brian covello: neurite outgrowth science report

8

Click here to load reader

Upload: brian-covello

Post on 28-Nov-2014

130 views

Category:

Science


1 download

DESCRIPTION

Brian Covello's Neurite Outgrowth Science Report. Interesting new pathway for neuron repair, information below is taken from www.news.psu.edu UNIVERSITY PARK, Pa. -- Penn State molecular biologists have discovered a brand-new pathway for repairing nerve cells that could have implications for faster and improved healing. The researchers describe their findings in a paper titled "Dendrite Injury Triggers DLK-Independent Regeneration," which will be published in the Jan. 30 issue of the journal Cell Reports. These findings demonstrate that dendrites, the component of nerve cells that receive information from the brain, have the capacity to regrow after an injury. Previous studies using many models have shown that when nerve cells, or neurons, are injured they repair the damage through regrowth of axons, the component of a neuron that sends information to other cells, explained co-author Melissa Rolls, associate professor of biochemistry and molecular biology at Penn State. "For example, if you break your arm and the bone slices some axons, you may lose feeling or movement in part of your hand. Over time you get this feeling back as the axon regenerates." Given neurons' capacity for axon regeneration, Rolls and her colleagues wondered whether dendrites, also, could regenerate after injury. This question hadn't been asked in the scientific community, save for a couple of previous limited-scale studies that yielded mixed results. Using the fruit fly (Drosophila) as a model system, the researchers took what Rolls calls a "radical approach," cutting off all of the dendrites in neuron cells. "We wanted to really push the cells to the furthest limit," she said. "By cutting off all the dendrites, the cells would no longer be able to receive information, and we expected they might die. We were amazed to find that the cells don't die. Instead, they regrow the dendrites completely and much more quickly than they regrow axons. Within a few hours they'll start regrowing dendrites, and after a couple of days they have almost their entire arbor. It's very exciting — these cells are extremely robust." Moreover, it appears that dendrite regeneration happens independently of axon regeneration. When Rolls and her colleagues blocked the key signaling molecules that are required for axon regeneration in all animals, they found that dendrites were unaffected and continued to regrow. "This means that, not only do these neurons have an incredible ability to generate, they have two different regeneration pathways: one for axons and one for dendrites," she said. "Because it has not even been clear that dendrites can regenerate, it's a complete open question about what might be involved in that process. The next step will be to look for markers for dendrite regrowth -- proteins that are required or genes that are turned on in the process -- so we can learn more about what's going on during dendrite repair.

TRANSCRIPT

Page 1: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 1  

Summary  of:  “Rapid  neurite  outgrowth  in  neurosecretory  cells  and  neurons  is  sustained  by  the  exocytosis  of  a  cytoplasmic  organelle,  the  enlargeosome”  

Racchetti,  G.,  Lorusso,  A.,  Schulte,  C.,  Gavello,  D.,  Carabelli,  V.,  D’Alessandro,  R.,  and    Meldolesi,  J.  2009.  Rapid  neurite  outgrowth  in  neurosecretory  cells  and  neurons  is    sustained  by  the  exocytosis  of  a  cytoplasmic  organelle,  the  enlargeosome.  Journal  of    Cell  Science.  123(2):  165-­‐170.  doi:  10.1242/jcs.059634  

Database:  Discoveroux    The  complexity  of  the  world  contained  within  the  leaflets  of  the  plasma  membrane  

is  only  beginning  to  reveal  itself  to  scientists.  It  is  a  world  in  which  proteins,  lipids,  nucleic  

acids,   organic,   and   inorganic   substances   are   constantly   interacting   with   one   another   in  

myriad  dynamic  processes.   Indeed,   the   term   “fluid-­‐mosaic  model”   is   appropriate,   for  not  

only   is   the  membrane   in   constant   flux,   but   the  membrane   is   consistently   being   recycled  

through  coupling  of  endocytosis  and  exocytosis  (Cocucci,  2007).    Regulated  exocytosis  is  a  

process  by  which  vesicles   from  within   the   cell   fuse   to   the  plasma  membrane  upon   some  

stimulation   such   as   photolysis   of   a   calcium   cage   or   other   intracellular   activators  

(Borgonovo,   2002).   For   many   decades,   scientists   believed   the   process   of   regulated  

exocytosis  was  reserved  for  neurons,  endocrine,  and  exocrine  cells,  the  primary  culprits  for  

secretions   (Meldolesi,   2011).   The   electrophysiological   patch-­‐clamp   technique   can   record  

the  resistance  of  a  membrane  by  using  a  micropette  tip  capable  of  maintaining  a  constant  

membrane   potential   to   the   membrane   (Lindau,   2012).   The   linear   correlation   between  

capacitance   and   membrane   area   allows   scientists   to   monitor   the   surface   area   of   a   cell  

(Cocucci,   2007).   Through   this   technique,   scientists   discovered   that   the   role   of   regulated  

exocytosis  is  critical  not  only  for  secretions  but  also  for  changes  to  the  plasma  membrane  

including,  expansion  of  the  surface,  change  of   lipid  composition,  and  insertion  of  proteins  

(Cocucci,  2007).    

Page 2: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 2  

Such   classical   exocytotic   vesicles   responsible   for   membrane   expansion   include  

acidic  secretory  lysosome  vesicles  and  other  additional  dense  vesicles  from  neurosecretory  

cells  (Borgonovo,  2002).  These  processes  are  best  studied  in  vitro  through  investigation  of  

rat  pheochromocytoma  PC12  cells,  as  these  cells  serve  as  an  appropriate  model  for  study  of  

exocytosis   and   neurosecretions   (Cocucci,   2008).   Classically   regulated   exocytotic   vesicles  

are  acidic,  clear,  dense,  and  rely  on  a  distinct  class  of  SNARE  proteins,  which  are  inhibited  

upon   administration   of   tetanus   toxin   (Borgonovo,   2002).   Thus,   in   2002,  when   scientists  

administered   tetanus   toxin   to   a   PC12-­‐27   cell   line,   a   derivation   of   PC12   defective   in  

neurosecretions,  they  were  appalled  to  find  an  increase  in  capacitance  of  the  membrane,  as  

this  indicated  expansion  of  the  plasma  membrane  through  exocytotic  activity  (Borgonovo,  

2002).     They   had   discovered   a   rapid,   regulated,   exocytotic   system,   composed   of   vesicles  

that   were   75-­‐115nm   in   length,   non-­‐acidic,   tetanus   toxin   insensitive,   and   packed   with  

cholesterol   and   sphingomyelin   (Borgonovo,   2002).   It  was   approximated   that   there  were  

around   9650   vesicles  within   a   given   cell.   Combined,   these   vesicles   had   the   capability   to  

enlarge  the  membrane  by  169μm  (Borgonovo,  2002).  Through  vesicle  marker  Ahnak,  they  

proved   the   existence   of   a   distinct   class   of   organelles   that   were   responsible   for   plasma  

membrane   enlargement   (Borgonovo,   2002).   They   called   these   vesicles   “enlargeosomes”.  

Surface   expansion   is   especially   important   in   neuronal   development,   where   neuronal  

differentiation   leads   to   axon   and   dendrite   formation   (Meldolesi,   2011).   Taken   together  

with  the  older  and  slower  Ti-­‐VAMP  vesicles,  which  can  be  released  through  stimulation  by  

nerve  growth   factor   (NGF),   researchers  hypothesized   that  enlargeosomes  were  distinctly  

responsible  for  a  newly  discovered  form  of  neurite  outgrowth  in  embryonic  (PC12-­‐27)  and  

neonatal   (SH-­‐SY5Y)   neurons   (Racchetti,   2009).   Understanding   of   such   a   mechanism   is  

Page 3: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 3  

critical  for  comprehension  of  neuronal  development,  for  this  mechanism  may  possibly  have  

medical  applications  that  lead  to  drugs  capable  of  membrane  repair.    

The  criterion  to  prove  this  hypothesis  was  voluminous.    First,  one  must  show  that  

rapid  neurite   outgrowth  occurs   in   the   cell   lines   rich   in   enlargeosomes,   PC12-­‐27   and   SH-­‐

SY5Y,  while  slow  outgrowth  occurs  in  cell  lines  lacking  enlargeosomes,  wtPC12  (Racchetti,  

2009).   All   cell   lines   were   treated   with   Y27632,   a   drug   known   to   induce   rapid   neurite  

outgrowth  (Racchetti,  2009).  Neurite  visualization  occurred  through  DIC-­‐time  lapse  video  

(0-­‐90  minutes)   and   phase   contrast   (at   0,1,6,48   hours   after   treatment)   (Racchetti,   2009).  

Analytical   cell   surface   expansion  was  measured   through   patch-­‐clamp   capacitance   assays  

0,1,3,  and  6  hours  after  treatment  (Racchetti,  2009).    

To  determine  whether  another  mechanism  existed  for  rapid  neurite  outgrowth,  the  

team   immunolabeled   and   ran   a   western   blot   on   the   protein   marker   for   enlargeosomes,  

Ahnak,   and   immunolabeling   of   enlargeosomes   were   visualized   by   immunofluorescence  

microscopy   (Racchetti,   2009).   Translocation   of   this   marker   would   indicate   insertion   of  

enlargeosomes   into   the  membrane.  As  a   condition  of   the  hypothesis,   the   team  needed   to  

prove   that   enlargeosomes   were   a   separate   and   distinct   mechanism   for   rapid   neurite  

outgrowth.  To  this  end,  they  individually  inhibited  Golgi  vesicles  and  endosomes  known  to  

cause  slow  neurite  outgrowth  through  brefeldin  A  and  LY294002  respectively  (Racchetti,  

2009).   Endosomal   activity   was   further   inhibited   through   an   insertion   of   a   dominant  

negative   construct   of   ARF6,   a   protein   essential   in   endosome   development   (Racchetti,  

2009).  Lastly,  for  the  purpose  of  visualizing  and  quantifying  enlargeosome  activity  in  vivo,  

the   team   analyzed   western   blot   data   and   immunolabeled   Ahnak   distribution   through  

immunofluorescence  microscopy  from  rat  embryonic  neurons  (Racchetti,  2009).      

Page 4: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 4  

DIC-­‐time   lapse   video   and   phase   contrast   microscopy   indicated   rapid   neurite  

outgrowth   in  PC12-­‐27  and  SH-­‐SY5Y  within  one  hour  of   treatment  by  Y27632   (Racchetti,  

2009).   Patch   clamp   capacitance   analysis   for   PC12-­‐27   showed   an   increased   plasma  

membrane  surface  area  of  500μm  at  1  hour  (Racchetti,  2009).  In  contrast,  wtPC12  neurite  

outgrowth   could   be   visualized   at   6   hours,   with   surface   expansion   of   100μm   at   1   hour  

(Racchetti,   2009).   Ahnak   levels   remained   constant   throughout   the   48   hours,   yet   strong  

translocation  of  Ahnak  to  the  outermembrane  was  depicted  through  immunofluorescence  

microscopy  (Racchetti,  2009).  Rapid  neurite  outgrowth  occurred  in  PC12-­‐27  cells,  even  in  

the   presence   of   brefeldin   A,   LY294002,   and   dominant   negative   ARF6   (Racchetti,   2009).  

Western   blot   data   from   rat   embryonic   neurons   indicated   the   highest   levels   of   Ahnak   in  

embryonic   neurons   and   the   lowest   levels   in   adult   neurons   (Racchetti,   2009).    

Immunofluorescence  of  rat  neurons  indicated  intense  outgrowth  of  neurites  in  the  location  

of  Ahnak  staining  (Racchetti,  2009).    

Through  results  analysis,  one  may  determine  the  speed  of  neurite  growth  in  PC12-­‐

27,  SHSY5Y,  and  wtPC12  cell   lines  with  corresponding  analytical  measurement  of  plasma  

membrane   surface   expansion.   In   addition,   Ahnak   labeling   allows   for   translocation  

visualization   and   implicates   enlargeosomes   involvement,  while   concomitant   inhibition   of  

the   classical   pathway   and   proof   of   enlargeosome   involvement   may   show   a   distinct  

mechanism  for  rapid  neurite  outgrowth.  Finally,   in  vivo  analysis  determines   the  direction  

these   results   may   have   in   pathological   treatments   involving   neuroplasticity,   neuronal  

development  and  membrane  repair.    

Several  clear  conclusions  may  be  drawn  from  the  aforementioned  results.  The  DIC-­‐

time   lapse   video   and   corresponding   phase   contrast   microscopy   indicates   that   upon  

Page 5: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 5  

treatment   with   Y27632,   cells   that   lack   enlargeosomes   contain   a   much   slower   neurite  

outgrowth   than   cells   with   enlargeosomes.   In   fact,   the   cells   containing   enlargeosomes  

experienced  membrane  expansion  at  5  times  the  rate  of   the  control  within  the  first  hour.  

Proof   that   the   enlargeosomes  were   causing   this   expansion  was   acquired  by   showing   the  

translocation  of  Ahnak  upon  treatment  with  Y27632.  Even  though  western  blot  analysis  of  

Ahnak  during  this  time  period  indicated  constant  protein  levels,  this  does  not  necessitate  a  

weakening  of  the  hypothesis,  for  plasma  membrane  expansion  by  enlargeosomes  does  not  

require  a  change  of  protein  levels,  but  merely  a  change  in  location.    

Although   the   research   indicates   that   enlargeosome   activity   was   responsible   for  

rapid   neurite   outgrowth,   the   exact   mechanism   remained   vague.   The   researchers  

hypothesized   that   enlargeosome   surface   expansion   was   distinct   from   classical   surface  

expansion  by  Golgi  vesicles  and  endosomes.     Indeed,   inhibition  of   these  vesicles   failed   to  

slow  the  neurite  outgrowth  (Racchetti,  2009).    Additionally,  inhibition  of  gene  transcription  

and  translation  of  the  classical  pathway  failed  to  stop  rapid  neurite  outgrowth  (Racchetti,  

2009).   With   this   data,   it   became   clear   that   enlargeosomes   were   directly   and   distinctly  

responsible  for  providing  a  new  mechanism  of  rapid  neurite  outgrowth.    

These   results   most   likely   motivated   the   final   part   of   this   experiment,   in   which   a  

transition  to  in  vivo  studies  occurred.  The  data  shows  that  enlargeosomes  occur  in  regions  

of   intense   neurite   outgrowth   in   rat   neurons,   opening   the   door   to   many   future   studies  

(Racchetti,   2009).   The   appearance   of   high   levels   of   enlargeosomes   in   embryonic   rat  

neurons   and   a   linear   decrease   of   enlargeosomes   with   respect   to   progressive   neuronal  

development  may  indicate  a  physiological  role  for  enlargeosomes  in  neuronal  development  

(Racchetti,  2009).  This  remains  to  be  proven.  The  research  contained  several  weaknesses.  

Page 6: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 6  

First,  an  unexplained  decrease  of  membrane  expansion  occurred   in  wtPC12  cells  at   three  

hours.   Also,   the   research   failed   to   indicate   the   number   of   trials,   and   the   data   was   not  

supported  with  statistical  analysis.  Regardless,  the  researchers  had  proven  the  hypothesis.  

Enlargeosomes  are  distinct   vesicles   responsible   for   an  entirely  new   form  a   rapid  neurite  

outgrowth.   Within   10   years,   the   scientific   understanding   of   the   plasma   membrane,  

neuronal   outgrowth,   and   regulated   exocytosis   has   changed   dramatically.   Only   as   the  

scientific   horizon   widens,   may   one   begin   to   see   the   vastness   of   empty   space   left   to   be  

fulfilled.  

There   are   several   intricate   and   beautiful   ties   between   this   research   and   the  

knowledge  acquired  in  a  classroom.  First,  this  research  helped  me  gain  a  deeper  insight  and  

appreciation  into  the  term  “fluid-­‐mosaic  model”.  The  term  itself  truly  fails  to  give  justice  to  

the   complexity   of   the   plasma   membrane.   The   amount   of   details   surrounding   one   small  

vesicle’s  involvement  in  membrane  recycling  was  enormous.  It  is  only  in  this  context  that  I  

began   to  understand  how   little  we  know.  One   item  not  mentioned  previously   is   that   the  

cholesterol   and   sphingomyelin   composition   of   enlargeosomes   give   rise   to   enhanced  

detergent   resistance   in   the   plasma   membrane   (Borgonovo,   2002).   I   hypothesize   that,  

similar  to  caveolae,  enlargeosomes  not  only  serve  the  purpose  of  enlarging  the  membrane,  

but  also  play  a  functional  role  as  well.  This  provides  an  enticing  future  avenue  for  research.    

Interestingly,   it  was  not  the  search  for  articles  concerning  plasma  membranes  that  

led  me   to   this   research.   Instead,   I   discovered   this   article  while   researching   patch-­‐clamp  

technique,   for   this   technique,  which  has  been   in  use  since  1978,  was  entirely  responsible  

for   the   discovery   of   the   enlargeosome   in   2002   (Borgonovo,   2002).   Perhaps   the   most  

amazing   aspect   of   this   article   transcends   beyond   the   tiny   realm   of   biochemistry,   for   the  

Page 7: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 7  

patch-­‐clamp   technique   was   only   made   possible   by   a   conglomeration   of   physicists   and  

mathematicians.   The   discovery   of   the   enlargeosome   represents   the   pinnacle   of   science,  

where  an  interconnected  group  of  diverse  scientists  collide  into  discovery.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 8: Brian Covello: Neurite Outgrowth Science Report

Brian  Covello  01/15/13  

 8  

Sources    

Borgonovo,  B.,  Cocucci,  E.,  Racchetti,  G.,  Podini,  P.,  Bachi,  A.,  and  Meldolesi,  J.  2002.       Regulated  exocytosis:  a  novel,  widely  expressed  system.  Nature  Cell  Biology.  4:955-­‐     962.  doi:  10.1038/ncb888    Cocucci,  E.,  Racchetti,  G.,  Podini,  P.,  Meldolesi,  J.  2007.  Enlargeosome  traffic:  Exocytosis       triggered  by  various  signals  is  followed  by  endocytosis,  membrane  shedding  or       both.  Traffic.  8:742-­‐757.  doi:  10.1111/j.1600-­‐0854.2007.00566.x    Cocucci,  E.,  Racchetti,  G.,  Rupnik,  M.,  Meldolesi,  J.  2008.  The  regulated  exocytosis  of       enlargeosomes  is  mediated  by  a  SNARE  machinery  that  includes  VAMP4.  Journal  of       Cell  Science.  121(18):2983-­‐2991.  doi:  10.1242/jcs.032029    Lindau,  M.  2012.  High  resolution  electrophysiological  techniques  for  the  study  of  calcium-­‐     activated  exocytosis.  Biochimica  et  Biophysica  Acta.  1820:1234-­‐1242.  doi:       10.1016/j.bbagen.2011.12.011    Meldolesi,  J.  2011.  Neurite  outgrowth:  this  process,  first  discovered  by  Santiago  Ramon  y       Cajal,  is  sustained  by  the  exocytosis  of  two  distinct  types  of  vesicles.  Brain  Research       Reviews.  66:246-­‐255.  doi:  10.1016/jbrainresrev.2010.06.004    Racchetti,  G.,  Lorusso,  A.,  Schulte,  C.,  Gavello,  D.,  Carabelli,  V.,  D’Alessandro,  R.,  and    

Meldolesi,  J.  2009.  Rapid  neurite  outgrowth  in  neurosecretory  cells  and  neurons  is    sustained  by  the  exocytosis  of  a  cytoplasmic  organelle,  the  enlargeosome.  Journal  of    Cell  Science.  123(2):  165-­‐170.  doi:  10.1242/jcs.059634