222311

    2

    22

    2222

    222311

    2

    0

    0;0

    ESESESkk

    kESkk

    kES

    SESk

    kkSESkESkESkESk

    SESkkES

    ESkSESkES

    ESkSESkESkESkESkES

    ESES

    dtd

    dtd

    dtd

    dtd

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    21/40

    Haloenzyme

    Inactive site

    Active Site

    Apoenzyme

    substrate

    cofactor

    product

    MECHANISM SCHEME

    Inactive Site

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    22/40

    Skk

    Skkk

    EES

    Sk

    k

    Sk

    kk

    EES

    Skk

    k

    k

    kS

    kk

    k

    ESkk

    k

    ES

    ESkk

    kS

    kk

    kS

    kk

    k

    k

    kES

    ESkk

    kESSES

    k

    kS

    kk

    kES

    ESSESk

    kES

    kk

    kES

    SESk

    kES

    2

    2

    1

    31

    0

    2

    2

    1

    31

    0

    2

    31

    1

    2

    2

    31

    1

    0

    31

    1

    0

    31

    1

    31

    12

    31

    1

    2

    2

    0

    31

    1

    2

    2

    31

    1

    2

    20

    31

    1

    2

    22

    11

    11

    1

    1

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    23/40

    2

    2,

    1

    31,03

    max

    ,

    ,

    max

    1

    31

    033

    ;;

    :

    1

    11

    kkK

    kkkKEkP

    dtd

    here

    K

    S

    S

    K

    Pdt

    d

    Pdt

    d

    Sk

    k

    Sk

    kk

    EkESkP

    dt

    d

    sIsA

    sI

    sA

    i

    i

    In case of high value of S above equation become then:

    sIK

    S

    Pdt

    d

    Pdt

    d

    ,

    max

    1

    In case of low value of S above equation become then:

    SK

    SPdt

    d

    SK

    Pdt

    d

    Pdt

    d

    MsA

    max

    ,

    max

    1

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    24/40

    Multisite Enzyme Kinetics

    QuestionSuppose that an enzyme has two active sites so that substrate is

    converted to product via the reaction sequence:

    Derive a rate expression for P formation by assumming quasy

    steady state for (ES) and for (ESS).

    PEES

    PESESS

    ESSSES

    ESSE

    k

    k

    k

    k

    k

    k

    4

    3

    2

    2

    1

    1

    )(

    )()(

    )()(

    )(

    Problems (G.F. Webb 1986)

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    25/40

    Answer:

    quasy steady state for (ES) and for (ESS).

    0)(

    0)(

    ESS

    ES

    dt

    d

    dt

    d

    and then,

    0322 ESSkESSkESk

    0322 ESSkkESk ESSkkESk 322

    ESkk

    SkESS

    32

    2

    042211 ESkESSkSESkESkESk 0322411 ESSkkSESkESkkESk

    SESk

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    26/40

    032

    2322411

    kk

    SESkkkSESkESkkESk

    0411 ESkkESk

    41

    1kk

    ESkES

    ESkk

    SkESEESSESEEo

    32

    2

    41

    1

    32

    2

    32

    2 11kk

    ESk

    kk

    SkEES

    kk

    SkEEo

    41

    1

    32

    2

    11 kk

    Sk

    kk

    Sk

    EEo

    41

    1

    32

    211

    kk

    Sk

    kk

    Sk

    EE

    o

    ESk

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    27/40

    41

    1

    32

    241

    1

    11kk

    Sk

    kk

    Sk

    E

    kk

    SkES o

    ESkk

    SkESS

    32

    2

    41

    1

    32

    241

    1

    32

    2

    11kk

    Sk

    kk

    Sk

    E

    kk

    Sk

    kk

    Sk

    ESS o

    derivative rate expression for P formation:

    ESkESSkPdtd 43

    32

    234

    41

    1

    32

    241

    1

    11

    kk

    Skkk

    kk

    Sk

    kk

    Sk

    E

    kk

    SkP o

    dtd

    if:

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    28/40

    if:

    4

    3

    2

    32,

    1

    41, ,,

    k

    k

    k

    kkK

    k

    kkK sIsA

    then:

    sI

    sAsI

    o

    sA

    dtd

    K

    S

    K

    S

    K

    S

    Ek

    K

    SP

    ,

    ,,

    4

    ,

    1

    11

    , odtd EkP 4max

    sI

    sI

    sA

    dtd

    sI

    sIsAsA

    o

    sA

    dtd

    K

    S

    K

    S

    S

    K

    P

    K

    S

    K

    S

    K

    S

    K

    S

    Ek

    K

    SP

    ,

    ,

    ,

    max

    ,

    ,,,

    4

    ,

    1

    1

    1

    1

    derivative rate expression for P formation:

    sI

    sA

    sI

    dtd

    dtd

    K

    S

    S

    K

    K

    S

    PP

    ,

    ,

    ,

    max

    1

    1

    S

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    29/40

    :

    sI

    sA

    sI

    dtd

    dtd

    KS

    SK

    K

    S

    PP

    ,

    ,

    ,

    max

    1

    1

    in case 1 , then

    sI

    sA

    sI

    dtd

    dtd

    KS

    SK

    KS

    PP

    ,

    ,

    ,

    max

    1

    1

    (Webb Equat ion)

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    30/40

    Name Kinetics (dP/dt)Yano

    Ierusalimsky

    Chen

    Substrate uptake kinetics including inhibition

    2

    ,2,1

    ,

    max

    1sIsI

    sAK

    S

    K

    SSK

    SP

    dt

    d

    sI

    sA

    K

    SSK

    SP

    dt

    d

    ,

    ,max1

    1

    2,2,1,max1

    SKSK

    S

    K

    SP

    dt

    d

    sAsAsI

    Competitive Inhibition

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    31/40

    Competitive Inhibition

    Inhibitory Mechanisms

    ESSEk

    k

    1

    1

    EIIEi

    i

    k

    k

    EPESk

    2

    Derivatived Equation of Inhibitory Substrate Mechanism

    ;0, 00 EIES EIESEE 0

    EIESESkk

    kES

    kk

    kES

    IE

    k

    kkIEkESkESkESk

    IEk

    kEI

    EIkIEkEI

    EIkIEkESkESkESkES

    EIES

    i

    iii

    i

    i

    iidtd

    iidtd

    dtd

    dtd

    0

    21

    1

    21

    1

    211

    211

    0

    0;0

    Ik

    k

    ESEEESI

    k

    kEIE

    k

    kESEE

    i

    ii

    i

    i

    i

    1

    ,1 00

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    32/40

    Haloenzyme

    Inactive site

    Active Site

    Apoenzyme

    substrate

    inhibitor

    cofactor

    product

    MECHANISM SCHEME

    ESE

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    33/40

    Ikk

    S

    kk

    k

    Ik

    k

    ES

    kk

    k

    ES

    I

    k

    k

    ES

    kk

    k

    I

    k

    k

    S

    kk

    kES

    Ikk

    ES

    kk

    k

    Ikk

    ESS

    kk

    kES

    Ik

    kESES

    kkkES

    Ik

    k

    ESEE

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    1

    1

    1

    11

    1

    11

    1

    1

    21

    1

    0

    21

    1

    0

    21

    1

    21

    1

    0

    21

    1

    21

    1

    0

    21

    1

    0

    SEk 1

    01

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    34/40

    Ik

    k

    Sk

    kk

    EkESkP

    dt

    d

    Ik

    k

    Sk

    kk

    EES

    SI

    k

    kk

    k

    k

    k

    kk

    EES

    Sk

    kkI

    k

    kSEES

    Sk

    kkI

    k

    k

    Ik

    kkk

    k

    SE

    Ik

    kkkk

    ES

    Sk

    kkI

    k

    k

    Ik

    kkk

    k

    SE

    Ik

    kkk

    ES

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    11

    1

    11

    1

    11

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    21

    022

    1

    21

    0

    1

    21

    1

    21

    0

    1

    21

    0

    1

    21

    21

    1

    0

    21

    1

    1

    21

    21

    1

    0

    21

    i

    i

    IS k

    k

    Kk

    kk

    KEkPdt

    d

    here

    ;;

    :

    1

    21

    02max

    I

    M

    K

    I

    S

    K

    Pdt

    d

    Pdt

    d

    11

    max

    Graphical Representation of Kinetic Data

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    35/40

    p p f

    Lineweaver-Burk PlotLinearization experimental data of 1/(dP/dt) as function of S-1

    Eadie-Hofstee PlotLinearization experimental data of (dP/dt) as function of (dP/dt) /SUnexcessive emphasize points at low substrate concentration

    The inhibition constant of Ki can be determined from above plot result correlation

    I

    M

    K

    I

    S

    K

    Pdt

    d

    Pdt

    d

    11

    max

    SP

    dt

    d

    K

    Pdt

    dSP

    dt

    d

    K

    IK

    Pdt

    dP

    dt

    dP

    dt

    dP

    dt

    d

    K

    I

    S

    Kapp

    MI

    M

    I

    M

    1111

    11;

    111

    maxmaxmaxmaxmax

    S

    Pdt

    d

    K

    IKP

    dt

    dP

    dt

    dP

    dt

    d

    K

    I

    S

    KP

    dt

    d

    I

    M

    I

    M

    1;11

    maxmax

    IK

    KK

    K

    IKK

    I

    MM

    I

    M

    app

    M

    1

    Uncompetitive Inhibition

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    36/40

    Inhibitory Mechanisms

    ESSEk

    k

    1

    1

    ESIIESi

    i

    k

    k

    EPESk

    2

    Derivatived Equation of Inhibitory Substrate Mechanism

    ;0, 00 ESIES ESIESEE 0

    ESIESESkk

    kES

    kk

    kES

    IES

    k

    kkIESkESkESkESk

    IESk

    kESI

    ESIkIESkESI

    ESIkIESkESkESkESkES

    ESIES

    i

    iii

    i

    i

    iidtd

    iidtd

    dtd

    dtd

    0

    21

    1

    21

    1

    211

    211

    0

    0;0

    ESIk

    kEEESI

    k

    kEIES

    k

    kESEE

    i

    i

    i

    i

    i

    i

    1,10

    Uncompetitive Inhibition

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    37/40

    Haloenzyme

    Inactive site

    Active Site

    Apoenzyme

    substrate

    inhibitor

    cofactor

    product

    MECHANISM SCHEME

    Inactive site

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    38/40

    SI

    kk

    kkk

    ESkk

    k

    ES

    ESkk

    kSI

    k

    k

    kk

    kES

    ESkk

    kESI

    k

    kS

    kk

    kES

    ESIkkES

    kkkES

    ESIk

    kEE

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    11

    11

    1

    1

    1

    21

    1

    0

    21

    1

    0

    21

    1

    21

    1

    0

    21

    1

    21

    1

    0

    21

    1

    0

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    39/40

    S

    I

    k

    k

    k

    kk

    Ik

    k

    SEk

    ESkPdt

    d

    S

    Ik

    k

    k

    kk

    Ik

    kSE

    ES

    SIk

    k

    k

    kk

    SEES

    SIk

    k

    k

    kk

    SE

    ES

    SIk

    k

    kk

    k

    SEkk

    k

    ES

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    1

    1

    1

    1

    1

    1

    11

    1

    21

    02

    2

    1

    21

    0

    1

    21

    0

    1

    21

    0

    21

    1

    0

    21

    1

    Ik

    kKS

    S

    Ik

    k

    Pdt

    d

    Pdt

    d

    i

    i

    M

    i

    i

    1

    1

    max

    :

    1

    ;

    1

    :

    ;;

    :

    max

    max

    1

    21

    02max

    then

    I

    k

    k

    KK

    I

    k

    k

    Pdt

    d

    Pdt

    d

    if

    k

    kk

    KEkPdt

    d

    here

    i

    i

    Mapp

    M

    i

    i

    app

    S

    app

    M

    app

    KS

    SPdt

    d

    P

    dt

    d

    max

  • 8/12/2019 Bio Engineering, Enzyme Catalysis.pdf

    40/40

    Graphical Representation of Kinetic Data

    Lineweaver-Burk PlotLinearization experimental data of 1/(dP/dt) as function of S-1

    SP

    dt

    d

    K

    Pdt

    dPdt

    dP

    dt

    dSP

    dt

    d

    KSapp

    appM

    appapp

    M 111;11

    maxmaxmax

    appM

    app

    KS

    SPdt

    d

    P

    dt

    d

    max