bioenergetic, krebs cycle, bio-ox 2011 ys.ppt

69
BIOENERGETICS Yulia Suciati

Upload: afnanfadiya

Post on 26-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

BIOENERGETICSYulia Suciati

Page 2: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 3: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 4: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 5: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 6: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 7: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 8: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 9: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 10: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Krebs Cycle, Electron Transport and Oxidative Phosphorylation

Yulia Suciati

Page 11: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 12: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 13: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 14: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 15: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 16: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 17: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 18: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS KREBS

Page 19: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Terjadi didalam matriks mitokondria• Proses ini bersifat aerobik• Fungsi utama siklus asam sitrat (siklus krebs)

a/ bekerja sbg lintasan akhir bersama untuk oksidasi KH, Lipid, Protein.

• Glukosa, as. Lemak, AA, dimetab. Mjd asetil KoA atau senyawa antara di SAS.

Page 20: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 21: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 22: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 23: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 24: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Step 1: Condensation • In step 1 of the Krebs cycle, the two-carbon

compound, acetyl-S-CoA, participates in a condensation reaction with the four-carbon compound, oxaloacetate, to produce citrate:

Page 25: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

Step 2. Isomerization of Citrate step 2 involves moving the hydroxyl group in the

citrate molecule so that we can later form an a-keto acid

Page 26: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Step 3: Generation of CO2 by an NAD+ linked enzyme

• The Krebs cycle contains two oxidative decarboxylation steps; this is the first one

• The reaction is catalyzed by the enzyme Isocitrate dehydrogenase

Page 27: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Step 4: A Second Oxidative Decarboxylation Step

• This step is performed by a multi-enzyme complex, the a-Ketoglutarate Dehydrogenation Complex

Page 28: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Step 5: Substrate-Level Phosphorylation

Page 29: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Step 6: Flavin-Dependent Dehydrogenation

Page 30: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Step 7: Hydration of a Carbon-Carbon Double Bond

Page 31: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SIKLUS ASAM SITRAT

• Step 8: A Dehydrogenation Reaction that will Regenerate Oxaloacetate

Page 32: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

HASIL AKHIR S.A.S

• 12 molekul ATP terbentuk pada setiap kali putaran S.A.S

• Sejumlah ekuivalen pereduksi akan dialihkan kpd rantai pernafasan dlm membran dalam mitokondria.

Page 33: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

VITAMIN YG PENTING PD S.A.S

• Riboflavin, dlm bentuk FAD (Flavin Adenin Dinukleotida)

• Niasin, dlm bentuk NAD (Nikotinamide Dinukleotida)

• Tiamin, dlm bentuk TPP (Tiamin Pirophosfat)• Asam pantotenat, sbg bag. dr Koenzim A

Page 34: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 35: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 36: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 37: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 38: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 39: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

FOSFORILASI OKSIDATIF

Page 40: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 41: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

The figure is found at http://plaza.ufl.edu/tmullins/BCH3023/cell%20respiration.html (December 2006)

Page 42: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Electron Transport Complexes

• 4 multiprotein complexes in mitochondrial IM– NADH-CoQ (ubiquinone) oxidoreductase – Succinate-CoQ oxidoreductase – Ubiquinone-cytochrome c oxidoreductase– Cytochrome c oxidase - reduction of O2

• Contain a variety of prosthetic groups, iron-sulfur clusters• Some subunits encoded by mitochondrial DNA

Page 43: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

NADH-CoQ (ubiquinone) oxidoreductase (complex I)

• 2 electrons passed from NADH, through FMN, FeS intermediate electron carriers to ubiquinone (coenzyme Q)

• Ubiquinone - lipid soluble electron carrier• Proton pumps transport 4 H+ from matrix to

intermembrane space per pair of electrons • Spatial organization important - protons

used in reduction of ubiquinone come from matrix

Page 44: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Succinate-CoQ oxidoreductase (complex II)

• Succinate-CoQ oxidoreductase– succinate dehydrogenase is a component– No protons transported– FAD, FeS serve as intermediate electron

carriers

Page 45: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Ubiquinone-cytochrome c oxidoreductase (complex III)

• Cytochrome c - peripheral protein,electron carrier

• Cytochromes can only accept 1 electron at a time, resulting in Q cycle

• 2 H+ from 1st Q deposited in intermembrane space, 1 e- to Cyt c, 1 e- to Qn

• 2 H+ from 2nd Q deposited in intermembrane space, 1 e- to Cyt c, 1 e- to Qn

• Qn with 2 e- takes 2 H+ from matrix.

Page 46: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Cytochrome c oxidase

• catalyzes reduction of molecular oxygen

• 13 subunits• Four protons translocated for

each O2 reduced

• Accumulates 4 electrons (Cu+, Fe2+) for complete reduction before releasing products or toxic partially-reduced products

• O2 + 4 e- + 4 H+ --> 2 H2O occursin matrix, thus removing 4 H+

Page 47: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 48: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Chemiosmosis

• Chemiosmosis - Movement of protons from high (IMS) to low conc (matrix) used to drive ATP synthesis

• electrochemical gradient - electrical and chemical potential• Electron transport drives generation of H+ gradient

– +0.14V electrical potential– 1.4 pH unit difference– G=~21 kJ/mole H+

• H+ gradient drives ATP synthesis

Page 49: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 50: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 51: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 52: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

The figure is found at http://plaza.ufl.edu/tmullins/BCH3023/cell%20respiration.html (December 2006)

ATP synthase

inner mitochondrial membrane

Page 53: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 54: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 55: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 56: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 57: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 58: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 59: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

ATP Synthase

• ATP Synthase produces ATP from ADP & Pi

• H+ passage causes conformational changes (rotation) in F1, leading to release of ATP so ADP can bind again

• about 3 protons per ATP must pass through ATP synthase

Page 60: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

The Big Picture

Page 61: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

small molecule shuttles

• molecules must be transported to and from matrix

• ATP-ADP translocase exports ATP, imports ADP - movement of more negative ATP from matrix dissipates electrical potential across membrane, weakening gradient by 1 H+.

• Phosphate translocase uses 1 H+.• cytosolic NADH

– DHAP is reduced by NADH to Glycerol-3-P in muscle

– Electrons passed through FAD to Q – is less efficient, but allows transport

against large NADH gradient

Page 62: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

malate-aspartate shuttle

• malate-aspartate shuttle – used in heart, liver, kidney to transfer cytosolic reducing equivalents to matrix

• No loss in ATP generation (2.5 ATPper pair of electrons)

Page 63: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Malate – Aspartate Shuttle

• http://courses.cm.utexas.edu/emarcotte/ch339k/fall2005/Lecture-Ch19-2/Slide14.JPG

Page 64: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

ATP yield/glucose

• 2 ATP - Glycolysis• 3-5 ATP from 2 FADH from 2 NADH from glycolysis• 5 ATP from 2 NADH from transition reaction• 15 ATP from 6 NADH from TCA cycle• 2 ATP from 2 GTP from TCA cycle• 3 ATP from 2 FADH from TCA cycle• 30-32 ATP from complete oxidation of glucose

Page 65: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

Inhibitors

• Electron flow can be inhibited by POISONS

• Useful in lab to control entry and exit points for electron transport studies

• Proton gradients are dissipated by DNP & FCCP, inhibiting ATP synthesis

• Thermogenin in “brown adipose tissue” dissipates proton gradient togenerate heat

Page 66: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

The figure is found at http://departments.oxy.edu/biology/Franck/Bio222/Lectures/March23_lecture_shuttles.htm (December 2006)

Uncoupling proteins

(UCP)

= separate RCH from

ATP synthesis

(the synthesis is interrupted)

energy from H+ gradient is

released as a heat

Page 67: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 68: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt
Page 69: Bioenergetic, krebs cycle, bio-ox 2011 YS.ppt

SEMOGA BERMANFAATYS 2011