bmole 452-689 transport chapter 8. transport in porous media

66
Dr. Corey J. Bishop Assistant Professor of Biomedical Engineering Principal Investigator of the Pharmacoengineering Laboratory: pharmacoengineering.com Dwight Look College of Engineering Texas A&M University Emerging Technologies Building Room 5016 College Station, TX 77843 [email protected] BMOLE 452-689 โ€“ Transport Chapter 8. Transport in Porous Media Text Book: Transport Phenomena in Biological Systems Authors: Truskey, Yuan, Katz Focus on what is presented in class and problemsโ€ฆ 1 How are calculus, alchemy and forging coins related?

Upload: others

Post on 02-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Dr. Corey J. BishopAssistant Professor of Biomedical Engineering

Principal Investigator of the Pharmacoengineering Laboratory:pharmacoengineering.com

Dwight Look College of EngineeringTexas A&M University

Emerging Technologies Building Room 5016College Station, TX 77843

[email protected]

BMOLE 452-689 โ€“ TransportChapter 8. Transport in Porous Media

Text Book: Transport Phenomena in Biological SystemsAuthors: Truskey, Yuan, Katz

Focus on what is presented in class and problemsโ€ฆ

1How are calculus, alchemy and forging coins related?

Porosity, Tortuosity, and Available Volume Fraction

Chapter 8, Section 2

2

๐‘†๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘†๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ = ๐‘  =๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž

๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

๐‘ƒ๐‘œ๐‘Ÿ๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ = ํœ€ =๐‘‰๐‘œ๐‘–๐‘‘ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

Units = 1

๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž

ํœ€ is dimensionless

Void volume: total volume of void space in a porous medium

Interface: border between solid and void spaces

If total volume based on interstitial space: ํœ€ is larger than 0.9If cells and vessels need to be considered: ํœ€ varies between 0.06 and 0.30Note: In some tumors, ํœ€ is as high as 0.6

3

Porosity (ํœ€)โ€ข Porosity: a measure of the average void volume fraction in a specific

region of porous mediumโ€ข Does not provide information on how pores are connected or number of

pores available for water and solute transport

ํœ€ = ํœ€๐‘– + ํœ€๐‘ + ํœ€๐‘›

Note: isolated pores are not accessible to external solvents and solutes:They can sometimes be considered part of the solid phase.In this case, void volume is the total volume of penetrable pores

4

Tortuosity (T)โ€ข Path length between A and B in a porous medium is the distance

between the points through connected poresโ€ข Lmin is the shorted path length

โ€ข L is the straight-line distance between A and B

๐‘‡ = (๐ฟ๐‘š๐‘–๐‘›

๐ฟ)2

T is always greater than or equal to unity

5

Available Volume Fraction (๐พ๐ด๐‘‰)โ€ข Not all penetrable pores are accessible to solutes: Dependent on

molecular properties of the solutesโ€ข Pore smaller than solute molecule or is surrounded by too small pores

โ€ข Available Volume: portion of accessible volume that can be occupied by the solute

๐พ๐ด๐‘‰ =๐ด๐‘ฃ๐‘Ž๐‘–๐‘™๐‘Ž๐‘๐‘™๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

6

๐พ๐ด๐‘‰ is molecule dependent and always smaller than porosity.

This can be caused by 3 scenarios:1)Centers of the solute molecules cannot reach the solid surface in the void space

Difference between total void volume and the available volume can be estimated as the product of the area of the surface and distance (โˆ†) between solute and surface

2)Some of the void space is smaller than the solute molecules3)Inaccessibility of large penetrable pores surrounded by pores smaller than the solutes

Generally, ๐พ๐ด๐‘‰ decreases with size of solutes

7

โ€ข Partition Coefficient (ฮฆ): ratio of available volume to void volumeโ€ข Measure of solute partitioning at equilibrium between external solutions and

void space in porous media

โ€ข Radius of Gyration (Rg): size of flexible molecules

ฮฆ =๐พ๐ด๐‘‰ํœ€

๐‘…๐‘”2 =

1

๐‘

๐‘–

๐‘Ÿ๐‘–๐‘2 =

1

2๐‘2

๐‘–

๐‘—

๐‘Ÿ๐‘–๐‘—2

๐‘Ÿ๐‘–๐‘ is the average distance between segment i and the center of mass of the polymer chain๐‘Ÿ๐‘–๐‘— is the average distance between segments i and j in the polymer chain

N is the total number of segments in the polymer chain

8

When flexible polymer can be modelled as a linear chain of rigid rods (segments) and the length of a segment (l) is much less than the pore radius (l/a<<1):

ฮฆ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ =6

๐œ‹2

๐‘›=1

โˆž1

๐‘›2exp[โˆ’๐‘›2๐œ‹2ฮป๐‘ 

2]

ฮฆ๐‘๐‘™๐‘Ž๐‘ก๐‘’ =8

๐œ‹2

๐‘›=0

โˆž1

(2๐‘› + 1)2exp[โˆ’

(2๐‘› + 1)2๐œ‹2

4ฮป๐‘2]

ฮฆ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ = 4

๐‘›=1

โˆž1

๐›ผ๐‘›2 exp[โˆ’๐›ผ๐‘›

2ฮป๐‘2]

ฮปs is the ratio of Rg to the radius of the spherical pore

ฮปp is the ratio of Rg to the half-distance between plates

ฮปc is the ratio of Rg to the radius of the cylindrical pore and ๐›ผn are the roots of J0(๐›ผn)=0J0 is the Bessel function of the first kind of order zero

๐ต๐‘’๐‘ ๐‘ ๐‘’๐‘™ ๐น๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› = ๐‘ฅ๐‘‘

๐‘‘๐‘ฅ๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ ๐‘š2๐‘ฅ2 โˆ’ ๐‘‹2 ๐‘ฆ = 0

9

Exclusion Volumeโ€ข Some porous media are fiber matrices: space inside and near surface

of fibers not available to solutes

โ€ข Exclusion Volume: size of the space

๐ธ๐‘ฅ๐‘๐‘™๐‘ข๐‘ ๐‘–๐‘œ๐‘› ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐œ‹(๐‘Ÿ๐‘“ + ๐‘Ÿ๐‘ )2๐ฟ

rf and rs are the radii of the fiber and soluteL is the length of the fiber

If minimum distance between fibers is larger than 2(๐‘Ÿ๐‘“ + ๐‘Ÿ๐‘ ), such as when fiber density

is very low or when fibers are parallel:

๐ธ๐‘ฅ๐‘๐‘™๐‘ข๐‘ ๐‘–๐‘œ๐‘› ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› =๐œ‹(๐‘Ÿ๐‘“ + ๐‘Ÿ๐‘ )

2๐ฟ๐‘

๐‘‰= ๐œƒ(

๐‘Ÿ๐‘ ๐‘Ÿ๐‘“+ 1)2

ฮธ is the volume fraction of fibers

๐พ๐ด๐‘‰ = 1 โˆ’ ๐‘’๐‘ฅ๐‘๐‘™๐‘ข๐‘ ๐‘–๐‘œ๐‘› ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› = 1 โˆ’ ๐œƒ๐‘Ÿ๐‘ ๐‘Ÿ๐‘“+ 1

2

10

Ogston EquationIf the minimum distance between fibers is smaller than 2(๐‘Ÿ๐‘“ + ๐‘Ÿ๐‘ ):

๐พ๐ด๐‘‰ = exp[โˆ’๐œƒ(1 +๐‘Ÿ๐‘ ๐‘Ÿ๐‘“)2]

Assumes:Fibers are rigid rods with random orientationLength of fibers is finite but much larger than rs

There is no fiber overlapConcentration of solute is low (steric interaction between nearest neighbors of solute and fiber)Fiber radius much less than interfiber distance

11

When ๐œƒ(1 +๐‘Ÿ๐‘ 

๐‘Ÿ๐‘“)2 is much less than unity, Ogston Equation reduces to previous equation.

Porosity can be derived from the Ogston Equation by letting rs=0

ํœ€ = exp[โˆ’๐œƒ]

When ฮธ is much less than unity:

ํœ€ = 1 โˆ’ ๐œƒ

Partition coefficient of solutes in liquid phase of fiber-matrix material:

ฮฆ =

exp[โˆ’๐œƒ(1 + (๐‘Ÿ๐‘ ๐‘Ÿ๐‘“))2]

1 โˆ’ ๐œƒ

12

8.3.2: Brinkman Equation

8.3.3: Squeeze Flow

Review: Darcyโ€™s Law

o Describes fluid flow in porous media

o Invalid for Non-Newtonian Fluids

o We talked about ๐›ฟ, ๐‘™, ๐‘Ž๐‘›๐‘‘ ๐ฟo L is the distance over which macroscopic changes of physical quantities have to be considered

o ๐‘‰ = โˆ’๐พ๐›ป๐‘o K is the hydraulic conductivity (a constant)o ๐›ป๐‘ is the gradient of hydrostatic pressure

o ๐›ป๐‘‰ = โˆ’๐›ป ๐พ๐›ป๐‘ = ฯ•B โˆ’ ฯ•Lo ฯ•B is volumetric flow in sourceo ฯ•L is volumetric flow in sink o Generally ฯ•B = ฯ•L = 0

o Darcyโ€™s Law Neglects Friction within the fluid

Brinkman Equation

o๐‘˜ = ๐พ๐œ‡o k is the specific hydraulic permeability (usually units of nm2)oDarcyโ€™s law is used when k is low: when k is much smaller than the square of LoWhen k is not low: Brinkman Equation

o๐ต๐‘Ÿ๐‘–๐‘›๐‘˜๐‘š๐‘Ž๐‘› ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›:o๐œ‡๐›ป2๐‘‰ โˆ’

1

๐พ๐‘‰ โˆ’ ๐›ป๐‘=0

oDarcyโ€™s Law is a special case of this equation when the first term = 0 (๐‘‰ =โˆ’ ๐พ๐›ป๐‘)

Example 8.7!! (The math is annoying and long and Iโ€™m sorry) (Itโ€™s not my fault) (Donโ€™t hate me)

Ex 8.7

Squeeeze Flow

o Squeeze flow is the fluid flow caused by the relative movement of solid boundaries towards each other

o Tissue deformation causes change in volume fraction of the interstitial spaceo Leads to fluid flow

Squeeze Flow

oThese equations will be more useful and will make more sense in later discussions (hopefully)

oThe derivation of them is in 8.3.3

oVelocity profiles:

oVh is the velocity of cell membrane movement

oR is the radius of the plate

oz and r are cylindrical coordinates

oVr is velocity in the r direction

oVz is velocity in the z direction

Darcyโ€™s Law

Darcyโ€™s Law

โ€ข Flow rate is proportional to pressure gradient

โ€ข Valid in many porous media

โ€ข NOT valid for:โ€ข Non-Newtonian fluids

โ€ข Newtonian liquids at high velocities

โ€ข Gasses at very low and high velocities

Darcyโ€™s Law

Describing fluid flow in porous media

โ€ข Two Ways:โ€ข Numerically solve governing equations for fluid flow in individual pores if

structure is known

โ€ข Assume porous medium is a uniform material (Continuum Approach)

Three Length Scales

1. ๐›ฟ = average size of pores

2. L = distance which macroscopic changes of physical quantities must be considered (ie. Fluid velocity and pressure)

3. ๐‘™ = a small volume with dimension ๐‘™

Continuum Approach Requires:

โ€ข ๐›ฟ << ๐‘™0 << L

Darcyโ€™s Law

โ€ข ๐‘™0 = Representative Elementary Volume (REVโ€ข ๐‘™0 << L

โ€ข Total volume of REV can give the averaging over a volume value

โ€ข vf = fluid velocity, velocity of each fluid particle AVERAGED over volume of the fluid phase

โ€ข v = velocity of each fluid particle averaged over REV

โ€ข V = ํœ€Vf

Darcyโ€™s Law

โ€ข Law of Mass Conservationโ€ข No Fluid Production = โ€œSourceโ€โ€ข Fluid Consumption = โ€œSinkโ€

Mass Balance with velocitiesโ€ข ๐›ป โˆ— v = ๐œ™B - ๐œ™L

โ€ข ๐›ป โˆ— โ„ฐvf = ๐œ™B - ๐œ™L

โ€ข Determined by Starlingโ€™s Lawโ€ข ๐œ™B = rate of volumetric flow in sourcesโ€ข ๐œ™L = rate of volumetric flow in sinks

Darcyโ€™s Law

โ€ข Momentum Balance in Porous Mediaโ€ข v = -K ๐›ปp

โ€ข ๐›ปp = gradient of hydrostatic pressure

โ€ข K = hydraulic conductivity constant

โ€ข p = average quantity within the fluid phase in the REV

Darcyโ€™s Law

โ€ข Substituting the Equations to form:โ€ข ๐›ป โˆ— (โˆ’K ๐›ปp) = ๐œ™B - ๐œ™L

โ€ข Steady State:โ€ข ๐›ป2 * p = 0

8.4 Solute Transport in Porous Media

8.4.1-8.4.2

8.4.1 General Considerations

โ€ข Solute Transport in Porous Media

8.4.1 General Considerations

1)๐ท๐‘’๐‘“๐‘“ 2) Solute velocity

3) Dispersion4) Boundary Conditions

โ€ข There are 4 general problems using the continuum approach(Darcyโ€™s Law) for analyzing transport of solutes through porous media

1) ๐ท๐‘’๐‘“๐‘“

โ€ข Diffusion of solutes is characterized by the effective diffusion coefficient: ๐ท๐‘’๐‘“๐‘“

โ€ข ๐ท๐‘’๐‘“๐‘“ in porous media < ๐ท๐‘’๐‘“๐‘“ in solutions Why?...

1) ๐ท๐‘’๐‘“๐‘“ cont.

โ€ข Factor effecting Diffusion in Porous Media:โ€ข Connectedness of Pores

1 100Layer #

๐ท๐‘’๐‘“๐‘“Layer 100

Layer 1

As we near layer 100, available space for diffusion and ๐ท๐‘’๐‘“๐‘“ decrease exponentially

2) Solute Velocity

โ€ข Convective velocities โ‰  Solvent velocities

โ€ข Solutes are hindered by porous structuresโ€ข Ex: filtering coffee grounds

๐‘“ =๐‘ฃ๐‘ 

๐‘ฃ๐‘“=

๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ

๐‘ ๐‘œ๐‘™๐‘ฃ๐‘’๐‘›๐‘ก ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ

๐‘“ is retardation coefficient

2) Solvent Velocity cont.

โ€ข ๐œŽ = 1 โˆ’ ๐‘“ : reflection coefficient โ€ข Characterizes the hindrance of convective

transport across a membrane

โ€ข ๐‘“ is dependent on:โ€ข Fluid velocity โ€ข Solute sizeโ€ข Pore Structure

โ€ข Flux of Convective transport across tissue:

๐‘๐‘  = ๐‘ฃ๐‘ ๐ถ = ๐‘“๐‘ฃ๐‘“๐ถ

Where ๐‘ฃ๐‘ is solute velocity and ๐ถ is local concentration of solutes

3) Dispersion of Solutes

4) Boundary Conditions

โ€ข Concentrations of solutes can be discontinuous at interfases between solutions and porous mediaโ€ข Thus, for two regions, 1 and 2

๐‘1 = ๐‘2

and

๐ถ1

๐พ๐ด๐ด1=

๐ถ2

๐พ๐ด๐ด2

N = flux

๐พ๐ด๐ด = area fraction available at inerfase for solute transport

When all 4 are consideredโ€ฆ

Governing Equation for Transport of neutral molecule through porous media:

๐œ•๐ถ

๐œ•๐‘ก+ ๐›ป ๐‘“๐‘ฃ๐‘“๐ถ = ๐ท๐‘’๐‘“๐‘“๐›ป

2๐ถ + ๐œ™๐ต โˆ’ ๐œ™๐ฟ + ๐‘„

Flux of Convective Transport

Isotropic, uniform and dispersion coefficient is

negligible

Solute vel. Reaction

If we do consider dispersion coefficient: Deff = Deff + Disp. Coeff.

Governing Equation cont.

๐œ•๐ถ

๐œ•๐‘ก+ ๐›ป ๐‘“๐‘ฃ๐‘“๐ถ = ๐ท๐‘’๐‘“๐‘“๐›ป

2๐ถ + ๐œ™๐ต โˆ’ ๐œ™๐ฟ + ๐‘„

๐ถ, ๐œ™๐ต , ๐œ™๐ฟ , ๐‘„:๐‘Ž๐‘ฃ๐‘”. ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ

๐‘ข๐‘›๐‘–๐‘ก ๐‘ก๐‘–๐‘ ๐‘ ๐‘ข๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

๐‘“, ๐‘ฃ๐‘“ , ๐ท๐‘’๐‘“๐‘“:๐‘Ž๐‘ฃ๐‘”. ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ

๐‘ข๐‘›๐‘–๐‘ก ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘โ„Ž๐‘Ž๐‘ ๐‘’

8.4.2 Effective Diffusion Coefficient in Hydrogelsโ€ข 3 Factors effecting ๐ท๐‘’๐‘“๐‘“ of uncharged solutes in hydrogels:

โ€ข 1) Diffusion coefficient of solutes in WATER (๐ท0)

โ€ข 2) Hydrodynamic Interactions between solute and surrounding solvent molecules, F

โ€ข 3) Tortuosity of diffusion pathways due to the steric exclusion of solutes in the matrix, S

๐ท๐‘’๐‘“๐‘“ = ๐ท0๐น๐‘†

So, how do we solve for F and S?

Hydrodynamic Interactions, F

F is a ratio:

๐น =๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ ๐‘–๐‘› ๐‘๐‘œ๐‘Ÿ๐‘œ๐‘ข๐‘  ๐‘š๐‘’๐‘‘๐‘–๐‘Ž

๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ ๐‘–๐‘› ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ

F measures the enhancement of drag on solute molecule due to presence of polymeric fibers in water

โ†’Friction coeff. in water = 6๐œ‹๐œ‡๐‘Ÿ๐‘ 

๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘๐‘–๐‘ก๐‘ฆ๐‘Ÿ๐‘  = ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘  ๐‘œ๐‘“ ๐‘š๐‘œ๐‘™๐‘’๐‘๐‘ข๐‘™๐‘’

Hydrodynamic Interactions, F cont.

1) Effective-medium or

Brinkman-medium

2) 3-D space with cylindrical fibers

model

Two approaches to determining F:

1) Effective-Medium or Brinkman-Medium

โ€ข Assumptions: โ€ข Hydrogel is a uniform medium

โ€ข Spherical solute molecule

โ€ข Constant velocity

โ€ข Movement governed by Brinkman Equation

๐น = 1 +๐‘Ÿ๐‘ 

๐‘˜+1

9

๐‘Ÿ๐‘ 

๐‘˜

2 โˆ’1

where ๐œ™๐ต = ๐œ™๐ฟ = 0

2) 3-D space with cylindrical fibers model

โ€ข Assumptions: โ€ข Hydrogel is modeled as 3-D

spaces filled with water and randomly placed cylindrical fibers

โ€ข Movement of spherical particles is determined by Stokes-Einstein Equation

๐น ๐›ผ, ๐œƒ = exp(โˆ’๐‘Ž1๐œƒ๐‘Ž2) pg. 426

โ†’done after normalization of 6๐œ‹๐œ‡๐‘Ÿ๐‘ 

2) 3-D space with cylindrical fibers model cont.

๐น ๐›ผ, ๐œƒ = exp(โˆ’๐‘Ž1๐œƒ๐‘Ž2)

Depends on:

๐›ผ =๐‘“๐‘–๐‘๐‘’๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘–

๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘’ ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘–

๐œƒ =๐‘“๐‘–๐‘๐‘’๐‘Ÿ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

โ„Ž๐‘ฆ๐‘‘๐‘Ÿ๐‘œ๐‘”๐‘’๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

Where: ๐‘Ž1 = 3.272 โˆ’ 2.460๐›ผ + 0.822๐›ผ2

๐‘Ž2 = 0.358 + 0.366๐›ผ โˆ’ 0.0939๐›ผ2

Tortuosity Factor, S

โ€ข Depends on ๐‘“๐‘Ž

๐‘“๐‘Ž = (1 +1

๐›ผ)2

โ€ข ๐‘“๐‘Ž is the excluded volume fraction of solute in hydrogel if: โ€ข Low fiber density

โ€ข Fibers arranged in parallel manner

โ€ข If ๐‘“๐‘Ž < 0.7๐‘† ๐›ผ, ๐œƒ = ๐‘’๐‘ฅ๐‘ โˆ’0.84๐‘“๐‘Ž

1.09

Effective Diffusion Coefficient: In Liquid-Filled Pore and Biological

TissueChapter 8: Section 4.3-4.4

45

Effective Diffusion Coefficient in a Liquid-Filled Poreโ€ข Depends on diffusion coefficient D0 of solutes in water, hydrodynamic

interactions between solute and solvent molecules, and steric exclusion of solutes near the walls of pores

โ€ข Assume entrance effect is negligible:

๐‘ฃ๐‘ง = 2๐‘ฃ๐‘š(1 โˆ’๐‘Ÿ

๐‘…)2

vz is the axial fluid velocityvm is the mean velocity in the porer is the radial coordinate R is the radii of the cylinder

46

โ€ข Assume the volume fraction of spherical solutes is less than 2ฮป

3

โ€ข Solute-Solute interactions become negligible

โ€ข When ฮป ->0, solute-pore interactions are negligible

ฮป =๐‘Ž

๐‘…a is the radii of the soluteR is the radii of the cylinder

๐‘๐‘ง = โˆ’๐ท0๐œ•๐ถ

๐œ•๐‘ง+ ๐ถ๐‘ฃ๐‘ง Nz is the flux

D0 is the diffusion coefficientC is the solute concentration z is the axial coordinate

๐ถ = แ‰Š๐ถ ๐‘ง 0 โ‰ค ๐‘Ÿ โ‰ค ๐‘… โˆ’ ๐‘Ž0 ๐‘… โˆ’ ๐‘Ž < ๐‘Ÿ โ‰ค ๐‘…

47

When ฮป does not approach 0:

๐‘๐‘  = โˆ’๐ท0๐พ

๐‘‘๐ถ

๐‘‘๐‘ง+ ๐บ๐ถ๐‘ฃ๐‘ง

K is the enhanced friction coefficientG is the lag coefficientK and G are functions of ฮป and r/R

Flux averaged over the entire cross-sectional area:

เดฅ๐‘๐‘  =2

๐‘…2เถฑ0

๐‘…

๐‘๐‘ ๐‘Ÿ๐‘‘๐‘Ÿ

Integrating the top flux equation:

เดฅ๐‘๐‘  = โˆ’๐ป๐ท0๐‘‘๐ถ

๐‘‘๐‘ง+๐‘Š๐ถ๐‘ฃ๐‘š

48

H and W are called hydrodynamic resistance coefficients

๐ป =2

๐‘…2เถฑ0

๐‘…โˆ’๐‘Ž 1

๐พ๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Š =4

๐‘…2เถฑ0

๐‘…โˆ’๐‘Ž

๐บ 1 โˆ’๐‘Ÿ

๐‘…

2

๐‘Ÿ๐‘‘๐‘Ÿ

49

๐ท๐‘’๐‘“๐‘“ = ๐ป๐ท0

Centerline approximation: assume all spheres are distributed on the centerline position in the poreFor ฮป < 0.4:

๐พโˆ’1 ฮป, 0 = 1 โˆ’ 2.1044ฮป + 2.089ฮป3 โˆ’ 0.948ฮป5

๐บ ฮป, 0 = 1 โˆ’2

3ฮป2 โˆ’ 0.163ฮป3

50

๐ป ฮป = ฮฆ 1 โˆ’ 2.1044ฮป + 2.089ฮป3 โˆ’ 0.948ฮป5

๐‘Š ฮป = ฮฆ 2 โˆ’ฮฆ 1 โˆ’2

3ฮป2 โˆ’ 0.163ฮป3

ฮฆ = 1 โˆ’ ฮป 2Partition coefficient of solute in the pore:

For ฮป > 0.4:

Diffusion of spherical molecules between parallel plates:

51

เดฅ๐‘๐‘  = โˆ’๐ป๐ท0๐‘‘๐ถ

๐‘‘๐‘ง+๐‘Š๐ถ๐‘ฃ๐‘š

เดฅ๐‘๐‘  =1

โ„Žเถฑ0

โ„Ž

๐‘๐‘ ๐‘‘๐‘ฆ

๐ป =1

โ„Žเถฑ0

โ„Žโˆ’๐‘Ž 1

๐พ๐‘‘๐‘ฆ

๐‘Š =3

2โ„Žเถฑ0

โ„Žโˆ’๐‘Ž

๐บ 1 โˆ’๐‘ฆ

โ„Ž

2

๐‘‘๐‘ฆh is the half-width of the slit

๐ท๐‘’๐‘“๐‘“ = ๐ป๐ท0

K and G depend on ฮป and y/h

๐ป ฮป = ฮฆ 1 โˆ’ 1.004ฮป + 0.418ฮป3 + 0.21ฮป4 โˆ’ 0.169ฮป5 + ๐‘‚ฮป6

๐‘Š ฮป =ฮฆ

23 โˆ’ ฮฆ2 1 โˆ’

1

3ฮป2 + ๐‘‚ฮป3

ฮฆ = 1 โˆ’ ฮป

Effective Diffusion Coefficient in Biological Tissues

๐ท๐‘’๐‘“๐‘“ = ๐‘1 ๐‘€๐‘Ÿโˆ’๐‘2

Mr is the molecular weight of the solutesb1 and b2 are functions of charge and shape of solutes, and structures of tissues

The effects of tissue structures on Deff increases with the size of solutes

52

Fluid Transport in Poroelastic Materials

Section 8.5

By: Hannah Humbert

53

Biological Tissues:

โ€ข Deformable

โ€ข Deformation can be linear or nonlinear

54

"Extreme softness of brain matter in simple shear"โ€

Poroelastic Response

55

๐œŽ๐‘ฅ๐‘ฅ๐œŽ๐‘ฅ๐‘ฅ

๐œŽ๐‘ฆ๐‘ฆ

๐œŽ๐‘ฆ๐‘ฆ

๐‘ฅ

๐‘ฆ

๐œŽ๐‘ฅ๐‘ฆ

Total Stress = Effective Stress + Pore Pressure

๐ˆ = ๐‰ + ๐‘๐‘ฐ

Pore Fluid Pressure, ๐‘

Porosity, ฮต

56

๐ˆ =

๐œ๐‘ฅ๐‘ฅ ๐œ๐‘ฅ๐‘ฆ ๐œ๐‘ฅ๐‘ง๐œ๐‘ฆ๐‘ฅ ๐œ๐‘ฆ๐‘ฆ ๐œ๐‘ฆ๐‘ง๐œ๐‘ง๐‘ฅ ๐œ๐‘ง๐‘ฆ ๐œ๐‘ง๐‘ง

+

๐‘ 0 00 ๐‘ 00 0 ๐‘

= 2๐œ‡๐บ๐‘ฌ + ๐œ‡ฮป๐‘’๐‘ฐ + ๐‘๐‘ฐ

๐‘ฐ =1 0 00 1 00 0 1

Must be describing stresses that are NOT pore pressure related

If,

then,

Understanding the linear function of Stress

Understanding the linear Function of Stress

57

๐ˆ = 2๐œ‡๐บ๐‘ฌ + ๐œ‡ฮป๐‘’๐‘ฐ + ๐‘๐‘ฐ

We know this is pore pressure, and this is the only force

happening INTERNALLY, right?

Then, these two terms must be describing the forces

EXTERNALLY. How many external forces are there? Shear and

Normal. Which term is which?

We must look at the Lamรฉconstantsโ€ฆ

Lamร‰ Constants

โ€ข Named after French Mathematician, Gabriel Lamรฉโ€ข Two constants which relate stress to strain in isotropic, elastic

materialโ€ข Depend on the material and its temperature

58

๐๐€ : first parameter (related to bulk modulus)๐๐‘ฎ : second parameter (related to shear modulus)

๐œ‡๐œ† = ๐พ โˆ’ เต—2 3 ๐œ‡๐บ

๐œ‡๐บ =๐œ

๐›พ=

โˆ†๐น๐ดโˆ†๐ฟ๐ฟ

Understanding the linear Function of Stress

59

๐ˆ = 2๐œ‡๐บ๐‘ฌ + ๐œ‡ฮป๐‘’๐‘ฐ + ๐‘๐‘ฐ

Describes INTERNAL FORCES

Describes EXTERNAL BULK

FORCES

Describes EXTERNAL SHEAR

FORCES

Now we need to understand E and eโ€ฆ

โ€ข E = strain tensor (vector gradient)

60

Understanding the linear Function of Stress๐ธ =

1

2[๐›ป๐‘ข + ๐›ป๐‘ข ๐‘‡]

๐ธ =1

2

2๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ

๐œ•๐‘ข๐‘ฆ

๐œ•๐‘ฆ+๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ

๐œ•๐‘ข๐‘ง๐œ•๐‘ง

+๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ

๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ

+๐œ•๐‘ข๐‘ฆ

๐œ•๐‘ฆ2๐œ•๐‘ข๐‘ฆ

๐œ•๐‘ฆ

๐œ•๐‘ข๐‘ง๐œ•๐‘ง

+๐œ•๐‘ข๐‘ฆ

๐œ•๐‘ฆ

๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ

+๐œ•๐‘ข๐‘ง๐œ•๐‘ง

๐œ•๐‘ข๐‘ฆ

๐œ•๐‘ฆ+๐œ•๐‘ข๐‘ง๐œ•๐‘ง

2๐œ•๐‘ข๐‘ง๐œ•๐‘ง

๐›ป๐‘ข =๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ

,๐œ•๐‘ข๐‘ฆ

๐œ•๐‘ฆ,๐œ•๐‘ข๐‘ง๐œ•๐‘ง

(๐›ป๐‘ข)๐‘‡=

๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ๐œ•๐‘ข๐‘ฆ๐œ•๐‘ฆ๐œ•๐‘ข๐‘ง๐œ•๐‘ง

โ€ข e = volume dilation (scalar divergence) ๐‘’ = ๐‘‡๐‘Ÿ ๐ธ = ๐›ป โˆ™ ๐‘ข

๐‘’ = ๐›ป โˆ™ ๐‘ข =๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฅ

+๐œ•๐‘ข๐‘ฆ

๐œ•๐‘ฆ+๐œ•๐‘ข๐‘ง๐œ•๐‘ง

61

Understanding the linear Function of Stressโ€ข So now we understand this:

๐ˆ = 2๐œ‡๐บ๐‘ฌ + ๐œ‡ฮป๐‘’๐‘ฐ + ๐‘๐‘ฐA scalar quantity

thatโ€™s multiplied by the identify matrix to make a tensor in

units of pressure

A scalar quantity thatโ€™s multiplied by the identify matrix to make a tensor in

units of stress

A tensor thatโ€™s in units of stress

Now we can reduce mass conservation equations to get an

equation we can use to solve problems like these!

Deriving mass and Momentum equations

62

๐œ•(๐œŒ๐‘“ํœ€)

๐œ•๐‘ก+ ๐›ป โˆ™ ๐œŒ๐‘“ํœ€๐‘ฃ๐‘“ = ๐œŒ๐‘“(๐œ™๐ต โˆ’ ๐œ™๐ฟ)

mass conservation in the fluid phase is this:

mass conservation in the solid phase is this:

๐œ•[๐œŒ๐‘  1 โˆ’ ํœ€ ]

๐œ•๐‘ก+ ๐›ป โˆ™ ๐œŒ๐‘ (1 โˆ’ ํœ€)

๐œ•๐’–

๐œ•๐‘ก= 0

Deriving mass and Momentum equations

63

๐œ•(๐œŒ๐‘“ํœ€)

๐œ•๐‘ก+ ๐›ป โˆ™ ๐œŒ๐‘“ํœ€๐‘ฃ๐‘“ โˆ’ ๐œŒ๐‘“ ๐œ™๐ต โˆ’ ๐œ™๐ฟ =

๐œ•[๐œŒ๐‘  1 โˆ’ ํœ€ ]

๐œ•๐‘ก+ ๐›ป โˆ™ ๐œŒ๐‘ (1 โˆ’ ํœ€)

๐œ•๐’–

๐œ•๐‘ก

Summing the two equations together:

๐œ•(๐œŒ๐‘“ํœ€)

๐œ•๐‘ก+ ๐›ป โˆ™ ๐œŒ๐‘“ํœ€๐‘ฃ๐‘“ โˆ’ ๐›ป โˆ™ ๐œŒ๐‘  1 โˆ’ ํœ€

๐œ•๐’–

๐œ•๐‘ก=๐œ• ๐œŒ๐‘  1 โˆ’ ํœ€

๐œ•๐‘ก+ ๐œŒ๐‘“ ๐œ™๐ต โˆ’ ๐œ™๐ฟ

๐›ป โˆ™ ํœ€๐‘ฃ๐‘“ โˆ’ 1 โˆ’ ํœ€๐œ•๐’–

๐œ•๐‘ก= ๐œ™๐ต โˆ’ ๐œ™๐ฟ

Biot Law

โ€ข According to a paper written in 1984 (that I do not have access too):

โ€ข Zienkiewicz, O. C., and T. Shiomi. "Dynamic behaviour of saturated porous media; the generalized Biotformulation and its numerical solution." International journal for numerical and analytical methods in geomechanics 8.1 (1984): 71-96.

64

ํœ€ ๐‘ฃ๐‘“ โˆ’๐œ•๐’–

๐œ•๐‘ก= โˆ’๐พ๐›ป๐‘

๐›ป โˆ™ ๐ˆ = 0

Using BIOTS law to substituteโ€ฆ

65

๐› โˆ™ ๐ˆ = ๐œ‡๐บ๐›ป2๐’– + (๐œ‡๐บ + ๐œ‡ฮป)๐›ป๐‘’ + ๐›ป๐‘ = ๐ŸŽ

(2๐œ‡๐บ + ๐œ‡ฮป)๐›ป2๐‘’ = ๐›ป2๐‘

66

๐œ•๐’†

๐œ•๐‘ก= ๐พ๐›ป2๐‘ + ๐œ™๐ต โˆ’ ๐œ™๐ฟ

ํœ€ ๐›ป โˆ™ ๐‘ฃ๐‘“ โˆ’๐œ•๐’†

๐œ•๐‘ก= โˆ’๐พ๐›ป2๐‘

If volume dilation and hydraulic

conductivity are homogenous

๐œ•๐’†

๐œ•๐‘ก= ๐พ(2๐œ‡๐บ + ๐œ‡ฮป)๐›ป

2๐‘’ + ๐œ™๐ต โˆ’ ๐œ™๐ฟ

Coefficient of consolidation