bold slides

49
The BOLD Response ! Douglas C. Noll ! Department of Biomedical Engineering! University of Michigan! !

Upload: karthikraoa

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 1/49

The BOLD Response !

Douglas C. Noll!

Department of Biomedical Engineering!University of Michigan!

!

Page 2: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 2/49

Noll

Outline

•  Mechanism of the BOLD response

•  Evidence for and mechanisms of non-linearity

•  Implications for fMRI Studies

•  Conclusions

Page 3: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 3/49

Noll

Dynamic Vascular Changes

Optical imaging of intrinsic signal (OIS) from a rat

Movie courtesy of Alberto Vazquez, University of Pittsburgh

Anatomical Image

1 mm

620 nm (BOLD-like)

Page 4: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 4/49

Noll

Interesting Temporal Features

Late OIS Increase MapEarly OIS Decrease Map

1 mm

Well-localized temporally and

spatially

 Less well-localized

temporally and spatially,

but larger response

Page 5: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 5/49

Noll

Neural Activity

Glucose and OxygenMetabolism

Cerebral BloodFlow (CBF)

BloodOxygenation

Cerebral BloodVolume (CBV)

Magnetic Field Uniformity(microscopic)

Decay Time (T2*)

T2*-weighted (BOLD)Image Intensity

+

+

+

+

+

+

-

-

+

Other FactorsHematocrit

Vessel Diameter 

Vessel OrientationBlood Volume Fraction

Field Strength

Brain Function

Metabolic Function

Physiological Effects

Physical Effects

MRI Properties

The

BOLDEffect

Page 6: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 6/49

Noll

The BOLD Response

• 

Changes in cerebral blood flow (CBF) drivethe BOLD changes

 –  Temporal characteristics of the CBF changesdominate the BOLD temporal response

(Hoge RD, et al. Magn. Reson. Med. 1999; 42:849–863.)

BOLD and CBF changes with gradedhypercapnia and visual stimulation

(Miller KL, et al. Human Brain Mapping 2001; 13:1-12.) 

BOLD and CBF

changes

have similar temporal

characteristics

Page 7: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 7/49

Noll

Magnetic Susceptibility of Blood

•  Recall

•  Some relative susceptibility valuesMaterial (relative to water)  χm (x 10-6) Water   0 Room Air   9.4 Pure oxygen gas  11 Deoxygenated Blood (Hct = 1)  2.3 

ΔB =  χ mB0

Page 8: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 8/49

Noll

Magnetic Susceptibility of Blood

•   An expression for the susceptibility of blood is:

 –  Hct is hematocrit and

 –  Y is blood oxygenation

•  But,  χ oxy =  χ plasma =  χ tissue=  χ water = 0 , so:

•  Example –  If Hct = .4 and Y = .7,  χ blood = 0.12  χ deoxy = 0.28 x 10-6

 χ  blood = Hct(Y  χ oxy + (1-Y )  χ deoxy) + (1-Hct) χ  plasma 

 χ  blood = Hct(1-Y )  χ deoxy 

Page 9: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 9/49

NollBandettini and Wong. Int. J. Imaging Systems and Technology. 6,133 (1995)

Page 10: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 10/49

Noll

Extravascular Contribution

B0 

(  )  ( ) (  )  (  ) φ θ ω φ θ ω  2 cos / sin ' , , 2 2

  r  a r   Δ = Δ 

θ

Courtesy of P. Jezzard

orientation

and radius

dependent

Page 11: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 11/49

Noll

Intravascular Contribution:

heterogeneous orientation

B0 

(  )  (  ) [  ]  3/ 1 cos 3 ' 2 

- Δ = Δ  θ ω θ ω 

orientation

dependent

Courtesy of P. Jezzard

Page 12: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 12/49

Noll

Tissue and Blood Contributions

   S

   i  g  n  a   l   I  n  c  r  e  a  s  e   (

   %   )

Flow Increase

1.0 1.2 1.4 1.6 1.8 2.00.0

1.0

2.0

3.0

4.0

5.0

6.0

EV+Cap+VenEV+Ven

EV+CapEV

Boxerman et al ., MRM 34, 1995Courtesy of P. Jezzard

field strength

dependence

Page 13: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 13/49

Noll

What is T2*?

•  T2* has two parts: –  Inter-molecular interactions leading to dephasing,

a.k.a. T2 decay

 –  Macroscopic or mesoscopic static magnetic field

inhomogeneity leading to dephasing, a.k.a. T2’

•  Pulse sequence issues: –  Spin echoes are sensitive to T2

 –  Gradient echoes are sensitive to T2*

2

1

'2

1

*2

1

T T T +=

Page 14: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 14/49

Noll

What is R2*?

•  We often talk about “rates” instead of time

constants, e.g.:

•  So the decay rate is given by the sum of the

rates:

 R2* = R2 + R2’  

*2

1*2

 R =

Page 15: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 15/49

Noll

Dephasing from Deoxyhemoglobin

Vs.

60%

90%

Different Fields

Uniform Field

Page 16: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 16/49

Noll

T2* - T2 decay with Susceptibility Effects

• 

R2’ relates to susceptibility properties of blood:

 –   κ  is a constant

 –  ΔB is the distortion of the field induced by the blood

 –  V is blood volume fraction

 –  Observe that the BOLD decay rate is proportional to B0

•   As oxygenation (Y) goes down, the decay rate R2’

goes up (faster decay)

V Y  B

 BV  R

deoxy0 )1(Hct

'2

 χ κγ 

κγ 

−=

Δ=

Page 17: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 17/49

Noll

BOLD Changes

•  Consider that the total amount of deoxyhemoglobin

is:

•  Thus

•  R2* changes are directly proportional to changes intotal deoxyhemoglobin (in a voxel):

Q = V Hct (1-Y )

Q R R Δ∝Δ=Δ '2*2

Q B R deoxy0'2 χ κγ =

Page 18: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 18/49

Noll

R2* and R2’

•  Some have suggested, based on computer 

modeling a more nonlinear relationship with respect

to blood O2:

 –   β  is a constant that ranges from 1-2, typically assumed

to be about 1.5 –  We’ll use this relationship later… 

 β  χ κγ  )1(Hct'2 deoxy0 Y V  B R−

=

Page 19: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 19/49

Noll

MRI Signal Changes with R2’

• 

Let the signal at the echo time be:

R2 *b – the baseline rate 

R2 *a – the activation relaxation rate

•  Fractional (%) signal change:

*)2exp(  RTE m ⋅−=

'2 

1*)2exp( 

)*2exp()*2exp()*2exp(

0

00

 RTE 

 RTE 

 RTE m

 RTE m RTE m

m

mm

b

ba

b

ba

Δ⋅−≈

−Δ⋅−=

⋅−

⋅−−⋅−=

Page 20: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 20/49

Noll

MRI Signal Changes with Deoxyhemoglobin

•  Fractional (%) Signal Change:

•  The change is proportional to change in total

deoxyhemoglobin:

QΔ−∝BOLD%

'2 RTE m

mm

b

baΔ⋅−≈

Page 21: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 21/49

Noll

Optimization of TE

Maximum signal difference occurs at 

activated condition

rest condition

difference signal

TE

signal

*2T TE ≈

Problem – T2* varies across the head, but you have to pick 1 TE 

Page 22: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 22/49

Noll

Relationship to Metabolism

•  Of interest is the relationship between the

BOLD signal and oxygen metabolism

CMRO2 = cerebral metabolic rate of O2

 –   f = perfusion rate (CBF) in ml/min/(100 g tissue)

 –   OEF = oxygen extraction fraction

 –   C = constant related of O2 capacity of hemoglobin

(known as Fick’s Principle)

OEFHctCMRO2⋅⋅⋅

= f  C 

Page 23: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 23/49

Noll

Tissue Compartment Model

Voxel

V

f in

f out

O2 extraction

OEF = 1 - Y  

 Assuming that most of the fMRI signal comes from thevenous side, then:

Page 24: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 24/49

Noll

Fick’s Principle

•  We can now solve for some constants:

•   And equate these constants for baseline andactivation states:

or 

Hct)1(

CMRO2⋅=

C Y  f  

)1(

CMRO2

)1(

CMRO2  ba

bbaa Y  f  Y  f  −

=

 b

a

CMRO2

CMRO2

)1(

)1(

a

b

b

a

 f  

 f  

Y =

Page 25: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 25/49

Noll

Connection to BOLD

•  Recall that that fractional signal change is:

•  Rearranging, we get:

where M is a constant (includes baseline

properties)

[ ] β  β  β  )1()1()1( aabb

b

baY V Y V Y V 

m

mm−−−∝−Δ∝

⎥⎥⎦

⎢⎢⎣

⎟⎟⎠

⎜⎜⎝

−=

−β 

b

a

b

a

b

ba

V  M 

m

mm

1

11

Page 26: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 26/49

Noll

The BOLD/CMRO2/CBF Connection

•  Combining the above expressions we get:

⎥⎥

⎢⎢

⎟⎟

⎞⎜⎜

⎛−=

−β 

 b

a

CMRO2

CMRO21

a

b

b

a

b

ba

 f  

 f  

V  M 

m

mm

Page 27: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 27/49

Noll

The CBF/CBV Connection

•  We can also assume a volume flow

relationship:

Grubb’s Relationship (α = 0.38)

• 

Warning – this is problematic because most volumechanges are on the arterial side and most deoxy-Hbchanges are on the venous side.

""

#

$%%

&

'=

b

a

b

a

 f  

 f  

Page 28: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 28/49

Noll

Volume Changes

•  Mostly on the arterial side

v a

Images courtesy of Alberto Vazquez, University of Pittsburgh

Page 29: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 29/49

Noll

The BOLD/CMRO2/CBF Connection

•  Finally, we get:

•  Observations:

 –  As flow increases, BOLD increases

 –  As CMRO2 increases, BOLD decreases

⎥⎥

⎢⎢

⎟⎟

⎞⎜⎜

⎛⎟⎟

⎞⎜⎜

⎛−=

−− β α  β 

 b

a

CMRO2

CMRO21

a

b

b

ba

 f  

 f   M 

m

mm

Page 30: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 30/49

Noll

The BOLD/CMRO2/CBF Connection

(Hoge RD, et al. Magn. Reson. Med. 1999; 42:849–863.)

GHC = Graded Hypercapnia

GVS = Graded Visual Stimulation

Lines of constant CMRO2

This difference due to CMRO2

Page 31: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 31/49

Noll

Can CMRO2 Ratios Be Determined?

•  Maybe...

 –  Need BOLD fractional signal change

 –  Need CBF measurements ( f a/ f b)

 –  Need volumes or assume Grubb’s relationship

 –  Need constant M(This can be done making the above

measurements in a hypercapnia challenge – no

CMRO2 changes!)

⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

−β 

 b

a

CMRO2

CMRO21

a

b

b

a

b

ba

 f  

 f  

V  M 

m

mm

Page 32: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 32/49

Noll

Complicating Factors…

Venule peak sensitivity

Graph courtesy of Alberto Vazquez, University of Pittsburgh

O2 Saturation by Vessel Size

Page 33: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 33/49

Noll

Outline

•  Mechanism of the BOLD response

•  Evidence for and mechanisms of non-linearity

•  Implications for fMRI Studies

•  Conclusions

Page 34: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 34/49

Noll

Is the BOLD response linear?

•  In many cases, it is almost linear.

•  In other cases, it is not very linear, notably:

 –  Manipulations of task (block) duration for short(less than 4 s) blocks

 –  Repeated stimuli after long (e.g. 30 s) rest periods

 –  Other effects

Page 35: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 35/49

Noll

Manipulations in Task Duration

(Boynton GM, et al. J Neuroscience 1996; 16:4207-4221.) 

Linearity implies that responses from short stimuli

should predict responses to longer stimuli

Response from 3 s

stimulus poorly

predicted responses

to 6, 12 and 24 sstimuli.

But, response from

6 s stimulus was a

good predictor.

 The “system”

behaves nonlinearly

for 3 s stimuli.

Page 36: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 36/49

Noll

Manipulations in Task Duration

(Vazquez AL, Noll DC. NeuroImage 1998; 7:108-118.) 

 A system model should remain the same regardlessof stimulus duration

Estimated model

parameters varied

for short stimuli.

 The “system”

produced shorter 

and more intense

responses for stimuli less than 4 s

in duration.

•  The same study also showed some nonlinearities

with manipulations in stimulus intensity.

Page 37: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 37/49

Noll

Nonlinearity in the CBF

Nonlinearity in predicting responses also appears

cerebral blood flow (CBF) as well as BOLD

Response from 2 s

stimulus poorly

predicted responses

to 6 stimulus for .

 Nonlinearities

occur broadly in the

vascular response.

(Miller KL, et al. Human Brain Mapping 2001; 13(1):1-12.) 

Page 38: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 38/49

Noll

Responses to Repeated Stimuli

(Huettel SA, McCarthy G. Neuroimage 2000; 11:547-553.) 

Explicit manipulation of 

inter-stimulus interval

demonstrates that

subsequent responses are

delayed and less intense.

 The “system” response is

time-variant and the degree

depends on time to

preceding stimulus.

 Long latencies (as much

as 1 s) imply that some

effects are not neural in

origin.

Page 39: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 39/49

Noll

Mechanisms for Nonlinear Behavior 

•  Vascular  –  Non-linear (e.g. visco-elastic) behavior of vessels

 –  Non-linear coupling/control of vascular response

 –  Non-linear extraction of oxygen from blood pool

•  Neural

 –  Non-linear neural response to stimulus or task

• 

Metabolic –  Non-linear relationship between metabolism and neural

activity

(Not meant to be an exhaustive list.)

Page 40: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 40/49

Vascular Mechanisms for Nonlinearity

•  Manipulations in basalflow conditions throughhypercapnia andhypocapnia

•  Increased basal CBFleads to –  Decreased intensity

 –  Increased responsewidth and latency

 –   And vice-versa.

•  Basal flow conditionsaffect BOLD response

(Cohen, et al.,  JCBFM 2002; 22:1042-1053.)

Page 41: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 41/49

Noll

Vascular Mechanisms for Nonlinearity

•  The “balloon” model (Buxton RB, et al. Magn ResonMed 1998; 39:855-864) can predict some of the

observed nonlinearities.

•  This model can explain the persistent elevation of 

cerebral blood volume (CBV), pehaps through visco-

elastic behavior.

Fin FoutO2

capillaries venous

Page 42: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 42/49

Noll

Vascular Mechanisms for Nonlinearity

•  Cerebral blood volume(CBV) response returns to

baseline more slowly than

the CBV onset

•  Elevated CBV effectively

changes the basal

physiological conditions

•  Could cause time-variant

behavior 

(Mandeville JB, et al. JCBFM 1999; 19:679-689.) 

Page 43: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 43/49

Noll

Neural Mechanisms for Nonlinearity

• 

Neural networks are nonlinear.

•  Some observed nonlinearities could be caused byneural mechanisms, for example:

 – 

Changes in apparent BOLD magnitude response withstimulus duration are similar to measured in local field

potentials (LPF’s).

 –  BOLD response found to be closely correlated with LPF’s.

(Birn RM, et al. Neuroimage 2001; 14(4):817-826.)  (Logothetis NK, et al. Nature 2001; 412(6843):150-157) 

Page 44: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 44/49

Noll

Metabolic Mechanisms for Nonlinearity

•  There have been suggestions that oxygenmetabolism may persist in a nonlinear fashion

following activation

 –  Alternate explanation of the post-stimulus

undershoot of the BOLD response

Page 45: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 45/49

Noll

Mechanisms for Nonlinear Behavior 

•  BOLD nonlinearity is a likely result of: –  A combination of vascular and neural effects

 –  Other mechanisms including metabolic rates andthe coupling between neural activity and

physiological responses.

•  The good news is that we can deal many of 

these effects.

Page 46: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 46/49

Noll

Outline

•  Mechanism of the BOLD response

•  Evidence for and mechanisms of non-linearity

•  Implications for fMRI Studies

•  Conclusions

Page 47: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 47/49

Noll

 Avoiding Nonlinearities

•  Blocked task designs –  Long blocks do not exhibit much nonlinearity and

are relatively immune to changes in shape of HRF

•  Event-related task designs

 –  Avoid combinations of long (> 30 s) and short

(< 10 s) intertrial intervals

 –  Rapid, random stimulus presentations give mostlylinear response

•  No opportunity to return to basal neural or vascular 

conditions

Page 48: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 48/49

Noll

Explicit Modeling of Nonlinearities

•  One can also explicitly model

the nonlinear effects andincorporate that into the

development of reference

functions for GLM analysis

•  One can also explicity model

the nonlinearity through:

 –  Use of Volterra kernels(Friston KJ, et al. Neuroimage 2000; 12(4):

466-477) 

 –  Use of physiologicallyrelevant models (Vazquez AL, et

al., Human Brain Mapping 2003, New Yorkand Feng CM, et al. NMR Biomed.

2001;14:397–401) 

 –  Many other approaches

(Wager, Vazquez, Hernandez, Noll,Neuroimage. 2005 Mar;25(1):206-18. )

Page 49: Bold Slides

8/2/2019 Bold Slides

http://slidepdf.com/reader/full/bold-slides 49/49

Conclusions

•  The temporal character of the BOLD response: –  Results from complex chain of physiological events

 –  Is fairly slow (time constants >= 5 s)

 –  Exhibits some nonlinear characteristics

•  Linearity is important for accuracy in analysis andtemporal feature extraction

•  Nonlinearity is likely caused by severalmechanisms and is currently topic of ongoingresearch