bruno siciliano - inria

56
HAL Id: cel-02130095 https://hal.inria.fr/cel-02130095 Submitted on 15 May 2019 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Robot Control Bruno Siciliano To cite this version: Bruno Siciliano. Robot Control. Doctoral. GdR Robotics Winter School: Robotica Principia, Centre de recherche Inria Sophia Antipolis – Méditérranée, France. 2019. cel-02130095

Upload: others

Post on 01-Nov-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bruno Siciliano - Inria

HAL Id: cel-02130095https://hal.inria.fr/cel-02130095

Submitted on 15 May 2019

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 InternationalLicense

Robot ControlBruno Siciliano

To cite this version:Bruno Siciliano. Robot Control. Doctoral. GdR Robotics Winter School: Robotica Principia, Centrede recherche Inria Sophia Antipolis – Méditérranée, France. 2019. �cel-02130095�

Page 2: Bruno Siciliano - Inria

Robot ControlBRUNO SICILIANO

www.prisma.unina.it

Page 3: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Motion control Indirect force control Direct force control Interaction control using vision and force Experiments

OutlineRobot Control 2/55

Page 4: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control, Springer, London, 2009, DOI 10.1007/978-1-4471-0449-0 Chapter 8 ─ Motion Control Chapter 9 ─ Force Control Chapter 10 ─ Visual Control

MOOC Robotics Foundations – Robot ControlComing up soon … https://youtu.be/JwfRk-U3aPw

The TextbookRobot Modelling 3/55

Page 5: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

B. Siciliano, O. Khatib, Springer Handbook of Robotics 2nd Edition, Springer, Heidelberg, 2016, DOI 10.1007/978-3-319-32552-1 Chapter 8 ─ Motion Control Chapter 9 ─ Force Control Chapter 34 ─ Visual Servoing

The HandbookRobot Modelling 4/55

Page 6: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Joint space control Task references transformed into joint references Redundancy resolution at kinematic level

Motion ControlRobot Control 5/55

Page 7: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Task space control Control directly in task (operational) space Redundancy resolution at dynamic level

Motion Control2Robot Control 6/55

Page 8: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Tracking control Dynamic model-based compensation Euler angles Angle/axis Quaternion Computational issues Redundancy resolution

Regulation Static model-based compensation Orientation errors

Motion Control3Robot Control 7/55

Page 9: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Inverse dynamics

Position control

Orientation control

Dynamic Model-Based CompensationRobot Control 8/55

Euler anglesAngle/axisQuaternion

Page 10: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Orientation error:

Resolved angular acceleration

Error dynamics

Euler AnglesRobot Control 9/55

representation singularities (!)

Page 11: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Orientation error:

Resolved angular acceleration

Error dynamics

Alternative Euler AnglesRobot Control 10/55

choose so that is nonsingular (!)

Page 12: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Orientation error:

Angle/AxisRobot Control 11/55

angle axisRepresentation

Classical angle/axis

Quaternion

Rodrigues parameters

Simple rotation

Page 13: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Angle/axis error:

Resolved angular acceleration

Error dynamics

Angle/AxisRobot Control 12/55

Page 14: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Simpler choice:

Error dynamics

Stability via Lyapunov argument

Angle/AxisRobot Control 13/55

Page 15: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Orientation error:

Resolved angular acceleration

Error dynamics

Stability via Lyapunov argument

QuaternionRobot Control 14/55

Page 16: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Number of floating-point operations and function calls

Computational IssuesRobot Control 15/55

Resolved acceleration Trajectory generationOrientation error Flops Funcs Flops FuncsClassical Euler angles 68 8 52 8Alternative Euler angles 136 8 0 0Angle/axis 55 0 0 0Quaternion 60 1 21 1

Page 17: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Null-space motion

Stability via Lyapunov argument

Redundancy ResolutionRobot Control 16/55

dynamically consistentpseudo-inverse

Page 18: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Inverse dynamics control with redundancy resolution

Redundancy ResolutionRobot Control 17/55

Page 19: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

PD control with gravity compensation

Position control

Orientation control

Static Model-Based CompensationRobot Control 18/55

Euler anglesAngle/axisQuaternion

Page 20: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Euler angles

Alternative Euler angles

Angle/axis

Quaternion

For all … stability via Lyapunov arguments

Orientation ErrorsRobot Control 19/55

Page 21: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Motion control vs. force control Object manipulation or surface operation requires control of interaction between robot

manipulator and environment Use of purely motion control strategy is candidate to fail (task planning accuracy) Control of contact force (compliant behaviour) Use of force/torque sensor (interfaced with robot control unit)

Indirect vs. direct force control Indirect force control: force control via motion control (w/out explicit closure of force

feedback loop) Direct force control: force controlled to desired value (w/ closure of force feedback loop)

Constrained MotionRobot Control 20/55

Page 22: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Compliance control Active compliance Experiments

Impedance control Active impedance Inner motion control Three-DOF impedance control Experiments Six-DOF impedance control Experiments

Indirect Force ControlRobot Control 21/55

Page 23: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Active vs. passive compliance

At steady state (position/force)

Active ComplianceRobot Control 22/55

Page 24: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Set-up COMAU Smart 3-S robot Open control architecture

PD control with gravitycompensation Large proportional gains Small proportional gains

ExperimentsRobot Control 23/55

Page 25: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Programmable mass-damping-stiffness at the end-effector

Active ImpedanceRobot Control 24/55

force/torque sensor

Page 26: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Impedance control Force/torque measurements

Active ImpedanceRobot Control 25/55

Page 27: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Compliant frame between desired and end-effector frame Enhanced disturbance rejection

Inner Motion ControlRobot Control 26/55

Page 28: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Translational impedance

Linear acceleration (inner motion loop)

Inner Motion ControlRobot Control 27/55

Page 29: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

ATI force/torque sensor 3-DOF impedance control

Effects of mass, damping and stiffness

Contact with unknown surface

ExperimentsRobot Control 28/55

Page 30: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Rotational impedance Euler angles

Infinitesimal orientation displacement

Angular acceleration (inner motion loop)

Six-DOF Impedance ControlRobot Control 29/55

task geometric inconsistency

Page 31: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Rotational impedance Alternative Euler angles

Infinitesimal orientation displacement

Angular acceleration (inner motion loop)

Six-DOF Impedance ControlRobot Control 30/55

task geometric consistency(XYZ Euler angles + diagonal stiffness)

Page 32: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Rotational impedance Angle/axis

Infinitesimal orientation displacement

Angular acceleration (inner motion loop)

Six-DOF Impedance ControlRobot Control 31/55

task geometric consistency

Page 33: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Rotational impedance Quaternion

Infinitesimal orientation displacement

Angular acceleration (inner motion loop)

Six-DOF Impedance ControlRobot Control 32/55

task geometric consistency

Page 34: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

6-DOF impedance control Accommodation of both force

and moment Operational space approach

(Euler angles) Geometrically consistent

approach

ExperimentsRobot Control 33/55

Page 35: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Regulation of force and moment to desired values

PI control

At steady state

Static Model-Based CompensationRobot Control 34/55

Page 36: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Force and moment control with inner motion control loop Linear and angular accelerations

Dynamic Model-Based CompensationRobot Control 35/55

Page 37: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Force control Regulation to zero force Inner position vs. velocity

control loop

ExperimentsRobot Control 36/55

Page 38: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Force and motion control Regulation of force but loss of motion control

Recover motion control along unconstrained directions while ensuring force control along constrained directions

Force/Motion ControlRobot Control 37/55

Parallel control strategy

Page 39: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

PD motion control with gravity compensation + force control

At steady state

Force/Motion ControlRobot Control 38/55

Page 40: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Parallel force/position control Linear acceleration

Force and Position ControlRobot Control 39/55

Page 41: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Force/position control with full parallel composition Linear acceleration

Force and Position ControlRobot Control 40/55

Page 42: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Parallel force/position control Regulation to zero force with

position tracking PD+ position control with PI

force control

ExperimentsRobot Control 41/55

Page 43: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Moment/orientation control with full parallel composition Linear acceleration

Moment and Orientation ControlRobot Control 42/55

Page 44: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Tracking of time-varying force Full parallel composition

Tracking if exactly known

Force TrackingRobot Control 43/55

Page 45: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Contact stiffness adaptation ( )

Force TrackingRobot Control 44/55Force Control > Direct Force Control > Force/Motion Control 44/65

Page 46: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Extension to dual-robot system (loose cooperation) Typical peg-in-hole assembly

task Robot holding the hole

controlled as 6-DOF impedance

Robot holding the peg programmed in PDL-2

Accommodation of misalignment and overshoot

Further ExperimentsRobot Control 45/55

Page 47: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Tight cooperation Two arms tightly grasping a

rigid object Control of the object position Control of the internal forces

Further Experiments2

Robot Control 46/55

Page 48: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Dual-arm impedance control

Further Experiments3

Robot Control 47/55

absolute & relative impedance absolute impedance human-object interaction

Page 49: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Human−robot interaction

Further Experiments4

Robot Control 48/55

null-space impedance control variable impedance control safe efficient pHRI

Page 50: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Set-up @ DLR, Germany KUKA robot with force sensor

and camera embedded in the gripper

Integration of vision and force Visual feedback in gross

motion Force feedback in fine motion

Further Experiments5

Robot Control 49/55

Page 51: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Problem Control interaction of a robot manipulator with a rigid object of

known geometry but unknown position and orientation

Solution When robot is far from object

Position-based visual servoing is adopted The relative pose of the robot with respect to the object is estimated recursively using only

vision When robot is in contact with object

Any kind of interaction control strategy can be adopted (impedance control, parallel force/position control)

The relative pose of the robot with respect to the object is estimated recursively using vision, force and joint position measurements

ExtensionRobot Control 50/55

Page 52: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Position-based visual servoing

Visual Impedance ControlRobot Control 51/55

Force feedback

Impedance

impedance

Page 53: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

Pose estimation errors

ExperimentsRobot Control 52/55

vision vision & force

X

Page 54: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

F. Caccavale, C. Natale, B. Siciliano, L. Villani, "Resolved-acceleration control of robot manipulators: A critical review with experiments", Robotica, 16, 565–573, 1998

F. Caccavale, C. Natale, B. Siciliano, L. Villani, "Six-DOF impedance control basedon angle/axis representations", IEEE Transactions on Robotics and Automation, 15, 289–300, 1999

F. Caccavale, C. Natale, B. Siciliano, L. Villani, "Achieving a cooperative behaviour in a dual-arm robot system via a modular control structure", Journal of RoboticSystems, 18, 691–700, 2001

F. Caccavale, C. Natale, B. Siciliano, L. Villani, "Integration for the next generation: Embedding force control into industrial robots", IEEE Robotics and Automation Magazine, 12(3), 53–64, 2005

F. Caccavale, B. Siciliano, L. Villani, "Robot impedance control with nondiagonalstiffness", IEEE Transactions on Automatic Control, 44, 1943–1946, 1999

Additional ReferencesRobot Control 53/55

Page 55: Bruno Siciliano - Inria

GdR Robotics Winter School: Robotics Principia Inria Sophia Antipolis – Méditérranée, France • 23 January 2018

S. Chiaverini, L. Sciavicco, "The parallel approach to force/position control of roboticmanipulators", IEEE Transactions on Robotics and Automation, 9, 361–373, 1993

S. Chiaverini, B. Siciliano, L. Villani, "Force/position regulation of compliant robot manipulators", IEEE Transactions on Automatic Control, 39, 647–652, 1994

S. Chiaverini, B. Siciliano, L. Villani, "A survey of robot force control schemes with experimental comparison", IEEE/ASME Transactions on Mechatronics, 4, 273–285, 1999

V. Lippiello, B. Siciliano, L. Villani, "A position-based visual impedance control for robot manipulators", 2007 IEEE Int. Conf. on Robotics and Automation, Rome, I

C. Natale, Interaction Control of Robot Manipulators. Six-degrees-of-freedom Tasks, Springer, Heidelberg, D, 2003

B. Siciliano, L. Villani, Robot Force Control, Kluwer, Boston, MA, 1999

Additional References2

Robot Control 54/55