bss configuration

178
Alcatel-Lucent GSM BSS Configuration Rules BSS Document Reference Guide Release B11 3BK 17438 5000 PGZZA Ed.28

Upload: mahdi-sanaani

Post on 29-Jan-2016

177 views

Category:

Documents


28 download

DESCRIPTION

Alcatel Lucent

TRANSCRIPT

Page 1: BSS Configuration

Alcatel-Lucent GSM

BSS Configuration Rules

BSS Document

Reference Guide

Release B11

3BK 17438 5000 PGZZA Ed.28

Page 2: BSS Configuration

Status RELEASED

Short title Configuration Rules

All rights reserved. Passing on and copying of this document, useand communication of its contents not permitted without writtenauthorization from Alcatel-Lucent.

BLANK PAGE BREAK

2 / 178 3BK 17438 5000 PGZZA Ed.28

Page 3: BSS Configuration

Contents

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.1 BSS Equipment Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.2 Supported Hardware Platforms, Restrictions and Retrofits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.3 Platform Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.4 Release Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.5 BSS Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.6 New B11 Features and Impacted Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 BSS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2 Transmission Architecture with CS Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.3 Transmission Architecture with CS and PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.4 PLMN Interworking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 BTS Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction to the BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.1 BTS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.2 BTS IP Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.3 BTS Generation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 9100 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.1 9100 BTS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.2 MC TRE Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.3 9100 BTS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Distributed BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.3.1 MC-RRH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.3.2 Distributed BTS Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 BTS Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.5 Physical Channel Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.5.2 GPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.5.3 Dual Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.5.4 Extended Dynamic Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Frequency Band Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.6.2 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.6.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Speech Call Traffic Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.8 Adaptive Multi-Rate Speech Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.8.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.8.3 Thresholds and Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 TRE Packet Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.10 BTS Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.11 OML and RSL Submultiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.12 Cell Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12.1 Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.12.2 Frequency Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.12.3 Shared Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.13 TRX Dynamic Power Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.14 AC/DC Converters Capacity in MBO/MBOE Cabinets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.15 Antenna Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 BSC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.1 BSC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3BK 17438 5000 PGZZA Ed.28 3 / 178

Page 4: BSS Configuration

Contents

4.2 9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.2.1 9120 BSC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.2.2 ABIS TSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.2.3 Ater TSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.2.4 TSC Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 9130 BSC Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.3.1 9130 BSC Evolution Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.3.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.3.3 9130 BSC Evolution Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.3.4 Rules and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Common Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864.4.1 SDCCH Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864.4.2 Multiple CCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.4.3 Common Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Delta 9130 BSC Evolution versus 9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.6 SBL Mapping on Hardware Modules in 9130 BSC Evolution versus 9120 BSC . . . . . . . . . . 92

5 TC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.2 G2 TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.2.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 9125 TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.3.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 MFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036.1 MFS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.2 9135 MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.2.2 MFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.2.3 MFS Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 9130 MFS Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096.3.1 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096.3.2 MFS Stand Alone Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.3.3 9130 MFS Evolution and 9130 BSC Evolution Rack Shared Configurations . 1116.3.4 MFS Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Common Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.4.1 GPRS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.4.2 LCS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156.4.3 HSDS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186.4.4 Gb over IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256.4.5 Other Common Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Delta 9130 MFS Evolution versus 9135 MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Abis Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317.1 Abis Network Topology and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337.3 Abis Channel Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347.3.2 TS0 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Signaling Link on Abis Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357.4.1 RSL and OML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357.4.2 Qmux Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357.4.3 OML Autodetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5 Signaling Link Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367.5.1 Signaling Link Multiplexing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367.5.2 Signaling Link Multiplexing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377.5.3 Multiplexed Channel Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4 / 178 3BK 17438 5000 PGZZA Ed.28

Page 5: BSS Configuration

Contents

7.6 Mapping Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1387.6.1 Mapping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1387.6.2 Abis-TS Defragmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.6.3 RSL Reshuffling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.6.4 Cross-Connect Use on Abis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407.6.5 TCU Allocation Evolution in 9130 BSC Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.7 Abis Link Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427.8 Abis Satellite Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1447.9 Two Abis Links per BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457.9.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Ater Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1478.1 Ater Network Topology and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488.3 Numbering Scheme on 9120 BSC-Ater/Ater Mux/TC Ater/A Interface . . . . . . . . . . . . . . . . . . 149

8.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498.3.2 Numbering Scheme on 9120 BSC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508.3.3 Numbering Scheme on G2 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508.3.4 Numbering Scheme on 9125 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508.3.5 SBL Mapping on Hardware Modules in 9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . 151

8.4 Numbering Scheme on 9130 BSC Evolution-Ater/Ater Mux/TC Ater/A Interface . . . . . . . . . 1528.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1528.4.2 Numbering Scheme on 9130 BSC Evolution Side . . . . . . . . . . . . . . . . . . . . . . . . 1528.4.3 Numbering Scheme on G2 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538.4.4 Numbering Scheme on 9125 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538.4.5 SBLs Mapping on Hardware Modules in 9130 BSC Evolution . . . . . . . . . . . . . . 153

8.5 Signaling on Ater/Ater Mux Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548.5.2 SS7 Signaling Link Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1558.5.3 SS7 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.6 GPRS and GSM Traffic on Ater Mux versus 9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1588.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1588.6.2 Hole Management in G2 TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598.6.3 Sharing Ater Mux PCM Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598.6.4 Ratio of Mixing CS and PS Traffic in Ater Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.7 Ater Satellite Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9 A Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639.1 A Interface Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1649.2 Hardware Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10 Lb Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.1 Lb Interface Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16610.2 Hardware Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

11 Iur-g Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16711.1 Iur-g Interface Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16811.2 Hardware Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12 GB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16912.1 Gb Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17012.2 Gb Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17112.3 Gb flex rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

13 CBC Connection, SMSCB Phase 2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17513.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17613.2 GSM Cell Broadcast Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17613.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

13.3.1 9120 BSC Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

3BK 17438 5000 PGZZA Ed.28 5 / 178

Page 6: BSS Configuration

Contents

13.3.2 9130 BSC Evolution Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6 / 178 3BK 17438 5000 PGZZA Ed.28

Page 7: BSS Configuration

Figures

FiguresFigure 1: BSS with GPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2: Transmission Architecture with CS and PS (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3: Transmission Architecture with CS and PS (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4: BTS in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 5: Network Topology for IP Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 6: GSM MC TRE Site Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 7: Multistandard MC TRE Site Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 8: Distributed BTS Site Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 9: BSC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 10: 9120 BSC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 11: 9130 BSC Evolution Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 12: 1000 TRX LIU Shelf Connections Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 13: ABIS-HWAY-TP and ATER-HWAY-TP Mapped on VC12 Container . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 14: Functional Diagram TPGSMv3 with LIU-E1 and VC12 Cross-connections . . . . . . . . . . . . . . . . . . 80

Figure 15: TC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 16: MFS in the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 17: 9135 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 18: BSC Connection for Multi-GPU per BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 19: Generic LCS Logical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 20: Chain Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 21: Ring or Loop Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 22: Example of Cross-Connect Use on Abis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 23: Gb Link Directly to SGSN, over Frame Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Figure 24: Gb Link through the TC and MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Figure 25: Gb Link through the MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 26: Gb Link Directly to SGSN, over IP Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 27: Gb Logical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 28: CBC-BSC Interconnection via PSDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Figure 29: CBC-BSCs Interconnection via the MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3BK 17438 5000 PGZZA Ed.28 7 / 178

Page 8: BSS Configuration

Tables

TablesTable 1: 9100 BTS Minimum and Maximum Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 2: Typical GSM 900 and GSM 1800/1900 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 3: Typical Multiband Configuration G3 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 4: Frequency Band Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5: AMR Codec List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 6: AMR-WB Codec List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 7: Software Version versus Hardware Board/Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 8: Thresholds and Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 9: Data Call Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 10: Maximum Supported Capacities and Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 11: 9120 BSC Globally Applicable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 12: BSC Configuration Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 13: B11 9120 BSC Capacity per Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 14: TSL / TCU Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 15: Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 16: DTC Configuration and SBL Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 17: G2 TC/9125 TC Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 18: G2 TC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 19: 9125 TC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 20: TS 16 configuration for MT120 - xB board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 21: TS 16 Configuration for TC Boards Older than MT120 - xB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 22: MFS Capacity for DS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Table 23: Maximum MFS Configurations on MX Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 24: GPRS General Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table 25: GPRS Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table 26: (E)GPRS Modulation and Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 27: GMSK and 8-PSK Transmission Power Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Table 28: Multiplexed Channel Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Table 29: TS Mapping Table for Corresponding Abis Chain or Ring Configurations . . . . . . . . . . . . . . . . . . . . 140

Table 30: Number of TS Available in One Abis Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Table 31: Number of Required TS versus TRX Number and Sub-Multiplexing Type . . . . . . . . . . . . . . . . . . . 143

Table 32: SS7, Ater Mux, DTC and Ater Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8 / 178 3BK 17438 5000 PGZZA Ed.28

Page 9: BSS Configuration

Preface

Preface

Purpose This document describes the configuration rules for Release B11 of theAlcatel-Lucent BSS.

It describes the possible BSS configurations supported in Release B11, andthe new equipment in this release, as well as the corresponding impact onthe various interfaces. Note that the OMC-R and NPO products are beyondthe scope of this document. Refer to the appropriate documentation for moreinformation about these products.

Document Pertinence It applies to operational BSS from Release B11.

This document contains IP transport in the BSS related information. Thisfeature is available commercially from Release B12.

The following convention applies for a 9125 TC equipped with a TC STM1 -IP subrack:

TC STM1 interface board is also referred as TCIF

TC STM1 IP interface board is also referred as TCIFI.

What’s New In Edition 28Lb Interface (Section 10) was updated.

In Edition 27Frequency Hopping (Section 3.12.2) was updated.

In Edition 26The following sections were updated:

Frequency Hopping (Section 3.12.2)

Multiple CCCH (Section 4.4.2).

In Edition 25Multiple CCCH (Section 4.4.2) was updated.

In Edition 24

3BK 17438 5000 PGZZA Ed.28 9 / 178

Page 10: BSS Configuration

Preface

The following Frequency Hopping (Section 3.12.2) was updated.

In Edition 23The following sections were updated:

Frequency Hopping (Section 3.12.2)

Platform Terminals (Section 1.3)

BTS Generation Summary (Section 3.1.3)

MC TRE Module (Section 3.2.2)

MC-RRH (Section 3.3.1)

Distributed BTS Characteristics (Section 3.3.2)

Rules and Assumptions (Section 4.3.4)

The following Multiple CCCH (Section 4.4.2) is improved.

In Edition 22The following sections were updated:

Platform Terminals (Section 1.3)

MC-RRH (Section 3.3.1).

Rules and Assumptions (Section 4.3.4)

In Edition 21The following sections were updated:

BTS Generation Summary (Section 3.1.3)

MC TRE Module (Section 3.2.2)

MC-RRH (Section 3.3.1)

Distributed BTS Characteristics (Section 3.3.2)

In Edition 20The following sections were updated:

Ratio of Mixing CS and PS Traffic in Ater Mux (Section 8.6.4)

9130 BSC Evolution Capabilities (Section 4.3.3)

Pure E1 Configuration (Section 4.3.2.1)

In Edition 19Gb flex rules (Section 12.3) was updated.

In Edition 18The following sections were updated:

Platform Terminals (Section 1.3)

New B11 Features and Impacted Sections (Section 1.6)

10 / 178 3BK 17438 5000 PGZZA Ed.28

Page 11: BSS Configuration

Preface

In section GPRS General Dimensioning and Rules (Section 6.4.1.2) andGb flex rules (Section 12.3) the number of maximum GPUs per BSC was

updated to 12.

In Edition 17The document is updated to specify that IP transport in the BSS is availablefrom Release B12.

In Edition 16Description improvement due to MC-RRH 900 - 2G/3G - Different PA - Separate2G and 3G carriers in same module in MC TRE Module (Section 3.2.2).

Section Lb Interface (Section 10) was added due to the implementation of the“Support of the Lb Interface by BSC” feature.

The following MC TRE Module (Section 3.2.2) and Distributed BTS (Section3.3)are added due to MC/MC RRH module introduction.

The section Antenna Hopping (Section 3.15)has been added due to introductionof the ’Antenna Hopping” feature.Updates are done in the following:

BTS Synchronization (Section 3.4)

Pure E1 Configuration (Section 4.3.2.1)

9130 BSC Evolution Capabilities (Section 4.3.3)

Overview (Section 8.4.1)

Improvement done in SS7 Signaling Link Code (Section 8.5.2).Updates made in:

Rules and Dimensioning (Section 5.3.2)

Gb over IP (Section 6.4.4)

Iur-g Interface (Section 11) was added.

In Edition 15Description improvement in BTS IP Security (Section 3.1.2).

In Edition 14Release name was changed in Document pertinence.

Description improvement due to MC-RRH 900 - 2G/3G - Different PA - Separate2G and 3G carriers in same module in MC TRE Module (Section 3.2.2).

In Edition 13Description improvement is made in GPRS General Dimensioning and Rules(Section 6.4.1.2).

In Edition 12Updates are done in the following:

Pure E1 Configuration (Section 4.3.2.1)

9130 BSC Evolution Capabilities (Section 4.3.3)

3BK 17438 5000 PGZZA Ed.28 11 / 178

Page 12: BSS Configuration

Preface

Overview (Section 8.4.1)

In Edition 11GB Interface (Section 12) was updated.

In Edition 10Improvement done in SS7 Signaling Link Code (Section 8.5.2).

12 / 178 3BK 17438 5000 PGZZA Ed.28

Page 13: BSS Configuration

Preface

In Edition 09Editorial improvement in:

Rules and Dimensioning (Section 5.3.2)

Gb over IP (Section 6.4.4)

In Edition 08Description improvement in:

MFS Clock Synchronization (Section 6.3.4)

RSL and OML (Section 7.4.1)

Rules and Dimensioning (Section 5.3.2).

BTS Synchronization (Section 3.4) has been updated with the introduction ofthe “Network Synchronization of radio time slots” feature.

The section Antenna Hopping (Section 3.15)has been added due to introductionof the ’Anntenna Hopping” feature.

AC/DC Converters Capacity in MBO/MBOE Cabinets (Section 3.14) sectionhas been added.

Restrictions concerning LSL/HSL have been removed from SS7 Links (Section8.5.3).

In Edition 07Restrictions concerning LSL/HSL have been removed from SS7 Links (Section8.5.3).

Editorial improvements in RSL and OML (Section 7.4.1).

In Edition 06Descriptive improvement in Document Pertinence.

In Edition 05Description improvement in MFS Clock Synchronization (Section 6.3.4).

In Edition 04Editorial improvements in RSL and OML (Section 7.4.1).

In Edition 03The following sections were improved:

Hardware Coverage (Section 9.2)

9130 BSC Evolution Capabilities (Section 4.3.3)

Synchro. Fixed Configuration or Cascading Mode (Section 6.2.3.3)

MFS Architecture (Section 6.3.1)

MFS Stand Alone Configuration (Section 6.3.2)

9130 MFS Evolution and 9130 BSC Evolution Rack Shared Configurations

(Section 6.3.3)

3BK 17438 5000 PGZZA Ed.28 13 / 178

Page 14: BSS Configuration

Preface

In Edition 02The MFS Clock Synchronization (Section 6.2.3) was improved.

The section Extended Cell Configuration (Section 3.2.3.4)was improved due to3 extended cells allowance on BTS.

In Edition 01First official release of the document.This document contains information about the following new features:

Information concerning G1/G2 BTS removal in:

Supported Hardware Platforms, Restrictions and Retrofits (Section 1.2)

BTS Generation Summary (Section 3.1.3)

BTS Synchronization (Section 3.4)

Compatibility (Section 3.6.2)

Speech Call Traffic Rates (Section 3.7)

Adaptive Multi-Rate Speech Codec (Section 3.8)

TRE Packet Capability (Section 3.9)

OML and RSL Submultiplexing (Section 3.11)

Rules and Assumptions (Section 4.3.4)

Abis Channel Types (Section 7.3)

Signaling Link on Abis Interface (Section 7.4)

Signaling Link Multiplexing Rules (Section 7.5.2)

Mapping Techniques (Section 7.6)

Abis-TS Defragmentation Algorithm (Section 7.6.2)

Section 3.4. G1 BTS removed

Section 3.3. G2 BTS removed

CS Paging Coordination in the BSS Support in:

Abis Satellite Links (Section 7.8)

Ater Satellite Links (Section 8.7)

AS 800 MFS not supported in B11 in:

BSS Equipment Names (Section 1.1)

Supported Hardware Platforms, Restrictions and Retrofits (Section 1.2)

Delta 9130 BSC Evolution versus 9120 BSC (Section 4.5)

MFS Architecture (Section 6.2.1)

Synchro. Fixed Configuration or Cascading Mode (Section 6.2.3.3)

GPRS General Dimensioning and Rules (Section 6.4.1.2)

Inter-BSS NACC/ Inter-RAT NACC (3G- ->2G) in PLMN Interworking

(Section 2.4)

TRX Dynamic Power Saving in:

TRX Dynamic Power Saving (Section 3.13)

14 / 178 3BK 17438 5000 PGZZA Ed.28

Page 15: BSS Configuration

Preface

New B11 Features and Impacted Sections (Section 1.6)

STM1 on 9130 BSC Evolution in 9130 BSC Evolution (Section 4.3)

Security Enhancements for IP introduction in BTS IP Security (Section 3.1.2)

A-flex in A Interface (Section 9)

TFO for AMR-NB in Rules and Dimensioning (Section 3.8.2)

Full Gb over IP Option in Gb over IP (Section 6.4.4)

3BK 17438 5000 PGZZA Ed.28 15 / 178

Page 16: BSS Configuration

Preface

Audience This document is for people requiring an in-depth understanding of theconfiguration rules of the Alcatel-Lucent BSS:

Network decision makers who require an understanding of the underlying

functions and rules of the system, including:

Network planners

Technical design staff

Trainers.

Operations and support staff who need to know how the system operates in

normal conditions, including:

Operators

Support engineers

Maintenance staff

Client Help Desk personnel.

This document can interest also the following teams:

Cellular Operations

Technical Project Managers

Validation

Methods.

Assumed Knowledge You must have a good understanding of:

GSM

GPRS

Mobile telecommunications.

16 / 178 3BK 17438 5000 PGZZA Ed.28

Page 17: BSS Configuration

1 Introduction

1 Introduction

This section introduces terminology and the Alcatel-Lucent hardware platformssupported by the BSS, as well as the corresponding restrictions and retrofits,and related information.

3BK 17438 5000 PGZZA Ed.28 17 / 178

Page 18: BSS Configuration

1 Introduction

1.1 BSS Equipment NamesThe following table lists the Alcatel-Lucent commercial product names andthe corresponding Alcatel-Lucent internal names.

Note: The names used in this document are those defined for internal use inAlcatel-Lucent, and not the commercial product names.

Alcatel-Lucent CommercialProduct Name

Alcatel-Lucent Internal Name

9100 BTS G3, G3.5, G3.8, G4.2 BTS

9110 Micro BTS 9110 Micro BTS

9110-E Micro BTS 9110-E Micro BTS

9135 MFS MFS DS10 RC23, DS10 RC40

9153 OMC-R OMC-3

9125 TC 9125 TC

9120 BSC 9120 BSC

9130 BSC Evolution MX BSC

9130 MFS Evolution MX MFS

1.2 Supported Hardware Platforms, Restrictions and RetrofitsThe following table lists the Alcatel-Lucent hardware platforms supported by theBSS, and the corresponding restrictions and retrofits.

Equipment B11 Support

BSC

9120 BSC Yes

9130 BSC Evolution Yes

TC

G2 TC Yes

9125 TC Yes

BTS

9110 Micro BTS, 9110-E Micro BTS Yes

G3, G3.5 Yes

G4 (G3.8, G4.2) Yes

18 / 178 3BK 17438 5000 PGZZA Ed.28

Page 19: BSS Configuration

1 Introduction

Equipment B11 Support

MFS

MFS / DS10 * Yes

MFS / DS10 * Yes

MFS 9130 Yes

* : DS10 with network mirroring disks RC23

** : DS10 with local disks RC40

1.3 Platform TerminalsThe Alcatel-Lucent BSS terminals run on PCs with Windows 2000, XP,Windows Vista and Windows 7 Operating Systems.

Note: The support for Windows 7 is available starting with MR3Ed1.3.

1.4 Release MigrationMigration from Release B10 to Release B11 infers the succession of theOMC-R, MFS and BSC.

1.5 BSS UpdatesNo hardware upgrades are required.

3BK 17438 5000 PGZZA Ed.28 19 / 178

Page 20: BSS Configuration

1 Introduction

1.6 New B11 Features and Impacted SectionsThe following table lists the new B11 features and provides links to impactedsections of this document.

New B11 Features Impacted Sections

IP BSS Refer to:

9100 BTS Rules (Section 3.2.3.3)

Delta 9130 BSC Evolution versus 9120 BSC (Section 4.5)

Rules and Dimensioning (Section 5.3.2)

Delta 9130 MFS Evolution versus 9135 MFS (Section 6.5)

Rules (Section 7.9.2)

Abis Network Topology and Transport (Section 7.1)

Cross-Connect Use on Abis Rules (Section 7.6.4.2)

Ater Network Topology and Transport (Section 8.1).

A-flex A Interface (Section 9)

Gb flex GB Interface (Section 12)

TFO for AMR-NB Refer to:

Overview (Section 3.8.1)

Rules and Dimensioning (Section 3.8.2).

Support of Paging Coordination Refer to:

Abis Satellite Links (Section 7.8)

Ater Satellite Links (Section 8.7).

Windows Vista Platform Terminals (Section 1.3)

Windows 7 Platform Terminals (Section 1.3)

Inter-BSS /Inter-RAT NACC PLMN Interworking (Section 2.4)

STM1 on 9130 BSC Evolution 9130 BSC Evolution (Section 4.3)

TRX Dynamic Power Saving TRX Dynamic Power Saving (Section 3.13)

MC TRE MC TRE Module (Section 3.2.2)

MC-RRH 900Mhz 2PA TDM Distributed BTS (Section 3.3)

MC-RRH 900 - 2G/3G -Different PA - Separate 2G and3G carriers in same module

MC TRE Module (Section 3.2.2)

4 CCCH time slots in a cell Multiple CCCH (Section 4.4.2)

20 / 178 3BK 17438 5000 PGZZA Ed.28

Page 21: BSS Configuration

2 BSS Overview

2 BSS Overview

This section describes the Alcatel-Lucent BSS, and corresponding featuresand functions.

3BK 17438 5000 PGZZA Ed.28 21 / 178

Page 22: BSS Configuration

2 BSS Overview

2.1 IntroductionThe GSM Radio System (GRS) is a set of hardware and software equipmentprovided by Alcatel-Lucent to support the radio part of the GSM network. TheGRS comprises one OMC-R and one or more BSS. The OMC-R supervisesone or more BSS.

The BSS provides radio access for Mobile Stations (MS) to the PLMN. Thereare one or more GRS per PLMN.

The following figure shows a BSS with GPRS. All BSS operating over thefield are with/without data service.

A Interface

MS

A Interface

MSC

BSC BTS

BTS

TC

Ater−mux Interface

MFS

BSC

BTS

BTS

BTS

GRS

TC

Ater−mux Interface

BSS

MS

SGSN

BTS

BSS

AbisInterface

Abis Interface

MFS

GPRS

OMC−R

Um

Um

Gs

MSC

Gb Interface

Figure 1: BSS with GPRS

The different Network Elements (NE) within the BSS are:

The Base Station Controller (BSC)

The Transcoder (TC)

The Base Transceiver Station (BTS)

The Multi BSS Fast packet Server (MFS).

22 / 178 3BK 17438 5000 PGZZA Ed.28

Page 23: BSS Configuration

2 BSS Overview

The BSS interfaces are:

The Um interface (air or radio interface), between the MS and the BTS

The Abis interface, used to connect the BTS to the BSC

The Ater Mux interface used to connect:

The BSC to the TC and/or the MFS

The MFS to the TC

The A interface, used to connect the TC to the MSC

The Gb interface, used to connect the MFS to the SGSN (directly, or through

the TC and the MSC).

Note: This document does not describe the Gb interface, between the MSCand the SGSN, as it is not considered to be part of the BSS. For moreinformation about this interface, refer to the BSS Overview.For specific information about the LCS dedicated interfaces, refer to LCSin BSS (Section 6.4.2).

Given that the transmission architecture depends on GPRS, there are twopossible transmission architectures:

Transmission architecture with Circuit Switched (CS) only

Transmission architecture with CS and Packet Switched (PS).

3BK 17438 5000 PGZZA Ed.28 23 / 178

Page 24: BSS Configuration

2 BSS Overview

2.2 Transmission Architecture with CS OnlyThis section provides information about static Abis only.

The following figure shows the overall transmission architecture with CS only,inside the BSS.

BTS

BSC TC

MSC

Ater−mux Interface

A Interface

The transmission interfaces are:

The Abis interface, between the BIE BTS and the BIE BSC

The Ater interface, between the SM and the DTC inside the BSC, and

between the SM and the TRCU inside the TC

The Ater Mux interface, between the BSC-SM and the TC-SM

The A interface, between the TRCU and the MSC.

The Abis, Ater, Ater Mux and A are E1 interfaces structured in 32 timeslots (TS).

The TS are numbered from TS0 to TS31.

Note: Microwave equipment is external to and independent of Alcatel-Lucenttransmission equipment, however, in some cases, the microwave can behoused in the transmission equipment rack and in the BTS.For 9130 BSC Evolution, the SM no longer exists.

24 / 178 3BK 17438 5000 PGZZA Ed.28

Page 25: BSS Configuration

2 BSS Overview

2.3 Transmission Architecture with CS and PSPS is directly linked to GPRS and related MFS platforms.

The following figures represent the MFS with its physical interfaces, whenconnected to the network.

BTS

BSC TC

MSC

Ater−mux Interface

AInterface

Ater−mux Interface

MFS

SGSN

Frame RelayGb

Interface

MFS−TC InterfaceMixed CS/GPRSCS TS

GPRS TSConversionof Protocol

Figure 2: Transmission Architecture with CS and PS (1)

BTS

BSC TC

MSC

GbInterface

MFS

SGSN

MFS−TC InterfaceMixed CS/GPRS

AtermuxCS TS

GPRS TSConversionof Protocol

Frame Relay

Figure 3: Transmission Architecture with CS and PS (2)

In addition to the interfaces defined in Transmission Architecture with CS Only(Section 2.2), the MFS uses the following physical interfaces:

The MFS-BSC interface, which is the Ater Mux interface (a 2Mbit/s PCMlink carrying 32 TS at 64Kbit/s). The Ater Mux interface can be fully

dedicated to GPRS (only PS conveyed), or mixed CS/GPRS. In this case,the CS channels (called CICs) coexist with GPRS channels (called GICs)

on the same link.

The MFS-TC interface, which is also a 2Mbit/s PCM link carrying CS only,GPRS only, or mixed CS/GPRS channels. The Gb interface can be routed

through the TC for SGSN connection. While GSL is used between theBSC and MFS for signaling and not for traffic, the GCH is used between

the BTS and MFS.

3BK 17438 5000 PGZZA Ed.28 25 / 178

Page 26: BSS Configuration

2 BSS Overview

The MFS-SGSN interface carries the Gb interface when there is a dedicatedMFS-SGSN link and the MSC-SGSN interface carries the Gb interface if

Gb extraction at the MSC is used. These interfaces can cross a FrameRelay network (or not).

Note: The MFS can connect directly to the MSC (that is, without crossing theTC) for cabling facilities, however this still results in an MFS-SGSNinterface, because the MSC only cross-connects the GPRS traffic.

2.4 PLMN InterworkingA foreign PLMN is a PLMN other than the PLMN to which OMC-R internal cellsbelong. Only cells external to the OMC-R can belong to a foreign PLMN. Allinternal cells must belong to own OMC PLMN. Both OMC-R owned cells andcells which are external to the OMC-R can belong to the primary PLMN.

The Alcatel-Lucent BSS supports:

Outgoing 2G to 3G handovers

Incoming inter-PLMN 2G to 2G handovers

Outgoing inter-PLMN 2G to 2G handovers

Inter-PLMN 2G to 2G cell reselections

Incoming inter-PLMN 3G to 2G cell reselection

Multi-PLMNThe Multi-PLMN feature allows operators to define several primary PLMN,in order to support network sharing. Inter-PLMN handovers and cellreselections between two different primary PLMN are supported.The Alcatel-Lucent BSS supports several primary PLMN (at least one, up tofour). An OMC-R therefore manages at least one (primary) PLMN and upto eight PLMN (four primary and four foreign).

The OMC-R (and the Tool Chain) is by definition of the feature itself alwaysshared between the different primary PLMN, however:

The MFS can be shared

The BSC cannot be shared

The Abis transmission part can be shared

The transcoder part can be shared.

It is not allowed to modify the PLMN friendly name of a cell, even if theMulti-PLMN feature is active and several PLMN are defined on the OMC-R side.

The primary PLMN cannot be added, removed or modified online.

Customers no longer need to ensure CI (or LAC/CI) unicity over all PLMNinvolved in their network.

With regard to clock synchronization, the only constraint is that when the MFSis connected to different SGSN, these SGSN are not necessarily synchronized.If they are not synchronized, central clocking and cascade clocking cannotbe used on the MFS side.

26 / 178 3BK 17438 5000 PGZZA Ed.28

Page 27: BSS Configuration

3 BTS Configurations

3 BTS Configurations

This section describes the Alcatel-Lucent BTS, and corresponding featuresand functions.

3BK 17438 5000 PGZZA Ed.28 27 / 178

Page 28: BSS Configuration

3 BTS Configurations

3.1 Introduction to the BTS

3.1.1 BTS in BSS

The following figure shows the location of the BTS inside the BSS.

BTS

Abis

Abis

Atermux

A

Gb

OMC −R

IMT

SGSN

BSC TC

MFS

(PCU)

MSC

Gb

Figure 4: BTS in the BSS

3.1.2 BTS IP Security

In the context of IP Security, two types of IP networks are possible:

TrustedA trusted network is either the operator network, in particular on centralsites, or the ISP network when protected.

Untrusted.An untrusted network is a non-protected ISP network.

Figure 5: Network Topology for IP Security

28 / 178 3BK 17438 5000 PGZZA Ed.28

Page 29: BSS Configuration

3 BTS Configurations

Basics for the address definition when a tunnel (between a BTS and an IPsecGW) is used are the following:

OMC, MFS, BSC NE are part of the customer network, the trusted network

BTS are most often connected to a provider network, the untrusted network.

A BTS terminating an IPsec tunnel has two addresses:

An address in the untrusted network, the outer address

An address in the trusted network (used by OMC, MFS & BSC), the inner

address.

Note: When an IPsec tunnel is established between an IPsec gateway and aBTS, a local NEM PC connection to the BTS leads to the establishmentof a second tunnel between the NEM PC and the IPsec gateway. Thistunnel is fully managed by the PC/Windows OS.

3.1.3 BTS Generation Summary

The following table lists the successive BTS generations, along with thecorresponding commercial name.

BTS

G3 BTS

G3 9110 Micro BTS G3.5

Evolution

G4 BTS (*)

G3.8 G4.2 9110-E Micro BTS MBS

G5 MC TRE

Distributed

MC RRH

Note: *: G3.8 and G4.2 are the TD names used respectively for Evolution Step1 and Evolution Step 2.

The BTS are grouped into the following families:

The 9110 BTS (which corresponds to the BTS 9110 Micro BTS and the9110-E Micro BTS)

The 9100 BTS, which includes all BTS, but not the micro BTS.

3BK 17438 5000 PGZZA Ed.28 29 / 178

Page 30: BSS Configuration

3 BTS Configurations

3.2 9100 BTS

3.2.1 9100 BTS Architecture

The 9100 BTS is designed with the following three levels of modules tocover many cell configuration possibilities, including omni or sectored cellsconfigurations:

The antenna coupling level, which consists of ANX, ANY, ANC, AGX,

AGY, AGC and ANB

The TRE modules which handle the GSM radio access

The BCF level implemented in the SUM, which terminates the Abis interface.

Note: The above-mentioned architecture does not include the micro BTS.

3.2.2 MC TRE Module

Terminology:

MC TRE Module

MCPA technology performing power Amplifier for several carriers

Is an extension of the ‘TWIN-module’ in term of TRX capacity. A TWIN

module has a capacity of up to 2 TRE, when a MC-module has acapacity of up to 6 GSM TRE (“up to 6” because fewer than 6 TRE can

be “configured” in a MC-module)

Is multi-standard capable

Is hosted in 9100 Evolium BTS equipped with all BTS modules (SUM,

AN, Single Carrier TRE, TWIN)

MC RRHIs an ‘outdoor box’ with up to 2 MC-modules/MC-TRE inside, full capacity(we can have a MC-RRH with only a single MC-module inside)

Distributed BTSIs one central box (new SUMX) and one or several MC-RRH

A Mono-standard MC-TRX is, from the point of view of a 2G system, a

TRE module

A Multi-standard MC-TRX is a module capable of switching between 2G and3G software

A Multi-mode MC-TRX is a module running 2G+3G software (2G SW

embedding 3G SW), thus also Multi-standard.

MC TRE types:

MC TRX 900 MHz TDM

MC TRX 1800 MHz TDM

MC TRX 900 multistandard (separate 2G and 3G modules in same cabinet

TDM)

30 / 178 3BK 17438 5000 PGZZA Ed.28

Page 31: BSS Configuration

3 BTS Configurations

Figure 6: GSM MC TRE Site Configuration

Figure 7: Multistandard MC TRE Site Configuration

Figure 8: Distributed BTS Site Configuration

The following rules apply:

The MC TRE module is accepted with:

SUMA, SUMX boards

64 kbps statistic and no mux

3BK 17438 5000 PGZZA Ed.28 31 / 178

Page 32: BSS Configuration

3 BTS Configurations

The MC TRE module is not compatible with:

Tx-Diversity, Antenna Hopping

TRX Dynamic Power Saving

16kbps statistic, 64 kbp static multiplexing

The following SBL are created:

MCT Multi-Carrier Tranceiver

OSF other Standard Function / RRH Function.

3.2.3 9100 BTS Configuration

The 9100 BTS family began with the G3 BTS, whose architecture is describedin 9100 BTS Architecture (Section 3.2.1).

Further evolutions were introduced, with the G3.5, G4 variants

The G3.5 BTS, which is a G3 BTS with new power supply modules

The G4 BTS Step 1 (also referred to within TD as the G3.8), which is a G3.5BTS in which the following modules are redesigned:

SUMA, which is the new SUM board

SUM-X, which integrates the Transmission function, the OMU functionand the Master Clock function. SUM-X provides the BTS with the

Ethernet interfaces

ANC, which is a new antenna network combining a duplexer and

a wide band combiner

New power supply modules which are compatible with BTS subracks.

G4 BTS Step 2 (also referred to within TD as the G4.2) introduces a new

TRE with EDGE hardware capability, including:

CBO, which is the compact outdoor BTS

MBS, which provides multistandard cabinets with the following G4.2

modules:

MBI3, MBI5 for indoor use

MBO1, MBO2, MBO1E, MBO2E for outdoor use.

The 9100 BTS family also includes the following micro BTS:

9110 Micro BTS

9110-E Micro BTS.

32 / 178 3BK 17438 5000 PGZZA Ed.28

Page 33: BSS Configuration

3 BTS Configurations

3.2.3.1 Product PresentationThere are different types of cabinets:

The indoor cabinet, which exists in different sizes:

Mini

Medi

MBI3

MBI5

The outdoor cabinet, which exists in different sizes and packaging:

Mini

Medi

Micro

CPT2

CBO

MBO1

MBO1E

MBO2

MBO2E

The different TRE types:

G3 TRE

EDGE TRA

TWIN TRA with the following capabilities:

2 TRE Support

Tx Div Capability

4 Rx Div Support.

3BK 17438 5000 PGZZA Ed.28 33 / 178

Page 34: BSS Configuration

3 BTS Configurations

3.2.3.2 9100 BTS DimensioningThe following table lists the extension and reduction capacity rules for the9100 BTS.

Extension / ReductionConfiguration

Physical Logical

BTS

Minimum Maximum Minimum

9100 BTS 1 TRE* Up to 24 TRE 1 to 6 Sectors 1 TRE 1 TRE

9110 Micro BTS 2 TRE Up to 6 TRE 1 to 6 Sectors 2 TRE 1 TRE

9110-E Micro BTS 2 TRE Up to 12 TRE 1 to 6 Sectors 2 TRE 1 TRE

* : TWIN modules are required in order to attain 24 TRE. In this case, the minimum for the physical extension step is 1TWIN module (2 TRE).

Table 1: 9100 BTS Minimum and Maximum Capacity

The 6 or 12 TRE are configured with three or six modules.

The following table summarizes the typical GSM 900, GSM 1800 and GSM1900 configurations.

These configurations constitute only a subset of the possible configurations.

Network GSM 850MHz, 900 MHz, 1800 MHz, 1900 MHz

Indoor / Outdoor Indoor Outdoor

Cabinet size Mini Medi Mini Medi

Number of TRE 1 sectors 1x2 to 1x4 1x2 to 1x12 1x2 to 1x4 1x2 to 1x12

2 sectors 2x1 to 2x2 2x2 to 2x6 2x1 to 2x2 2x2 to 2x6

3 sectors 3x1 3x1 to 3x4 3x1 to 3x2 3x1 to 3x4

6 sectors 6x1 to 6x4 6x1 to 6x4

Table 2: Typical GSM 900 and GSM 1800/1900 Configurations

34 / 178 3BK 17438 5000 PGZZA Ed.28

Page 35: BSS Configuration

3 BTS Configurations

The following table shows BTS configurations based on TWIN TRA.

BTSConfigurations

Single TRA Based Twin TRA Based

MBI3 3*2 TRA HP /4 RX low loss /2 G5 ANC 3*2 TRA HP / 4 RX low loss

3*4 TRA TWIN / 2 RX

MBI5 3*4 TRA HP / 4 RX low loss /2 G5 ANC 3*4 TRA HP / 4 RX low loss

3*8 TRA TWIN / 2 RX w. ANY2

MBO1, MBO1E 3*2 TRA HP / 4 RX low loss /2 G5 ANC 3*2 TRA HP / 4 RX low loss

3*4 TRA TWIN / 2 RX

MBO2, MBO2E 3*4 TRA HP / 4 RX low loss /2 G5 ANC 3*4 TRA HP / 4 RX low loss

3*8 TRA TWIN / 2 RX w. ANY2

CBO AC 2*1 TRA HP / 4 RX low loss /2 G5 ANC 2*1 TRA HP / 4 RX low loss /2 G5 ANC

2*2 TRA TWIN / 2 RX

CBO DC 3*1 TRA HP / 4 RX low loss /2 G5 ANC 3*1 TRA HP / 4 RX low loss /2 G5 ANC

3*2 TRA TWIN / 2 RX

3BK 17438 5000 PGZZA Ed.28 35 / 178

Page 36: BSS Configuration

3 BTS Configurations

The following table shows the TWIN operation modes supported by the differentBTS hardware generations.

TWIN TRA 2TRX Modeboth on samesector

2TRX Modeboth on diff.sectors

1TRX Modewith TX Div.

1TRX Modew/o TX Div.

BTS- 9100G3- Mini-Indoor yes yes no 1) no 1)

BTS- 9100G3 & G3.5 -Mini -Outdoor yes yes no 1) no 1)

BTS- 9100G3 & G3.5 -Medi -Outdoor yes yes no 1) no 1)

BTS- 9100G4 -Mini -Indoor yes yes no 1) no 1)

BTS- 9100G4- Medi- Indoor yes yes no 1) no 1)

BTS- 9100G3.8 -Mini -Outdoor yes yes no 1) no 1)

BTS- 9100G3.8 -CPT2 -Outdoor yes yes no 1) no 1)

BTS -9100G3.8 -Medi -Outdoor yes yes no 1) no 1)

BTS -9100G4 -MBI-3 yes yes yes 2) yes

BTS -9100G4 -MBI-5 yes yes yes 2) yes

BTS -9100G4 -MBO-1 yes yes no 1) no 1)

BTS -9100G4 -MBO-2 yes yes no 1) no 1)

BTS -9100G4 -CBO yes yes yes 2) yes

BTS -9100G5 -MBO-1E yes yes yes 2) yes

BTS -9100G5 -MBO-2E yes yes yes 2) yes

Note: 1): Given that the cell planning is done for these network elements, theTX Div. feature is not supported.2): The ordered configuration for TX Div. will be delivered from thefactory by default with the 2TRX Mode cabled in different sectors andmust be configured onsite for TX Div.

36 / 178 3BK 17438 5000 PGZZA Ed.28

Page 37: BSS Configuration

3 BTS Configurations

The following table summarizes the typical Multiband 900/1800 BTSconfigurations.

These configurations constitute only a subset of the possible configurations.

Network Multiband BTS or Multiband Cell

Cabinet size Medi/ Number of TRE

4 sectors 2x2 GSM 900 & 2x4 GSM 1800

2x4 GSM 900 & 2x2 GSM 1800

6 sectors 3x2 GSM 900 & 3x2 GSM 1800 (outdoor only)

Diversity 4 sectors: Yes

6 sectors: Yes

Table 3: Typical Multiband Configuration G3 BTS

3.2.3.3 9100 BTS RulesThe following BTS rules apply:

The same BTS supports all four types of TRA on a cell

SUMA is required to support TWIN

A second Abis is necessary for EDGE and for more than 12 TRX, except for

small and medium BTS

The BTS must not contain any G3 TREs for a configuration with more

than 12 TREs

IP transport mode

3.2.3.4 Extended Cell ConfigurationIt is possible to have up to 12 CS+PS capable TRX, including the BCCHTRX, in each cell (inner and outer).

9110 Micro BTS and 9110-E Micro BTS do not support extended cellconfigurations.

3 extended cell per BTS are allowed.

SUMP does not support the extended cell feature.

The inner and the outer of the extended cell must have the sameACCESS_BURST_TYPE parameter value.

3BK 17438 5000 PGZZA Ed.28 37 / 178

Page 38: BSS Configuration

3 BTS Configurations

3.2.3.5 Mixture of 9110-E Micro BTS and 9110 Micro BTSThe following four configurations rules apply for pure 9110-E Micro BTS and9110 Micro BTS/9110-E Micro BTS mixed configurations:

A maximum of three hierarchic levels (master, upper and lower slave)are allowed

Each 9110 Micro BTS upper slave terminates the master-slave link, which is

the Inter Entity Bus (IEB)

9110 Micro BTS is not allowed in the lower slave position

9110-E Micro BTS must be set as the master in 9110 Micro BTS/9110-E

Micro BTS mixed configurations.

The following figure shows a mixed 9110 Micro BTS/9110-E Micro BTSstandard configuration.

MasterM5M

Upper Slave 1M5M

Lower Slave 11M5M

Lower Slave 12M5M

Upper Slave 2M4M

3.2.3.6 Mixed Configuration G3 and G4In the case of a mixed hardware configuration in a cell with both G3 andG4 TREs in the same cell, the E-GSM TRX is associated to G4 TRE andP-GSM TRX to G3 TRE.

3.3 Distributed BTS

3.3.1 MC-RRH

The characteristics of MC-RRH module are:

Baseband transceiving capability

Radio access support

Embedded antenna network components

Communicating with its BTS site manager (central box) through an IP

network

The configuration status for MC-RRH are:

ID - an integer between 10 and 99

Sector number - an integer between 1 and 6

First port for BTS links

Second port for BTS links

38 / 178 3BK 17438 5000 PGZZA Ed.28

Page 39: BSS Configuration

3 BTS Configurations

Status for of each of the three ports

BTS-internal IP addressing

The supported power budget parameter 2PA.

The configuration rules are:

MC-RRH is an ‘outdoor box’ with up to 2 MCPA inside

MC-RRH can have two CPRI links

For RRH900 1PA:Only a maximum number of 4 TRX can be mapped and it can be usedonly in 2G (GSM).

For RRH900 2PA:

In case of 2G usage the maximum number of TRX per PA is 3 , meaninga maximum number of 6 TRX per RRH

In case of 2G/3G usage the maximum configurations allowed are: 4TRXfor the 2G PA and the other PA used for other standard (3G).

MC-RRH 1800 1PA supports only star configuration.

3.3.2 Distributed BTS Characteristics

The Distributed BTS characteristics:

Distributed BTS is supported with SUMX 19”

Ring and chain configurations, exclusive or mixed are supported. Star

configuration is supported.

The total number of MC-RRH in a distributed BTS is 6 ( the BTS has up to 6sectors and there are up to 2 MC-RRH modules per sector).

3BK 17438 5000 PGZZA Ed.28 39 / 178

Page 40: BSS Configuration

3 BTS Configurations

3.4 BTS SynchronizationIn terms of dimensioning, from a software point of view, there can be upto three BTS slaves.

Depending on the hardware configuration, the number of BTS slaves can bereduced to two or one BTS.

The following table lists the type of slave BTS which can be synchronized to themaster and the number of BTS slaves, for each BTS master.

Master Slaves HardwareLimitation

SoftwareLimitation

9100 medi/mini 9100 3 3

If GPS synchronization is used the master BTS must be equipped with a SUMXboard and a GPS receiver. On the slave BTSs there are no requirements onthe type of the SUM board to benefit of this synchronization mode.

3.5 Physical Channel Types

3.5.1 GSM

In terms of TS content, there are several possible configurations, the mostrelevant of which are:

Traffic channels (TCH)

Signaling channels:

BCC = FCCH + SCH + BCCH + CCCH

CBC = FCCH + SCH + BCCH + CCCH + SDCCH/4 + SACCH/4

SDC = SDCCH/8 + SACCH/8.

Where:

BCCH transports broadcast system information

SDCCH transports signalling outside a call. It can be static (fixed positionon the TS), or dynamic (variable existence in time).

Note: It is possible to define two CBCH channels for cells used for SMS-CB:

The basic CBCH channel

The extended CBCH channel.

If the basic CBCH channel is configured, the extended CBCH channelcan be optionally configured. The extended CBCH channel is managedin the same manner as the basic CBCH channel. When the initialSDCCH number in a cell is small, a reduction in the number of SDCCHdue to the configuration of the CBCH can increase the SDCCH averageload. In such a case, the operator may need to add one SDCCH TS.

40 / 178 3BK 17438 5000 PGZZA Ed.28

Page 41: BSS Configuration

3 BTS Configurations

3.5.2 GPRS

GPRS radio timeslots (PDCH) are dynamically allocated according to thefollowing, customer-defined parameters:

MIN_PDCH defines the minimum number of PDCH TS per cell

MAX_PDCH defines the maximum number of PDCH TS per cell

MAX_PDCH_HIGH_LOAD defines the maximum number of PDCH TS per cell

in the case of CS traffic overload.

These parameters allow the operator to prioritize CS traffic versus GPRS trafficin order, for example, to avoid a QoS drop while introducing GPRS.

The following quality parameters can also be used:

N_TBF_PER_SPDCH defines the number of mobile stations that can share the

same PDCH

MAX_PDCH_PER_TBF defines the maximum number of PDCHs allocatedto a single (E)GPRS connection.

3.5.3 Dual Transfer Mode

A dual transfer mode capable mobile station can use a radio resource for CStraffic and simultaneously one or several radio resources for PS traffic.

Requirements:

The Gs interface is a prerequisite to fully support the DTM feature. However,

the BSS does not forbid the activation of the DTM feature if the Gs interfaceis not supported (i.e. when the network mode of operation is set to NMO

II or NMO III)

Cells where MAX_PDCH_HIGH_LOAD < 2 ((E)GPRS) is mandatory for DTMoperation, and at least two PDCHs are required in the PS zone for allocation

of DTM resources to (at least) one DTM call)

Handover causes with low priority are disabled with a mobile station in DTM.

DTM is supported:

For both GPRS and (E)GPRS

As (E)GPRS is preferentially offered in macro cells, the BSS ensures

that at least one PDCH can be used in micro cells to re-direct the mobilestation towards the macro cells. This means that the BSS allows a PDCH

used by a mobile station operating in DTM mode to be shared by another(E)GPRS mobile station.

Only multislot operation DTM MSs are supported.

3BK 17438 5000 PGZZA Ed.28 41 / 178

Page 42: BSS Configuration

3 BTS Configurations

DTM is not supported in the following cases:

Single slot operation DTM MSs are not supported in the Alcatel-Lucent BSS

DTM is not supported in following types of cells:

Non-9100 BTS

Extended cells.

DTM is not supported in half rate configurations.

Concerning power control management:

In the uplink direction:

On the mobile station side, the power control in different timeslots isindependent and with no restriction on the difference of power transmittedin adjacent timeslots. Therefore, there are no specific requirements inthe uplink direction.

On the TCH, the mobile station transmits with the output power

computed based on the BSS power command (if UL power control

is activated in the CS domain)

On the PDCH, the mobile station transmits with the output power asa function of the GPRS power control parameters GAMMA_TNx and

ALPHA and the signal level received in the DL.

In the downlink direction:The BTS output power variation between all blocks addressed to aparticular mobile station within a TDMA frame does not exceed 10 dB formobile stations operating in DTM. Moreover, the power difference betweencontiguous CS and PS timeslots must be in the same range of 10 dB.

3.5.4 Extended Dynamic Allocation

Extended Dynamic Allocation (EDA) is an extension of the basic DynamicAllocation (E)GPRS MAC mode to allow higher throughput in uplink for type 1mobile stations (supporting the feature) through the support of more than tworadio transmission timeslots.

With the EDA mode, the mobile station detects an assigned USF value for anyassigned uplink PDCH and allows the mobile station to transmit on that PDCHand all higher numbered assigned PDCHs.

The mobile station does not need to monitor all the downlink PDCHcorresponding to its allocated uplink PDCH, which allows the type 1 mobilestation to support configurations with more uplink timeslots (and thus with lessdownlink timeslots).

The radio configuration is only used if the uplink TBF (in EDA mode) can bealone on its assigned uplink timeslots and not in front of downlink timeslotssupporting the PACCH channel of at least one downlink TBF not belongingto the same mobile station.

42 / 178 3BK 17438 5000 PGZZA Ed.28

Page 43: BSS Configuration

3 BTS Configurations

Rules:

Only multislot classes 1-12 are supported

EDA operations in DTM mode are not supported

EDA operations are not supported in the case of RT TBF and RT PFC

EDA is only used in UL in TS configurations for which (Dynamic Allocation)DA is not possible (if both EDA and DA are possible in UL for a given

TS configuration, then DA is used)

As the shifted-USF operation is not supported, EDA will not be handled formobile stations whose multislot class is 7 (1+3 configuration).

EDA is supported for mobile stations whose multislot class is 3, 11 or 12:

For multislot class 3: EDA is used in UL for the 1+2 configuration (i.e. 1

TS in DL, 2 TSs in UL), and DA is used for all the other configurations(2+1 and 1+1)

For multislot class 11: EDA is used in UL for the 2+3 and 1+3 configurations,

and DA is used for all the other configurations (4+1, 3+2, 3+1, 2+2, 2+1,1+2 and 1+1)

For multislot class 12: EDA is used in UL for the 1+4, 2+3 and 1+3configurations, and DA is used for all the other configurations (4+1, 3+2,

3+1, 2+2, 2+1, 1+2 and 1+1).

In the TS configuration for which EDA is used in UL, a PDCH on a given TRXmust verify the following conditions in order to be included in a candidatetimeslot allocation:

The PDCH does not support any (GPRS or (E)GPRS) Best-Effort UL TBFs

of other mobile stations

The PDCH does not support any resources allocated to (GPRS or (E)GPRS)

RT PFCs in the UL direction for other mobile stations

The PDCH does not support any PACCH TS of (GPRS or (E)GPRS)Best-Effort DL TBFs of other mobile stations

The PDCH does not support any PACCH TS of (GPRS or (E)GPRS) RT

PFCs in the DL direction for other mobile stations.

3BK 17438 5000 PGZZA Ed.28 43 / 178

Page 44: BSS Configuration

3 BTS Configurations

3.6 Frequency Band Configuration

3.6.1 Overview

E-GSM is used for the whole GSM-900 frequency band, i.e. the primary band(890-915 MHz / 935-960MHz) plus the extension band, G1 band (880-890MHz/925-935 MHz). This corresponds to 174 addressable carrier frequenciesand leads to an increase of 40% against the 124 frequencies in the primaryband.

Frequency span (U)ARFCNs Uplink frequencies Downlink frequencies

P-GSM band 1.. 124 890.2 to 915.0 MHz 935.2 to 960.0 MHz

G1 band 975.. 1023, 0 880.2 to 890.0 MHz 925.2 to 935.0 MHz

GSM850 band 128... 251 824.2 MHz to 848.8 MHz 869.2 MHz to 893.8 MHz

DCS1800 band 512.. 885 1710.2 to 1784.8 MHz 1805.2 to 1879.8 MHz

DCS1900 band 512.. 810 1850.2 to 1909.8 MHz 1930.2 to 1989.8 MHz

3.6.2 Compatibility

The following table shows TRE generation equipment and the correspondingradio bands.

Multiband (BTS or Cell)

GSM850

GSM 900 GSM1800

GSM1900

850 /1800

850 /1900

900 /1800

900 /1900

G3/G4 Yes (*) E-GSM Yes Yes Yes Yes Yes Yes

9110-EMicro BTS

Yes E-GSM Yes Yes Yes Yes Yes Yes

9110 MicroBTS

N.A P-GSM Yes N.A N.A N.A Yes N.A

* : The BTS can be a G3 BTS, but the TRE is a G4.2 TRE.

Table 4: Frequency Band Configuration

44 / 178 3BK 17438 5000 PGZZA Ed.28

Page 45: BSS Configuration

3 BTS Configurations

3.6.3 Rules

From functional point of view, there are two types of multiband behavior:

Multiband BTSThe frequency bands (850/1800, or 850/1900, or 900/1800) are used indifferent sectors of the BTS. There are two BCCH carriers, one in the sectorwith frequency band 1, and another one in the sector with frequency band 2.

Multiband cellThe sector (cell) is configured with TRX in band 1, and TRX in band 2. Onlyone BCCH carrier is configured for the sector.

Only CS is supported by the G1 band TRX and by the inner zone TRXs of aconcentric or a multiband cell

3.7 Speech Call Traffic RatesThere are no compatibility limitations between BTS and TC generations.

The following table shows the hardware transmission compatibility.

9125 TC (MT120) G2 TC(DT16/MT120)

9100, 9110 Micro BTS,9110-E Micro BTS

Yes Yes

The following table shows the different rates available over different generationsof equipment.

BTS Traffic Rate

9100, 9110 Micro BTS,9110-E Micro BTS

Dual Rate (DR) (HR+FR)

Full Rate (FR)

Enhanced Full Rate (EFR)

Adaptive Multi-Rate speech codec (AMR).

3BK 17438 5000 PGZZA Ed.28 45 / 178

Page 46: BSS Configuration

3 BTS Configurations

3.8 Adaptive Multi-Rate Speech Codec

3.8.1 Overview

Adaptive Multi-Rate (AMR) is a set of codecs, of which the one with the bestspeech quality is used, depending on radio conditions.

Under good radio conditions, a codec with a high bit-rate is used. Speech isencoded with more information so the quality is better. In the channel coding,only a small space is left for redundancy.

Under poor radio conditions, a codec with a low bit-rate is chosen. Speech isencoded with less information, but this information can be well protected due toredundancy in the channel coding.

The BSS dynamically adapts the codec in the uplink and downlink directions,taking into account the C/I measured by the BTS (for uplink adaptation) and bythe mobile station (for downlink adaptation).

The codec used in the uplink and downlink directions can be different, as theadaptation is independent in each direction.

The AMR Wideband (AMR-WB) codec is developed as a multi-rate codec withseveral codec modes such as the AMR codec. As in AMR, the codec mode ischosen based on the radio conditions.

AMR Wide Band

AMR-WB family contains four codec types: FR_AMR-WB, OFR_AMR-WB,

OHR_AMR-WB and UMTS_AMR-WB (only available in 3G). The Alcatel

BSS supports FR_AMR-WB.

AMR-WB family contains five codec modes: 23.85 kbit/s, 15.85 kbit/s,

12.65 kbit/s, 8.85 kbit/s, 6.60 kbit/s

The FR_AMR-WB codec type uses the following codec modes: 12,65kbit/s, 8,85 kbit/s, 6,60 kbit/s.

AMR-WB is optional for the MS but an MS supporting AMR-WB must

support all these modes.

AMR Narrow Band

AMR-NB family contains five codecs types: FR_AMR, HR_AMR,OHR_AMR, UMTS_AMR, UMTS_AMR_2. The Alcatel BSS supports

FR_AMR, HR_AMR

The FR_AMR codec type contains a set of eight codec modes (4,75, 5,15,

5,90, 6,70, 7,40, 7,95, 10,20, 12,20 kbit/s) and the HR_AMR codec typecontains six codec modes (4,75, 5,15, 5,90, 6,70, 7,40, 7,95 kbit/s)

The codec mode HR_AMR 7,95 Kbit/s is not supported by the Alcatel BSS

AMR-NB is optional for the MS.

The Tandem Free Operation (TFO) avoids double transcoding in mobile tomobile speech calls.

46 / 178 3BK 17438 5000 PGZZA Ed.28

Page 47: BSS Configuration

3 BTS Configurations

3.8.2 Rules and Dimensioning

The following table provides a list of AMR codecs.

Codec Bit Rate Full Rate Half Rate

12.2 Kbit/s X

10.2 Kbit/s X

7.95 Kbit/s X X (*)

7.40 Kbit/s X X

6.70 Kbit/s X X

5.90 Kbit/s X X

5.15 Kbit/s X X

4.75 Kbit/s X X

* : Not supported by the Alcatel-Lucent BSS.

Table 5: AMR Codec List

During a call, a subset of one to four codecs is used, configured by O&Mon a per BSS basis.

A different number of codecs and different subsets can be defined for FR (oneto four codecs out of the eight codecs available), and for HR (one to fourcodecs out of the five codecs available).

The codec subset is the same in uplink and downlink.

The following table provides a list of AMR-WB codecs. Only codec bit-rates inbold are available.

Codec Bit RateAMR WB

Full Rate Half Rate GMSK 8-PSK

23.85 kbit/s x x

15.85 kbit/s x x

x x

x x

12.65 kbit/s

x x

x x

x x

8.85 kbit/s

x x

3BK 17438 5000 PGZZA Ed.28 47 / 178

Page 48: BSS Configuration

3 BTS Configurations

Codec Bit RateAMR WB

Full Rate Half Rate GMSK 8-PSK

x x

x x

6.60 kbit/s

x x

Table 6: AMR-WB Codec List

The lowest bit rate providing excellent speech quality in a clean environment is12.65 kbit/s. Higher bit rates are useful in background noise conditions and inthe case of music. Also, lower bit rates of 6.60 and 8.85 provide reasonablequality, especially if compared to narrow band codecs.

On the AMR-WB Air interface, only GMSK is used for FR TCH.

The AMR-WB interface is used with the MT120 WB board and the AMR-NBinterface is used with the MT120 NB board.

Supported channel types:

All TCH/WFS: supported

RATSCCH: supported

All O-TCH/WFS, O-TCH/WHS and O-TCH/AHS are not supported.

TC G2, 9125 TC support AMR-WB.

For TFO with AMR-NB, the rules are:

An MS supporting FR_AMR must support all the FR codec modes andall the HR codec modes

An MS supporting only HR_AMR must support all the HR codec modes

Only one AMR configuration per AMR-NB codec type is active in the BSS

The AMR configurations with Optimization Mode allowed are not supported.

Intracell handovers for resolution of codec mismatches in TFO are forbidden.Only the critical HO causes are offered to DTM calls.

48 / 178 3BK 17438 5000 PGZZA Ed.28

Page 49: BSS Configuration

3 BTS Configurations

The following table refers to supported software versions versus hardwareboards and features.

HardwareBoard /Feature

AMR NBwithoutTFO NB

TFO NB TFO FR,HR, EFR

AMR WBincludingTFO WB

TFO withAMR-NB

LegacyMT120

yes no yes no no

MT120-NB yes no yes no yes

MT120-WB yes no yes yes no

Table 7: Software Version versus Hardware Board/Feature

3.8.3 Thresholds and Hysteresis

The choice of the best codec is done comparing the quality factor to thresholdsand hysteresis

For the Adaptive Multi-Rate Wideband Speech Codec GMSK, four importantparameters shown in the table below are checked.

Parameter Name Definition Type Range / DefaultValue

AMR_WB_ GMSK_THR_1 Thresholds for AMR widebandFR in GMSK codec modeadaptation (between lowestcodec mode and second codecmode )

Threshold min=0 max=31.5default=to be definedby simulation

AMR_WB_ GMSK_THR_2 Thresholds for AMR widebandFR in GMSK codec modeadaptation (between secondlowest codec mode and highestcodec mode )

Threshold min=0 max=31.5default=to be definedby simulation

AMR_WB_ GMSK_ HYST_1 Hysteresis for AMR widebandFR in GMSK codec modeadaptation for transition betweenlowest codec mode and secondlowest codec mode.

Number min=0 max=7.5default=to be definedby simulation

AMR_WB_ GMSK _HYST_2 Hysteresis for AMR widebandFR in GMSK codec modeadaptation for transition betweenhighest codec mode and secondlowest codec mode

Number min=0 max=7.5default=to be definedby simulation

Table 8: Thresholds and Hysteresis

3BK 17438 5000 PGZZA Ed.28 49 / 178

Page 50: BSS Configuration

3 BTS Configurations

Mandatory rules:

AMR_WB_GMSK_THR_1<=AMR_WB_GMSK_THR_2

AMR_WB_GMSK_THR_1+AMR_WB_GMSK_HYST_1<=AMR_WB_GMSK_THR_2+AMR_WB_GMSK_

Note: The OMC-R implements the first mandatory rule and it does not allowAMR_WB_GMSK_THR_2 to be bigger than AMR_WB_GMSK_THR_1.However, if the second one is not implemented, it could leadto situations like the following: AMR_WB_GMSK_THR_1 +AMR_WB_GMSK_HYST_1 > AMR_WB_GMSK_THR_2 or even- AMR_WB_GMSK_THR_1 + AMR_WB_GMSK_HYST_1 >AMR_WB_GMSK_HYST_2,

3.9 TRE Packet CapabilityThe value "0" of the TRX Preference Mark (TPM) means that the concernedTRX is PS capable.

The following table shows the data service rate available over differentgenerations of equipment.

Up to 9.6Kbit/s

GPRSCS-1and CS-2

GPRSCS-3and CS-4

(E)GPRSMCS-1 toMCS-9

G4 TRE and9110-E Micro BTS

Yes Yes Yes Yes

TWIN TRE Yes Yes Yes Yes

G3 TRE and 9110Micro BTS

Yes Yes Yes

Table 9: Data Call Traffic

50 / 178 3BK 17438 5000 PGZZA Ed.28

Page 51: BSS Configuration

3 BTS Configurations

3.10 BTS Power LevelThe BTS power can be adjusted further than Unbalanced Output Power orCell Shared.

The BTS power can be reduced by the operator due to the following parameters:

BS_TXPWR_ATTENUATION

BS_TXPWR_ATTENUATION_INNER (for concentric cells)

T3106-D

T3106-F

PWR_ADJUSTMENT.

The first 3 parameters on one side and the last one on other side are computedseparately. If one or the other is changed by the operator, the left one ischanged by the OMC.

At migration time, the following values must be respected:

T3106-DMax (( old value T3106-D ‘AND’ ‘11111111000’), (1104))

T3106-Fold value T3106-F ‘AND’ ‘1111111100’.

These settings are per step of 0.1db.

The computations precision is 0.1db.

3.11 OML and RSL SubmultiplexingThe following table shows the submultiplexing OML with RSL over differentgenerations of equipment.

RSL and OMLStatistical Multiplex

RSL & OMLTS64Kbit/s

RSL 16KbitsStaticMultiplex

64 Kbit/s 16 Kbit/s

9100 Yes Yes Yes Yes

Where:

16 K Static multiplexing means up to four RSLs of a BTS are multiplexed onthe same Abis TS

64 K Statistical multiplexing means up to four RSL and optionally the OMLof a BTS are multiplexed on the same Abis TS

16 K Statistical multiplexing means the RSL and optionally the OML of a

BTS are multiplexed in the first 2 bit of the TS reserved for TCH handling(the first one of the two TS dedicated to handle the traffic of the TRX).

Note: Three RSLs can not be multiplexed on one Abis timeslot.

3BK 17438 5000 PGZZA Ed.28 51 / 178

Page 52: BSS Configuration

3 BTS Configurations

The number of RSL or OML that can be mapped to one HDLC channel isas follows:

No multiplexing: 1 OML or 1 RSL, whatever the BSC generation

Static multiplexing: 1 OML or 1 RSL, regardless of the BSC generation

64kb/s statistical multiplexing:

9120 BSC: 1 OML or 1 RSL

9130 BSC Evolution: 1 HDLC embeds all OML/RSL multiplexed on a

given Abis timeslot. The number of OML/RSL depends then on Abismultiplexing rule.

16kb/s statistical multiplexing:

9120 BSC: 1 OML or 1 RSL

9130 BSC Evolution: 1 HDLC embeds all OML/RSL multiplexed on agiven Abis timeslot. The number of OML/RSL depends then on the Abis

multiplexing rule.

52 / 178 3BK 17438 5000 PGZZA Ed.28

Page 53: BSS Configuration

3 BTS Configurations

3.12 Cell Configurations

3.12.1 Cell Types

The BSS supports a set of cell configurations designed to optimize the reuseof frequencies.

The following profile types characterize the cells:

Cell dimensionMacro up to 35 Km but up to 70 km with extended cells. Micro up to 300meters.

Cell CoverageThere are four types of coverage: single, lower (overlaid), upper (umbrella),and indoor.

Cell PartitionThere are two types of frequency partition: normal or concentric.

Cell RangeThe cell range can be either normal or extended.

Cell Band TypeA cell belongs to 850, 900, 1800 or 1900 bands, or to two frequency bandsin the case of a multiband cell.

The following table describes the cell types.

Cell Type Dimension Coverage Partition Range

Micro Micro Overlaid Normal Normal

Single Macro Single Normal Normal

Mini Macro Overlaid Normal Normal

Extended Macro Single Normal Extended

Umbrella Macro Umbrella Normal Normal

Concentric Macro Single Concentric Normal

Umbrella-Concentric Macro Umbrella Concentric Normal

Indoor Micro Micro Indoor Normal Normal

3BK 17438 5000 PGZZA Ed.28 53 / 178

Page 54: BSS Configuration

3 BTS Configurations

The following table lists the Alcatel-Lucent BSS cell types for multiband cells.

Cell Type Dimension Coverage Partition Range

Micro Micro Overlaid Concentric Normal

Single Macro Single Concentric Normal

Mini Macro Overlaid Concentric Normal

Umbrella Macro Umbrella Concentric Normal

Non extended, non concentric mono-band cells of any type can be converted tomultiband cells by adding TRXs of a different band.

The micro concentric, mini concentric, indoor concentric cells must bemultiband (the allowed FREQUENCY_RANGE is PGSM-DCS1800 orEGSM-DCS1800). This restriction does not apply to external cells.

The Unbalancing TRX Output Power per BTS sector allows unbalancedconfigurations. The level of the output power is no more adapted to the lowerTRE output in the sector. One group of transceivers is configured to transmitwith high output power, the other group is configured to transmit with low outputpower. This configuration is available in a concentric cell, where the outputpower balancing is performed on a zone basis instead of on the sector basis.

When is activated, it is recommended to the operator to set the TRX PreferenceMark parameter to 0 for all TRX of the outer zone.

For the extended cell, the following rules apply:

(E)GPRS is supported

NC2 mode is not offered

The Network Assisted Cell Change is not allowed

The (Packet) PSI status procedure is not allowed

The extended inner cell is not declared in the neighbor cells reselection

adjacencies, because it is barred

Up to 12 TRX CS+PS capable, including the BCCH TRX can be offered in

each cell (inner + outer)

The extended inner and outer cells are in the same Routing Area

No frequency hopping is allowed neither in the extended inner cell nor in theextended outer cell for (E)GPRS TRX

In an extended cell, the allowed coding schemes are:

CS1... CS4, MCS1...MCS9 in the inner cell for the both directions

CS1... CS4, MCS1...MCS4 in the outer cell for the both directions.

54 / 178 3BK 17438 5000 PGZZA Ed.28

Page 55: BSS Configuration

3 BTS Configurations

3.12.2 Frequency Hopping

The frequency hopping types do not reflect the technology used, but ratherthe structure of the hopping laws.

The following table shows the hopping types supported in Release B11.

Hopping Type Supported in B11

Non Hopping (NH) X

Base Band Hopping (BBH) X

Radio Hopping (RH) * -

Non Hopping / Radio Hopping (NH/RH) X

NH/RH with Pseudo Non Hopping TRX X

BBH with Pseudo Non Hopping TRX X

* : This hopping mode works only with M1M, M2M that are obsolete.

Base Band Hopping (BBH):

The FHSx including a number of frequencies equal to the number of used

TRX has to be assigned on TS1-7 of all TRX

The FHSy including the same frequencies as FHSx except the BCCHARFCN has to be assigned to TS0 of all TRX except the TRX supporting

BCCH ( all Non BCCH TRX)

The TS0 from the BCCH TRX is configured with the BCCH ARFCN (non

hopping). This is the basic BBH configuration

In case the Multiple CCCH feature is activated with three or four CCCH, thefollowing limitations apply:

The CCCH slots from the BCCH TRX are not hopping

On all the other TRX, the TS number corresponding to a CCCH slot mustnot contain the BCCH frequency in their hopping sequence

With 4 CCCH, multiple PDCH allocation is not possible on these TRX.

With 3 CCCH, the maximum PDCH allocation would be 3 TS per PDCH

group. In order to avoid this situation, either change cell configuration toNH/RH or, on cells with 3 TRX or more, create two groups of TRX. One

group must contain at least 2 TRX (BCCH TRX + another TRX) with 2FHS, the other group will contain the GPRS TRX. Another option is to

add an SDD channel on each TRX.

Radio Hopping or synthesizer frequency hopping (RH) is when the TRX donot get fixed frequency assignments, but can change their frequency fromTS to TS according to a predefined hopping sequence. The number ofapplicable hopping frequencies can be larger than the number of equippedTRX: N(hop) >= N(TRX).

3BK 17438 5000 PGZZA Ed.28 55 / 178

Page 56: BSS Configuration

3 BTS Configurations

Inside an FHS, it is possible to mix frequencies belonging to the P-GSMband and the G1 band, depending on the RR_EGSM_Alloc_strategy; othermixes are not allowed.

If there are several FHS, all PS TRX have the same FHS.

56 / 178 3BK 17438 5000 PGZZA Ed.28

Page 57: BSS Configuration

3 BTS Configurations

3.12.3 Shared Cell

3.12.3.1 OverviewEach BTS can manage one (all BTS generations) or several cells (from G3BTS). In the case of a cell shared by several BTS, is possible to supportup to 16 TRX.

Only the 9100 BTS supports shared cells. In the case of a monoband sharedsector, every type of cell is supported except for extended cells.

In general, a BTS comprises several physical sectors. Until Release B7, a cellwas mapped on a physical sector. The operator can associate two physicalsectors pertaining to different BTS with one shared sector. This shared sectorcan be mono or bi-band and it can support one cell as a normal sector. It takesthe identity of one of the physical sectors. Between the two sectors, one is themain sector, and the other is the secondary sector.

This allows:

Existing cells to be combined into one (for example, one 900 cell and one

1800 cell in order to get a multi band cell)

Existing cells to be extended only by adding new hardware in a new cabinet,not by modifying the arrangement of the existing BTSs

Support for 3x8 in two racks.

The linked BTS can still be connected on the Abis side, by the same or adifferent Abis link, the same or different Abis TSU, or by same or differentmultiplexing schemes.

The shared cell requires a specific attribute that must be defined by theoperator (either primary or secondary) at the TRX level.

3.12.3.2 RulesThe following rules apply:

Clock synchronizationThe BTS in a shared cell must be synchronized.

Hardware coverageFor G3 BTS and beyond, generations can be mixed as long as master/slaveconfigurations are possible. Cell sharing is not supported on 9110-E MicroBTS and 9110 Micro BTS, because they cannot be clock synchronized.

Output Power.When a certain sector is extended with another sector, transmission outputpowers can be different. In this case, a software adjustment of the outputpower is performed. There is a separate power adjustment for 900MHz and1800 MHz. In all cases, if there is a power discrepancy, only an alarm issent, without any further consequences, and sectors continue to transmittraffic. In a cell shared over two BTS, only one sector (main or secondary)can support GPRS traffic (not both).The unbalancing TRX output power also applies on shared cells.

3BK 17438 5000 PGZZA Ed.28 57 / 178

Page 58: BSS Configuration

3 BTS Configurations

3.13 TRX Dynamic Power SavingThe scope of the TRX dynamic power saving feature is to reduce BTS powerconsumption. The solution consists in switching off the Power Amplifier (PA)bias of a TRX as soon as several consecutive timeslots are not used in DLon this TRX, which should allow a significant reduction of power consumption(power consumption is close to “total shut-down” once the PA bias is switchedoff). This feature is optional and is controlled by the number of TRXs of all thecells where the feature is enabled.

This feature is supported on all TRE generations (G3, G4 and G5) and in allBSS architectures (TDM or IP transport).

3.14 AC/DC Converters Capacity in MBO/MBOE CabinetsIn MBO and MBOE cabinets PM12 AC/DC converters are used. The numberof PM12 required in a cabinet depends on the number of TRXs and type ofmodules used. See the correspondence in the table below:

Up to 6TRX withOptions 1) up to

More than6 TRX withOptions 1)

up to

TRX Type Upto 6TRX

Morethan6TRX

Morethan12TRX

600 1200 1800 600 1200

Single MP900/1800

2 MBOE:2

MBO:3

MBOE:3

2 MBOE:2 or33)

MBO:3

MBOE:3

MBO:4

3 MBOE:3

MBO:4

Single HP900/1800

Single MP19002)

MBOE:2

MBO:3

MBOE:3

MBO:4

- MBOE:2

MBO:3

MBOE:3

MBO:4

- MBOE:3

MBO:4

-

TWIN TRA MBO1E: 2

MBO2E: 3

MBO1: 3

MBO2: 4

MC TRE 3

Multistandard MBO2E: 3

MBO2: 4

1) : Combined sum of all options: battery charging, MW, TMA, TNL, modems.

2) : Only if usage of TRAP, in case of TRPM as for MP 1800

3) : Depending on type of options and the required redundancy

58 / 178 3BK 17438 5000 PGZZA Ed.28

Page 59: BSS Configuration

3 BTS Configurations

The CBO cabinets are always equipped 2x PM12.

3BK 17438 5000 PGZZA Ed.28 59 / 178

Page 60: BSS Configuration

3 BTS Configurations

3.15 Antenna HoppingAntenna hopping means that the sequence of bursts comprising a radio blockare transmitted over more than one antenna. The purpose is to get diversity ofthe radio path to the mobile.

In conjunction with frequency hopping, the number of paths provided byfrequency hopping can be multiplied with the number of antennas involved inthe antenna hopping.

The feature is intended to be provided by the twin module.

Antenna hopping can be used if:

The two TRE of a twin module are connected to different antennas of the

same sector (cell)

The mate TRE of a twin module is in traffic

TxDiv feature is not used

The number of antennas for antenna hopping is two.

A TRE is antenna hopping capable if:

TxDiv capability is true

TxDiv usage is false

There are 3 possible Twin module configurations:

2 TRE

1 TRE without TxDiv usage

1 TRE with TxDiv usage

Antenna hopping is activated only on BTS configured with all TRE full rateor all TRE dual rate.

To avoid the loss of a complete sector in case of Twin module failure, it isrecommended for small BTS configuration to configure each TRE of a Twinin different sector.

60 / 178 3BK 17438 5000 PGZZA Ed.28

Page 61: BSS Configuration

4 BSC Configuration

4 BSC Configuration

This section describes the 9120 and 9130 BSC Evolution, and correspondingfeatures and configurations.

3BK 17438 5000 PGZZA Ed.28 61 / 178

Page 62: BSS Configuration

4 BSC Configuration

4.1 BSC in the BSSThe following figure shows the location of the BSC inside the BSS.

BTS

Abis

Abis

Atermux

A

Gb

OMC−R

IMT

SGSN

BSC TC

MFS

(PCU)

MSC

Gb

Figure 9: BSC in the BSS

4.2 9120 BSC

4.2.1 9120 BSC Architecture

The 9120 BSC consists of one switch and three main sub-units types (TSU):

The Abis TSU, which determines the connectivity with BTS

The Ater TSU, which sets the capacity the BSC can handle

The common TSU.

This is shown in the following figure.

BIUA

TCUC

TCUC

TCUC

TCUC

TCUC

TCUC

TCUC

TCUC

AS

DTCC

DTCC

DTCC

DTCC

DTCC

DTCC

DTCC

AS

DTCC

CPRC CPRC CPRC CPRC CPRC CPRC CPRC CPRC

AS

6 x

G.703

Abis

I/F

2 x

G.703

Ater

muxed

I/F

Abis TSU Ater TSU

Common Functions TSU

Group Switch

8 Planes

2 Stages

TSC

TSL

ASMB

ASMB

Q1 bus

Broadcast bus

Figure 10: 9120 BSC Architecture

62 / 178 3BK 17438 5000 PGZZA Ed.28

Page 63: BSS Configuration

4 BSC Configuration

4.2.1.1 CapabilitiesThe following table lists the maximum theoretical capacities versusconfigurations supported by the Mobile Networks Division. Capacities greaterthan this cannot be guaranteed and must not be offered to customers.

Configuration Maximum TrafficMax

Release 1 2 3 4 5 6 FRTRX

DRTRX

Cells BTS Erlang

B7 X X X X X X 448 218 264 255 1900

B8 X X X X X X 448 218 264 255 1900

B9 X X X X X X 448 218 264 255 1900

B10 X X X X X X 448 218 264 255 1900

B11 X X X X X X 448 218 264 255 1900

Table 10: Maximum Supported Capacities and Configurations

3BK 17438 5000 PGZZA Ed.28 63 / 178

Page 64: BSS Configuration

4 BSC Configuration

The following table below lists the parameters that are applicable to allconfigurations across all releases.

Parameters B7 B8 B9 B10 B11

CPRC-SYS 2 2 2 2 2

CPRC-OSI 2 2 2 2 2

CPRC-BC 2 2 2 2 2

TRE (FR FU)/ TCU or RSL / TCU 4 4 4 4 4

TRE (DR FU) / TCU 2 2 2 2 2

TRE / BTS (9100 BTS) 12 12 24 24 24

LAPD / TCU 6 6 6 6 6

Cells or Sectors /BTS 6 6 6 6 6

TRX / Cell 16 16 16 16 16

TRX / Cell for GPRS support 16 16 16 16 16

Max Nb SCCP cnx / BSSAP proc. 128 128 128 128 128

Frequency Hopping Identifiers 1056 1056 1056 1056 1056

Neighbor Cells 3500 3500 3500 3500 3500

Adjacencies 5400 5400 5400 5400 5400

Table 11: 9120 BSC Globally Applicable Parameters

4.2.1.2 9120 BSC versus G2 TC ConfigurationsThe BSC configuration always has to handle the complete configuration forthe TC, however the TC racks can be under-equipped compared with theBSC configuration.

64 / 178 3BK 17438 5000 PGZZA Ed.28

Page 65: BSS Configuration

4 BSC Configuration

4.2.1.3 Rack RulesThe following rules apply.

Extension / Reduction

Configuration Racks Physical Logical

Minimum Maximum Minimum

9120 BSC

Lower Half 1 3 Racks Half Rack Half Rack

The following data shows the different steps required to go from a minimum9120 BSC configuration to the maximum configuration. The granularity ofextension/reduction is provided by a Terminal Unit (TU). A TU is a set of fourTSU sharing an access switch through stage 1.

There are six TU: Maximum Configuration (6):

TU 0 = 1 COMMON TSU + 1 Abis TSU + 2 Ater TSU = Lower Rack 1.

TU 1 = 3 Abis TSU + 1 Ater TSU = Upper Rack 1.

TU 2 = 2 Abis TSU + 2 Ater TSU = Lower Rack 2.

TU 3 = 3 Abis TSU + 1 Ater TSU = Upper Rack 2.

TU 4 = 2 Abis TSU + 2 Ater TSU = Lower Rack 3.

TU 5 = 3 Abis TSU + 1 Ater TSU = Upper Rack 3.

The following table describes the BSC configuration.

Step AbisTSU

AterTSU

Stage1

Stage2

Racks FRTRX

Abis/AterMux

1 1 2 1 4 1 32 6/4

2 4 3 2 4 1 128 24/6

3 6 5 3 8 2 192 36/10

4 9 6 4 8 2 288 54/12

5 11 8 5 8 3 352 66/16

6 14 9 6 8 3 448 84/18

Table 12: BSC Configuration Description

3BK 17438 5000 PGZZA Ed.28 65 / 178

Page 66: BSS Configuration

4 BSC Configuration

The following table describes the 9120 BSC capacity for each configuration.

Configuration 1 2 3 4 5 6

Racks Lower 1 Upper 1 Lower 2 Upper 2 Lower 3 Upper 3

Clock Boards BCLA 4 4 6 6 8 8

Transmission Controller TSCA 1 1 2 2 3 3

Access Switch 8 16 24 32 40 48

Group Switch Stage 1 8 16 24 32 40 48

Group Switch Stage 2 32 32 64 64 64 64

DC-DC Converters 13 17 30 34 42 47

Abis TSU 1 4 6 9 11 14

Abis sub-multiplexers BIUA 1 4 6 9 11 14

Terminal Control Units TCUC 8 32 48 72 88 112

Abis interfaces 6 24 36 54 66 84

LAPD channels 48 192 288 432 528 672

ATER TSU 2 3 5 6 8 9

Ater sub-multiplexers ASMB 4 6 10 12 16 18

Digital Trunk Controllers DTCC 16 24 40 48 64 72

Ater interf access maxi carrying traffic 16 24 40 48 64 72

No.7 DTCC 4 6 10 12 16 16

TCH Resource Management DTCCpairs

2 2 4 4 6 6

BSSAP DTCCs 8 14 22 28 36 44

Full/ Dual Rate TRX or RSLs 32/14(1) 128/62(1) 192/92(2) 288/140(2)352/170(3)448/218(3)

Radio TCH 256(*) 1024(*) 1536(*) 2304(*) 2816(*) 3584(*)

Cells or sectors 32 120 192 240 264 264

BTS equipment or OMLs (**) 23 95 142 214 255 255

Ater Qmux circuits 2 2 4 4 6 6

Ater X.25 circuits 2 2 2 2 2 2

Ater Alarm Octets 4 6 10 12 16 18

66 / 178 3BK 17438 5000 PGZZA Ed.28

Page 67: BSS Configuration

4 BSC Configuration

Configuration 1 2 3 4 5 6

Ater circuits (assuming X.25 on Ater) 454 686 1148 1380 1842 2074

Ater Erlangs (0.1% blocking) 627 1074 1300 1753 1980

Ater Erlangs committed 160 620 1050 1300 1700 1900

* : The value does not take into account that this maximum cannot be reached due to SDCCH and BCCH configuration.

** : Maximum number of BTS = (#TCU * #max_OML per TCU) - #TSL link

1 : + 4FR

2 : + 8FR

3 : + 12FR

Table 13: B11 9120 BSC Capacity per Configuration

4.2.2 ABIS TSU

The Abis TSU is a functional entity terminating the interfaces carrying thespeech/data traffic and signaling to and from the BTS.

It includes the following boards:

One BIUA cross-connected between six Abis Interfaces to eight BSinterfaces, connected to eight TCUC

Eight TCUC (each TCUC can handle up to 32 TCH)

Two access switches.

4.2.2.1 Static Allocation of TSL Link to TCUCTSL is a LAPD link connecting the TCUC to the Transcoder SubmultiplexerController (TSC). The TSC is in charge of the supervision of the transmissionpart of the BSS equipment and the transmission configuration. It polls the NEand collects the alarm indications. After the correlation process, it sends the listof the active alarms to OMC_R. The TSL/TCU mapping is fixed.

This is described in the following table.

TSL Links 9120 BSC BIUA Number(BSC-AdaptSBL Number)

TCUNumber

TS Used onBS* Interface

TSL 1 (first rack) 1 1 28

TSL 2 (second rack) 6 41 28

TSL 3 (third rack) 11 81 28

* : The BS interface is the interface between the BIUA and the TCU.

Table 14: TSL / TCU Mapping

When present, the TSL uses one of the six LapD controllers of the G2 TCU.

3BK 17438 5000 PGZZA Ed.28 67 / 178

Page 68: BSS Configuration

4 BSC Configuration

4.2.2.2 Static Allocation of TRX and BTS to TCUCEach TCUC can handle:

A maximum of six LAPD links

A maximum of four RSL FR or two RSL DR

A maximum of three OML.

This is shown in the following table.

TRX OML TSL

4 FR 2

4 FR 1 1

3 FR 3

2 FR 2 1

2 DR 2 1

Table 15: Configuration Example

The following rules apply:

In the case of Signaling Multiplexing:

For 16K static multiplexing, all RSLs of a given 64 Kbit/s Abis timeslot

must be handled by the same TCUC

For statistical multiplexing, all multiplexed RSL and OML are processed

on the same TCU.

Mixing signaling multiplexing and non-multiplexed signaling on the sameTCU is allowed

Each TCUC can handle 32 Traffic channels, which allows:

Full rate TRXs

Two dual rate TRXs.

Each TCUC can handle eight extra Abis timeslots, which reduces the

number of TRE per TCUC

The operator can choose the multiplexing scheme of the BTS and therate type of the TRX.

Each Abis TSU (BIUA) can handle six Abis links, which allows:

A maximum three ring configuration (looped multidrop)

A maximum six chain configuration (open multidrop or star configuration).

Abis TSU can mix FR or DR TRXs

Each Abis TSU holds eight TCUC

68 / 178 3BK 17438 5000 PGZZA Ed.28

Page 69: BSS Configuration

4 BSC Configuration

First Abis TSU for the first rack and the second Abis TSU of second andthird rack can only support up to 14 DR TRE if first TCU of the TSU is

presently configured as FR TCU.

First Abis TSU for the first rack and the second Abis TSU of second and

third rack can only support up to 28 FR TRE if first TCU of the TSU is

presently configured as DR TCU.

Modification of the configuration FR/DR of the first TCU is not supported

from the OMC.

In the case of a closed multidrop (Ring), both ends must be connected tothe same Abis TSU:

It is advisable to use Abis Ports 1, 3, 5 first for an open multidrop and, in the

case of a closed multidrop, use the Abis ports 1&2, 3&4, 5&6

The Abis TSU can handle up to 8 * 4 = 32 FR TRXs.

TCU

BIU

Abis

switch

Abis TSU

TCU

TCU

TCU

TCU

TCU

TCU

TCU

Abis

Abis

Abis

Abis

Abis

3BK 17438 5000 PGZZA Ed.28 69 / 178

Page 70: BSS Configuration

4 BSC Configuration

4.2.2.3 HR FlexibilityCurrently, GSM network operators see the HR as a way of extending thecapacity of the network without any additional hardware deployment (i.e.without any extra significant cost).

The gradual introduction of HR allows the operator to define each individualTRE as full rate or dual rate. This allows control of the HR ratio on a per cellbasis. Due to the TRE/TCU mapping algorithm where TRE and TCU must beof the same type (full rate, dual rate), mapping is not possible when there isno TCU at all or when the TCU which can be available is already mapped toTRE whose type is different.

The TCUs of a TSU are allocated, by the 9120 BSC, to support FR or DR TREsaccording to the mapping algorithm:

The two types of TRE are mapped on compatible TCUs with a maximum of

four FR TREs per FR TCU and two DR TREs per DR TCU

The BSC allocates free TCUs as FR or DR TCU, according to requirements

In each rack, the TCUC which carries the TSL link cannot be modified

from full rate to half rate, or vice versa, depending on the TCUC originalconfiguration.

Abis Signaling TS Allocation

HR flexibility uses the 64 Kbit/s statistic OML/RSL multiplexing rule or nomultiplexing mode.

The statistical multiplexing scheme (64/4, 64/2, 64/1) is not defined by theoperator, but the operator can select the expected level of signaling load (highor normal) per BTS or per sector according to:

Normal signaling load

4:1 is the maximum multiplexing scheme allowed for FR TRX

2:1 is the maximum multiplexing scheme allowed for DR TRX.

High signaling load

2:1 is the maximum multiplexing scheme allowed for FR TRX

1:1 is the maximum multiplexing scheme allowed for DR TRX.

The BSC is responsible for selecting the multiplexing scheme compatible withthe signaling load and the TRE type.

4.2.3 Ater TSU

The Ater TSU is a functional entity terminating the interfaces to and from thetranscoder and/or the MFS.

It includes the following boards:

Two ASMB, providing multiplexing 16 Kbit/s from 4 tributaries to 1 highway

Eight DTCC

Two access switches.

70 / 178 3BK 17438 5000 PGZZA Ed.28

Page 71: BSS Configuration

4 BSC Configuration

4.2.3.1 DTC RulesThe following rules apply:

Any of the first DTCs in each group of four supporting an Ater Mux interface

(among the 16 first Ater Mux) can terminate an SS7 signaling link if theAter Mux is CS

There are six potential BSC synchronization sources (one from each Ater

Mux in the first rack). If the Ater Mux is used, then the first DTC attachedto that ASMB recovers a synchronization reference signal and sends this

to the BSC central clock

DTCC can be dedicated for SS7-MTP (supporting a physical SS7 link), GSL(supporting a physical GSL), BSSAP/GPRSAP (higher layers of SS7 and

GSL) or TCHRM (TCH allocation)

One DTCC TCH-RM pair can handle up to 60 cells and the number of

TRX per TCH-RM is limited to 90.

4.2.3.2 DTC Architecture and FunctionsThe DTC processors are configured by default to perform one of three mainfunctions:

TCH-RM

BSSAP/GPRSAP

GSL

MTP-SS7.

The following table shows the default mapping on the DTC SBL number.

BSC Configuration

1 2 3 4 5 6

TCH-RM 3-4, 11-12 27-28, 35-36 51-52, 59-60

BSSAP/ GPRSAP 2, 6-8, 10,14-16

18-20,22-24

26, 30-32,34, 38-40

42-44,46-48

50, 54-56,58, 62-64

65-72

SS7-MTP 1, 5, 9, 13 17,21 25, 29, 33,37

41, 45 49, 53, 57,61

GSL 2, 6, 10, 14 18, 22 26, 30,34,38

42, 46 50, 54, 58,62

Table 16: DTC Configuration and SBL Number

3BK 17438 5000 PGZZA Ed.28 71 / 178

Page 72: BSS Configuration

4 BSC Configuration

Rules and Dimensioning

The following rules apply:

Up to 16 DTC are allowed with the SS7 link, on first 16 AterMux

For GPRS, the second DTC in each group of four (e.g. DTCs 2, 6 etc.) can

be configured to handle GSLs on TS28

The second DTC on the first 2 Ater Mux can support X.25 on TS31.

4.2.4 TSC Function

The 9120 BSC is directly in charge of the configuration of the TSC. In terms ofsoftware management, the TSC is treated like any other BSC processor (e.g.DTC). The TSC software is an integral part of the BSC software package.

The TSC data base update mechanisms must follow the principles of the BTSdata base updates (i.e. the TSC is configured by data coming from BSC atstart up, and whenever the BSS configuration has changed something whichis of interest for the TSC).

72 / 178 3BK 17438 5000 PGZZA Ed.28

Page 73: BSS Configuration

4 BSC Configuration

4.3 9130 BSC Evolution

4.3.1 9130 BSC Evolution Architecture

The following figure shows the BSC hardware architecture on an ATCA platform.

r : Redundancy

W : Working

N and y : Network Element capacity

Figure 11: 9130 BSC Evolution Hardware Architecture

3BK 17438 5000 PGZZA Ed.28 73 / 178

Page 74: BSS Configuration

4 BSC Configuration

The following table describes the 9130 BSC Evolution functional blocks andboards.

Name Functional block mapped on board Existing function for BSC

SSW: Gigabit Ethernetswitch (in ATCA shelf)

Allows exchanges between all theelements of the platform and externalIP/Ethernet equipment:

Performs Gigabit Ethernet switching

at the shelf level

Performs powerful monitoring forthe user plane and control plane

(Gigabit Ethernet on front panel)

Ensures daisy chain with other

shelves via two 1 Gigabit Ethernet

ports (only one is used)

Ensures multicast function

Allows several external Ethernet

10/100/1000 Base T connections:OMC-R, CBC, LCS, Debug

Implements 12 non blocking

1Gigabit Ethernet links viabackplane connections

The SSW board and all the connectionsto the switch are duplicated to overcomeboard or connection failures.

OMC-R physical interface

CBC physical interface

Monitoring

NEM terminal connection

OMCP: O&M ControlProcessing board (inATCA shelf)

Is based on ATCA technologyequipped with a permanent storagedevice. It manages the platform assystem manager, and manages O&Mapplications.

OMCP boards operate in active-standbymode following the 1+1 redundancymodel.

O&M logical interface to the Operationand Maintenance Center (OMC-R)

VCPR: S-CPR & O-CPR software +TCH/RM

TSC software

CCP: ControlProcessing board(in ATCA shelf)

Is based on ATCA technology used forcall control functions. Identical to theOMCP board but without a hard disk.

CCP boards operate in an N + 1redundancy model. N is the numberof active boards ready to handle trafficand one standby CCP board is alwaysavailable to take over the traffic of failedboard.

VTCU: TCU software

VDTC: DTC software

74 / 178 3BK 17438 5000 PGZZA Ed.28

Page 75: BSS Configuration

4 BSC Configuration

Name Functional block mapped on board Existing function for BSC

TP GSM: TransmissionProcessing board (inATCA shelf)

Provides telecom transmission /transport interfaces to the ATCAplatform.

Gigabit Ethernet switchOnboard local switch(separates/aggregates nE1oEtraffic and IP control traffic).

NE1oETransports n x E1 frames in Ethernetpayloads

Multiplexes/demultiplexes up to 252

E1Multiplexes/demultiplexes up to 252E1 from/to the Gigabit EthernetInterface (NE1oE).

TDM switch8 kbit/s synchronous switching witha total bandwidth of 284 * 2 Mbits(252 external links + 32 internal linkstoward HDLC, SS7, Q1 and R/Wbits controllers).

Handles low layers of GSM protocolsLAP-D over HDLC, ML-PPP overHDLC, SS7, Q1 (= QMUX) and R/Wbits.

Two TPGSM boards are available.They operate in active-standby modefollowing 1+1 redundancy model.

Optional, the TPGSM can be equippedwith a daughter board with 4 STM1interface used for transport of E1 links.

HDLC termination

SS7 termination

NE1oE

Q1

Ring control

LIU boards (in LIUshelf)

Interface for E1 links These links correspond to the userplane interfaces.

MUX board (in LIUshelf)

Concentrates and converts E1 inEthernet and vice versa.

NE1oE

LIU Shelf Multiplex/demultiplex which crossconnects all E1 external links to/froma NE multiplexed links (n E1 overEthernet) at TP and GP board.

It is equipped with 2 x Mux board andn LIU boards.

E1 physical termination

NE1oE

ATCA Shelf See above.

3BK 17438 5000 PGZZA Ed.28 75 / 178

Page 76: BSS Configuration

4 BSC Configuration

4.3.2 Configurations

With the STM1 introduction in B11 Release, the 9130 BSC Evolution can be:

Pure E1, E1 links are mapped only on the LIU shelf

Pure STM1, E1 links are mapped on the STM1 interface

Mixed, with E1 links mapped on the LIU shelf and STM1 interface.

4.3.2.1 Pure E1 ConfigurationFor the 9130 BSC Evolution, E1 termination ports are generic and areconfigured to "Abis", "Ater" or "not used". Consequently Abis or Ater terminationports may be not contiguous. Abis-Hway-TP are numbered from the first E1termination port to the last one. The numbering of Abis-Hway-TP remainswithout holes, even if they are mapped on discontinuous E1 termination ports.It is the same for the Ater-Hway-TP.

In fact, the engineering rules lead to specializing the 16 LIU boards:

[1, 11] Abis

[12, 16] Ater

As there are 16 E1 per LIU board (i.e. 256 E1 with configuration type 3):

11x 16=176 E1 Abis HW-TP

3x16=48 E1 Ater HW-TP

Note that TP-GSM board can only manage 252 E1 so 4 E1 cannot be used.

Ater can be:

Ater CS, supporting CS, direct link BSC-TC and supporting CS and PS(mixed, passing through TC), supporting PS (dedicated link, not passing

through TC)

Ater PS, supporting only PS (dedicated, not passing through TC).

76 / 178 3BK 17438 5000 PGZZA Ed.28

Page 77: BSS Configuration

4 BSC Configuration

The following figure shows the 600 TRX LIU Shelf connections assignment.

Figure 12: 1000 TRX LIU Shelf Connections Assignment

3BK 17438 5000 PGZZA Ed.28 77 / 178

Page 78: BSS Configuration

4 BSC Configuration

9130 BSC Evolution Board Configurations

The following table lists the board configurations by shelf.

BSC CapacityEquipment

200 TRX 400 TRX 600 TRX 800 TRX 1000 TRX

ATCA Shelf 1

CCP 1+1 2+1 3+1 4+1 5+1

TPGSM 2

OMCP 2

SSW 2

LIU Shelf 1

MUX 2

LIU 8 16

Note: Note that the quantity of TPGSM, OMCP, SSW and MUX boards must beconsidered to be 1 active + 1 standby to allow redundancy in the shelf.

4.3.2.2 Pure STM1 ConfigurationThe STM1 on 9130 BSC Evolution feature is optional from a commercial pointof view, and operators buy this feature with a maximum number of STM1interface per OMC-R. In this case, the BSC can be delivered with no LIU shelfand no Power Supply for the LIU shelf.

The DLS contains an indicator of the presence of the LIU shelf and becausethe BSC is installed without a LIU shelf, the LIUShelfPresent parameterhas to be set accordingly.

To support STM1, the BSC must be equipped with TPGSMv3 boards. EachTPGSMv3 is equipped with four STM1 links. Two STM1 links define aninterface, which means that four STM1 interface are declared on each BSC.

The ABIS/ATERr-HWAY-TP are configured to be connected to STM1 VC12-E1.

Each E1 link is transported transparently (using asynchronous mapping) in oneVC12 container. One STM1 link can contain up to 63 VC12 containers. So,one STM1 can carry 63 Abis and/or Ater, each E1 of 2048 kbps is transportedseparately on one VC12 container.

A VC12 container is also called VC12 tributary. The mapping between E1 andVC12 is performed.

The VC12 (TU12) tributaries are numbered according to G.707: (K, L, M) with:

K=1..3

L=1..7

M=1..3

78 / 178 3BK 17438 5000 PGZZA Ed.28

Page 79: BSS Configuration

4 BSC Configuration

The numbers go from (1,1,1) to (3,7,3), in total there are 63 tributaries. Atributary on TPGSMv3 is therefore identified by: X, K, L, M; with x=1..4 as theSTM1 link number.

The following figure shows the mapping of ABIS-HWAY-TP andATER-HWAY-TP on VC12 ports.

Figure 13: ABIS-HWAY-TP and ATER-HWAY-TP Mapped on VC12 Container

3BK 17438 5000 PGZZA Ed.28 79 / 178

Page 80: BSS Configuration

4 BSC Configuration

4.3.2.3 Mixed ConfigurationIn this configuration, the TPGSM allows the mapping of E1 on an LIU-E1input port or mapping of E1 on any STM1 VC12-E1 input port without anynumbering restriction and with any mix of LIU-E1 and VC12-E1. The sameE1 capacity is kept (up to 252 E1).

The following figure provides the principle adopted for TPGSMv3implementation.

Figure 14: Functional Diagram TPGSMv3 with LIU-E1 and VC12Cross-connections

Hardware components functional description :

E1X-1This is the first cross-connect added to the TPGSM board, managecross-connection of up to 252 input E1 links and it is located on the NE1oE.It maps an input E1 from the LIU shelf to a given E1 framer of the UMA.

UMAThis is the “ultra-mapper” of TPGSMv3 and contains the E1 framersconsists of 252 inputs.Each input can be programmed to select an input from the LIU shelf or fromthe STM1 network (exclusive choice). Each input handles an E1 frame andforwards the payload to the same input number of the E1X-2.

E1X-2This is the second E1 cross-connect added to the TPGSMv3 board. Thiscross-connect can manage cross-connection of up to 252 input E1 links, it islocated on the TBS3 and maps an input framer to the TBS2.

TBS2This is the TPGSM bitswitch managing, amongst other functions, thecross-connections for call handling (8kbit/s switch). This is the same entityboth on TPv1 and v3 (same functions).

80 / 178 3BK 17438 5000 PGZZA Ed.28

Page 81: BSS Configuration

4 BSC Configuration

Numbering :

LIU-Port-NumberThis is the port number used by a given E1 on the LIU shelf; the portnumber is in the range [1, 256].The numbering scheme is continuous from LIU board 1, port 1 to LIU board16, port 16. Four LIU port numbers cannot be equipped due to the internalTPGSM hardware constraint (only 252 framers equipped). In order toavoid a change in the NE1oE configuration, the same four positions of LIUboard 12 are reserved and cannot be equipped as in previous releases.All other LIU shelf positions are associated to a fixed SBL as in previousreleases (“rigid” mapping).

VC12-NumberThis is the key identification of a VC12-E1 on the STM1 interface. It isderived from the STM1 configuration file where the STM1 Number and K,L, M triplet is specified. The numbering scheme is in range [0...255] andfollows the following rule: VC12-Number = 63* [(STM1-Number) -1] +21* (K-1) + 3*(L-1) + (M-1)

E1-NumberThis is the key identification of an E1 on the interface between the BSCApplication and the TPGSM.In TPGSMv1 (previous release), the E1 number is the TP board internalframer number. This is known in all BSC internal specifications also asthe TP-PORT-NUMBER.In TPGSMv3 (new release), the E1 number is no longer the TP boardframer number. It is the E1X-2 output port number (i.e. the TBS2 portnumber). The E1 number in both TPGSMv1 and TPGSMv3 has a physicalsignificance: each SBL in the BSC is mapped to a UNIQUE E1-Number.The E1-Number reflects an SBL and does not depend on the transportmode (LIU-E1 or VC12-E1)

Framer-Number (same as X2-Input-Port-Number)This is the framer number (from 0 to 251) selected for a given E1.In TPGSMv3 (new release), the association of a VC12-E1 (identified bya VC12-Number) to a framer number is fixed, but the association of aLIU-E1 (identified by a LIU-Port-Number) to a framer number can no longerbe fixed and must take into account the possible conflict if the framernumber is actually used by a VC12-E1.

In the case of a conflict between LIU-Number and VC12-Number, theTPGSMv3 will perform E1X-1 and E1X2 configuration requested by BSCto solve the conflict issue.

3BK 17438 5000 PGZZA Ed.28 81 / 178

Page 82: BSS Configuration

4 BSC Configuration

4.3.2.4 STM1 Transmission Termination Points ConfigurationThe purpose is to configure the Abis and Ater HwayTP as connected to aSTM1 VC12 E1 or as connected to an LIU-E1. The TPGSM board of theBSC is then configured accordingly.

When a transmission termination point configuration is applied, the OMC-R hasto be triggered for re-synchronisation with the BSC.

The current transmission termination points configuration of the BSC is the onein used by the BSC.

The candidate transmission termination points configuration of the BSC is aconfiguration set in the DLS that remains to be applied (becomes current whenapplied). It is stored in a dedicated part of the DLS.

A dummy candidate transmission termination points configuration means thatthere are no candidate data downloaded in the BSC.

Before the first set, the candidate configuration is set to dummy. As soonas a candidate configuration is applied, the current one is updated and thecandidate one is reset to dummy.

The BSC Terminal has a specific STM1 directory to manage the BSC STM1actions.

The name of this directory is ’C:\ProgramFiles\Alcatel-Lucent\9130BSC\BSC_STM1\.

It has four subdirectories:

CANDIDATE contains the resulting files of a getting a candidate configuration

action.

CONFIGURATION contains all the working files. A new working STM1

configuration file can be created from a default STM1 configuration file (alsonamed template), from a getting configuration, or by import of working

STM1 configuration files.

CURRENT contains the files resulting of a getting a current configurationaction.

TEMPLATE contains Alcatel-Lucent and customer default STM1 configuration

files. All these default files (or templates) can only be displayed and notmodified.

For all these files, the extension of the file can be .csv or .xls.

The transmission termination points configuration must contain theconfiguration of all equipped Abis/Ater HwayTP.

The following table lists the parameters and structures.

Description Coding rules

LinkType This column gives the logical link type:ABIS-HWAY-TP or ATER-HWAY-TP

1: ABIS-HWAY-TP

2: ATER-HWAY-TP

LinkNumber This column gives the logical link number. Itis the ABIS/ATER-HWAY-TP SBL number.

1 to 176 for ABIS-HWAY-TP

1 to 76 for ATER-HWAY-TP

82 / 178 3BK 17438 5000 PGZZA Ed.28

Page 83: BSS Configuration

4 BSC Configuration

Description Coding rules

Physical Transport This column gives the used transportLIU-E1 or STM1 VC12-E1 or none if the TPis not configured.

0: No Resource configured

1: LIUE1 - default value

2: STM1 VC12-E1

LiuPortNumber This column gives the LIU E1 port numberon which the ABIS/ATER-HWAY-TP ismapped. Dummy value 0 is used if theABIS/ATER-HWAY-TP is mapped on aSTM1 tributary

Case no configuration: 0 CaseE1:

1 to 256 LIUPortNumber =f(Linknumber, LinkType)

Refer to Figure 12 for the exactmapping between the LIU portnumber and Linknumber.

Case STM1: 0

STM1 Interface This column gives the STM1 interfaceon which the ABIS/ATER-HWAY-TP ismapped. Dummy value 0 is used if theABIS/ATER-HWAY-TP is mapped on a LIUport.

Case no configuration: 0

Case LIU-E1: 0

Case STM1 VC12-E1: 1 to 4

STM1-K This column gives the TUG-3 number of theTU-12 on which the ABIS/ATER-HWAY-TPis mapped. Dummy value 0 is used if theABIS/ATER-HWAY-TP is mapped on a LIUport.

Case no configuration: 0

Case LIU-E1: 0

Case STM1 VC12-E1: 1 to 3

STM1-L This column gives the TUG-2 number of theTU-12 on which the ABIS/ATER-HWAY-TPis mapped. Dummy value 0 is used if theABIS/ATER-HWAY-TP is mapped on a LIUport.

Case no configuration: 0

Case LIU-E1: 0

Case STM1 VC12-E1: 1 to 7

STM1-M This column gives the TU12 number of theTU-12 on which the ABIS/ATER-HWAY-TPis mapped. Dummy value 0 is used if theABIS/ATER-HWAY-TP is mapped on a LIUport.

Case no configuration: 0

Case LIU-E1: 0

Case STM1 VC12-E1: 1 to 3

Some default transmission termination points configuration files are deliveredwith the BSC terminal in the Template directory.

Configuration Directory Name

All Abis and Ater Mux are mapped onLIU-E1.

Template PureE1.cnf

All Abis and Ater Mux are mapped on STM1VC12-E1.

Template PureSTM1.cnf

All Abis are mapped on LIU-E1 and AterMux are mapped on Vc12-E1.

Template AterSTM1.cnf

3BK 17438 5000 PGZZA Ed.28 83 / 178

Page 84: BSS Configuration

4 BSC Configuration

4.3.3 9130 BSC Evolution Capabilities

The following table shows the 9130 BSC Evolution capabilities.

ConfigurationType

1 2 3 4 5

Nb TRX 200 400 600 800 1000

Nb Cell 200 400 500 500 500

Nb BTS 150 255 255 255 255

Nb SS7links

8 16 16 16 16

Nb CICs* 1140-1220 2296-2456 3454-3694 4610-4930 5304-5672

DR TRE 200 400 600 800 1000

Capacity

FR TRE 200 400 600 800 1000

Abis 96 96 176 176 176

Ater CS 10 20 30 38 46

Nb of E1

Ater PS 6 12 18 26 30

Nb TCU 50 100 150 200 250

Nb DTCCS

40 80 120 160 196

Nb VCECCP

Nb DTCPS

24 48 72 96 112

NbTCH-RMpairs

1 1 1 1 1

Nb CPRpairs

2 2 2 2 2

Nb VCEOMCP

Nb TSCpairs

8 8 8 8 8

Nb VCEper CCP

114 114 114 114 114Nb VCEper board

NbVCE/OMCP

11 11 11 11 11

* : The Nb CICs depends on the type of TC, MT120 boards and on the number of SS7/HSL.

The 9130 BSC Evolution can reach 4500 Erlangs.

The maximum number of Ater-CS is 92 and 60 Ater-PS, respectively, in case ofextended RS configurations.

84 / 178 3BK 17438 5000 PGZZA Ed.28

Page 85: BSS Configuration

4 BSC Configuration

4.3.4 Rules and Assumptions

The following characteristics apply for the 9130 BSC Evolution:

The capacity of the 9130 BSC Evolution is extended to 1000 TRX by adding

two CCP boards in the ATCA shelf

The TP GSM board supports the traffic of 1000 TRXs, depending on the

generation

The maximum number of TREs mapped to a CCP is independent onwhether the TRE is HR or DR

It is possible to map up to four TREs per VTCU, i.e. up to 200 TREs per CCP

The maximum number of active TCHs per CCP board in order to reach900 Erlang per CCP with a blocking probability of 0.1% and a margin of

3% (call mix with 3HO/call) is 1000

The capacity is extended to 500 cells for the 9130 BSC Evolution

The number of adjacencies supported per 9130 BSC Evolution is 10300

The GP boards (9130 MFS Evolution) are configured to support 1000 TRX

contexts and 8000 mobile contexts

The increase of TRX capacity also impacts the number of extra Abistimeslots that are supported by the 9130 BSC Evolution, in that it is

increased up to 2000. This increase leads to two extra Abis timeslotsavailable per TRX.

The TCU/RSL mapping (Removal of HR impact on BSC connectivity)

allows the mapping of four RSL on each TCU, regardless of their speechrate. Consequently, it is always possible to configure 200 TRX on a CCP.

This algorithm must map (as much as possible) all TRE of a BTS on thesame CCP.

There is a maximum of 16 LSL or two HSL objects configured per BSC

Ater Mux 59 and 60 can only be used for HSL or packets

The number of LAPD link configured will still be 250 ( 50 VTCU/CCP * 5)

Qmux is not supported in TS0

The number of HDLC channels is limited, requiring the usage of statistic

multiplexing in the large configurations

On the BSC Evolution, it is possible to connect an external alarm box. Theelectrical convention for these alarms must be unique for a certain alarm box.

The O&M connection is possible via IP or via several TS on the A interface

The external alarms can be collected by an External Alarm Box (EAB); referto the External Alarm Box Installation and Commissioning Manual for

more information.

3BK 17438 5000 PGZZA Ed.28 85 / 178

Page 86: BSS Configuration

4 BSC Configuration

4.4 Common Functions

4.4.1 SDCCH Allocation

4.4.1.1 OverviewThe dynamic SDCCH allocation feature is a mechanism which providesautomatic (the optimal number of) SDCCH in a cell, which translates as a set ofdynamic SDCCH/8 TS, used for TCH traffic or for SDCCH traffic, depending onactual traffic. SDCCH management is handled by the operator in RNUSM.

It is also possible to customize the SDCCH templates by choosing from a listof 10 patterns managed by the OMC-R to define SDCCH configurations.Sixteen sub-templates are associated with each template, corresponding to thepossible number of TRXs in a cell, because no algorithm can be defined toevaluate the number of SDCCH depending on the number of TRX in a cell.

4.4.1.2 TerminologyA static SDCCH/x TS refers to one physical TS on the Air interface containing xSDCCH sub-channels (x = 3, or 4, or 7, or 8, depending whether the TS isSDCCH/3, or SDCCH/4, or SDCCH/7, or SDCCH/8).

4.4.1.3 General PrinciplesIn terms of configuration:

Dynamic SDCCH allocation only deals with SDCCH/8 TS. It is not necessaryto add or suppress a SDCCH/3, or a SDCCH/4, or a SDCCH/7 TS

In the case of manual configuration (not assisted), the operator configures

the static and dynamic SDCCH TS for the cell but cannot reuse theconfiguration for other cells

CBCH is configured on a static SDCCH/8 or SDCCH/4 TS

The operator must configure at least one static SDCCH/8 or SDCCH/4TS on BCCH TRX in a cell

The total number of SDCCH sub-channels configured on static or dynamic

SDCCH TS or on a BCCH/CCCH TS (CCCH combined case) must notexceed 24 sub-channels per TRX

The maximum number of SDCCH per cell must be verified to ensure thatthe number of configured SDCCH, dynamic and static, for a cell must not

exceed the defined maximum of 88.

86 / 178 3BK 17438 5000 PGZZA Ed.28

Page 87: BSS Configuration

4 BSC Configuration

In terms of usage:

A dynamic SDCCH TS can carry only CS traffic

In multiband and concentric cells, only the TRX, which belong to the outer

zone, can support dynamic and static SDCCH

Static SDCCH/8 TS cannot be used as TCH

Dynamic SDCCH/8 TS are allocated for SDCCH only if all the static

SDCCH/8 TS are busy (i.e. all its sub-channels are busy)

It is not possible to drop a TCH call to free a TS for SDCCH/8 allocation

A TCH call is preferably not allocated in the area of the dynamic SDCCH/8

TS

Combined SDCCHs (SDCCH/4 + BCCH) are always static

In order to avoid incoherent allocation strategies between the SDCCHand PDCH, a dynamic SDCCH/8 TS cannot be a PDCH (it can not carry

GPRS traffic)

In cells with E-GSM, only the TRX, which belongs to the P-GSM band, can

support dynamic and static SDCCH.

With MC module must avoid SDCCH loss: to spread SDCCH over FHS incase of base band hopping with several FHS.

Note: In the case of a fault on an RSL, there is recovery of dynamic SDCCH.

3BK 17438 5000 PGZZA Ed.28 87 / 178

Page 88: BSS Configuration

4 BSC Configuration

4.4.2 Multiple CCCH

The multiple CCCH feature allows the operator to use up to three additionalBCCCH/CCCH time slots per cell, so that time slots TS0, TS2, TS4, TS6 canbe used. The operator decides to configure up to four TS for mCCCH. Themultiple CCCH feature can let large cells (even with 12 FR TRX) support moreErlangs, from 100 Erlangs onwards with the 9100 Traffic Model.

4.4.2.1 TRX Channel Configuration RulesThe following configuration rules apply:

It is not allowed to activeate a second CCCH when the CCCH in the cell

is combined with SDCCH

It is assumed that one CCCH equals to SDCCH/8 in terms of RSL load andprocessor load imposed by the signalling by a CCCH

The maximum number of SDCCH TS in the cell is:

11 if there is one CCCH

22 if there are two or more CCCH

To activate multiple CCCH using three or four time slots, there must be

at least two TRX per cell.

Multiple CCCH is not supported in Extended Cell and VGCS

CCH must be configured on TS2, TS4 or TS6 of BCCH TRX. The time slots

must be occupied in this order: TS0 first, TS2 second, TS4 third and TS6 last

To activate multiple CCCH using three or four time slots in concentric cells, itis necessary that the outer zone of the concentric cell has at least two TRX.

It is not allowed to configure more than four signaling time slots per TRX

(including dynamic SDCCH)

When BCCH is combined with SDCCH, CCH cannot be configured

In BCCH TRX, when BCC and CCH are configured on TS0 and TS2, only

one Static SDCCH is allowed to config on the others TS

In BCCH TRX, when CCH is configured on TS0, TS2 or TS4, only one StaticSDCCH is allowed. The CBCH and SDCCH channels will not be located on

the beacon TRX when four CCCH are configured

CBC and CBH are forbidden when mCCCH is configured on BCCH TRX

DYN SDCCH is forbidden on BCCH TRX when mCCCH is configured

on BCCH TRX

To use Frequency Hopping with this feature, please check FrequencyHopping (Section 3.12.2) for the limitations that apply in that case.

CCH is the new channel type for BCCH + CCCH

BCC is the channel type for FCCH + SCH + BCCH + CCCH

88 / 178 3BK 17438 5000 PGZZA Ed.28

Page 89: BSS Configuration

4 BSC Configuration

4.4.2.2 TRX LimitationsThe following TRE hardware limitations exist:

G3 Maximum number of CCCH + SDCCH = 3

A maximum number of 2 CCCH time slots can be used for G3

In TDM mode: maximum number of SDCCH subchannel = 24

In IP mode: maximum number of SDCCH subchannel = 16*

G4: maximum number of CCCH + SDCCH = 4

G5 (TWIN TRA): maximum number of CCCH + SDCCH = 4

All Platforms: Maximum number of SDCCH channels = 24

The beacon TRX supports all CCCH slots.

The maximum number of signalling channels follows this rule:

With CCCH on TS0:

G3: Maximum number of TS per TRX = 2 SDCCH + 1 CCCH

G4 and G5: Maximum number of TS per TRX = 3 SDCCH + 1 CCCH

With the additional CCCH on TS2 aTRX (G3, G4 and G5) must support:

FCCH + SCH + BCCH+CCCH on TS0

SDCCH on TS1/TS3/TS4/TS5/TS6/TS7

BCCH+ CCCH on TS2

With the additional CCCH on TS4:G4 and G5: Maximum number of TS per TRX = 1 SDCCH + 3BCCH/CCCH

With the additional CCCH on TS6:G4 and G5: Maximum number of TS per TRX = 4 BCCH/CCCH

4.4.2.3 TRX/RSL/TCU Mapping RulesIn order to avoid the load on TCU in 9120 BSC, 32 SDCCH subchannellimitation per TCU is maintained. Since one CCCH is equivalent to one SDCCH(eight SDCCH subchannel), the total number of signalling channels on oneTCU must be less or equal to four: N_TS_CCCH + N_TS_SDCCH <=4. Notethat this rule applies only to the 9120 BSC. For 9130 BSC Evolution, thereis no restriction (unless there are load issues on the BTS). The limitation onthe OMC-R is a maximum three SDCCH per TRX.

4.4.3 Common Behavior

The 9120 BSC and 9130 BSC Evolution share the following behavior modes:

No change in the logical model of the BSC

No change in the radio configuration mechanisms

Same set of radio parameters

No changes in PM mechanisms

3BK 17438 5000 PGZZA Ed.28 89 / 178

Page 90: BSS Configuration

4 BSC Configuration

Same set of PM counters/indicators as the 9120 BSC.

90 / 178 3BK 17438 5000 PGZZA Ed.28

Page 91: BSS Configuration

4 BSC Configuration

4.5 Delta 9130 BSC Evolution versus 9120 BSCThe 9130 BSC Evolution differs from the standard BSC as follows:

Compared to previous generation BSC, the ATCA PF does not provide X.21

interfaces. An X25 over IP link is used for CBC.

TSU is removed

No more SDCCH limitation per TCU (32)

Remote inventory (like for other NEs)

Replace FTAM with FTP

Time/date management by ntp

Ater programming - new strategy

BSS files management - ftp browser

SNMP used for overload

Abis/Ater fixed mapping to LIU boards

Support of HSL

Remove HR impact

The 9130 BSC Evolution can be used as a clock synchronization source

for DS10 or 9130 MFS Evolution

The TSU concept no longer exists

Free allocation of any RSL/OML to any TCU, thus allowing the full TREcapacity and avoiding any internal BSC moves

No need of TCU capacity to support the extra Abis TS. Edge traffic can besupported even when the BSC has the maximum of TRE

IP transport is only supported by 9130 BSC Evolution

For IPoEth : the TP v3 with TPIP board (and the LIU shelf) are no more

used and can be removed.

TS15/TS16 can support PS traffic on CS/PS Mixed Ater Mux

TS15/TS16 can support PS traffic on dedicated Ater Mux

For 9120 BSC the Ater Mux 1,2,7,8,13,14 cannot be dedicated GPRS

For 9130 BSC Evolution the Ater Mux1,2,7,8,13,14,19,20,25,26,61,62,67,68,73,74 cannot be

dedicated GPRS.

3BK 17438 5000 PGZZA Ed.28 91 / 178

Page 92: BSS Configuration

4 BSC Configuration

4.6 SBL Mapping on Hardware Modules in 9130 BSC Evolutionversus 9120 BSC

The following figure shows the different kinds of SBLs (with their hardwaremodule mapping) shown at the interface between the 9120 BSC and the BTSsand at the interface between the BTSs. The internal links between TCU andBIU are mapped on SBLs with BSC-ADAPT as the BL type.

BTS Side

BIUA

BSC −ADAPT

−BTS ADAPT

TCU

TCU

ABIS −HWAY −TP(Unit type=BSC)

BIE

ABIS −HWAY −TP(Unit type=BTS)

BIE

BSC Side

−BTS ADAPT

The following figure shows the different kinds of SBLs (with their hardwaremodule mapping) shown at the interface between the 9130 BSC Evolution andthe BTSs and at the interface between the BTSs. For the 9130 BSC Evolution,the SBL BSC-ADAPT is removed.

BTS Site Mx−BSC Site

TP

GG SSM

TP− HW

(Unit type=BSC)

ECU

ETU

LIU

MUX ABIS −HWAY −TP

(Unit type=BSC)

ABIS −HWAY −TP

(Unit type=BTS)

−BTS ADAP T

BIE

ABIS −HWAY −TP

(Unit type=BTS)

−BTS ADAPT

BIE

ABIS −HWAY −TP

(Unit type=BTS)

ABIS −HWAY −TP

(Unit type=BTS)

SSW−HW

(Unit type=BSC)

SSW

Note: BIUA connectors in the 9120 BSC correspond to E1 termination ports inthe 9130 BSC Evolution.

92 / 178 3BK 17438 5000 PGZZA Ed.28

Page 93: BSS Configuration

5 TC Configuration

5 TC Configuration

This section describes the transcoder, and corresponding features andfunctions.

3BK 17438 5000 PGZZA Ed.28 93 / 178

Page 94: BSS Configuration

5 TC Configuration

5.1 IntroductionThe following figure shows the location of the transcoder (TC) inside the BSS.

BTS

Abis

Abis

Atermux

A

Gb

OMC−R

IMT

SGSN

BSC TC

MFS

(PCU)

MSC

Gb

Figure 15: TC in the BSS

The basic element of TC is the Sub-Unit (TCSU), which is compounded by:

One Sub-Multiplexing Unit (SMU)

One or more Transcoding Units (TRCU).

In the case of a 9125 TC transcoder, these units are combined on one singleboard, the MT120, which offers an Ater Mux connection to a BSC and up to4 A-trunk connections to the MSC.

The MT120 can also be installed in the place of the ASMC in the G2 TC, andreplaces 1 ASMC, 4 ATBX and 8 DT16 boards.

The following table provides a summary of the technical data for the differentgenerations of TC.

G2 TC (with /without MT120)

9125 TC

Number Up to 3 One

Type S12 19"

Rack

Size mm 900*520*2200 600*600*2000

Ater Mux per rack 6 48

A interfaces 24 192

CIC* 24*29 192*29

* : From the total number of CIC, it must decrease the channels carrying theO&M traffic: 2 for 9120 BSC (X25 links) and up to 16 for 9130 BSC Evolution(MLPPP links).

Table 17: G2 TC/9125 TC Capabilities

94 / 178 3BK 17438 5000 PGZZA Ed.28

Page 95: BSS Configuration

5 TC Configuration

The following figure shows an example of sharing of 9125 TC by several BSC.

AterMuxBSC1rack1

AterMuxBSC1rack2

AterMuxBSC3rack3

AterMuxBSC4rack1

AterMuxBSC1rack3

AterMuxBSC2rack1

AterMuxBSC4rack2

AterMuxBSC5rack1

AterMuxBSC2rack2

AterMuxBSC2rack3

AterMuxBSC5rack2

AterMuxBSC6rack1

AterMuxBSC3rack1

AterMuxBSC3rack2

AterMuxBSC6rack2

AterMuxBSC7rack1

AterMuxBSC7rack2

TC RACK1 TC RACK2 TC RACK3used first to extend BSC7

3BK 17438 5000 PGZZA Ed.28 95 / 178

Page 96: BSS Configuration

5 TC Configuration

5.2 G2 TC

5.2.1 Architecture

There are two types of G2 TC:

G2 TC equipped with ASMC and TRCU

G2 TC equipped with ASMC/TRCU + MT120 boards (in the case ofan extension).

The G2 TC architecture is linked to the 9120 BSC architecture (that is, theAter TSU). A G2 TC rack is compounded by six Submultiplexing Units (SU)with a granularity of 1 SU = 1 ASMC + 4 TRCU.

The ASMC terminates one Ater Mux on the TC side

The TRCU is Transcoder Unit (TCU) compounded by 1 ATBX and 2 DT16.

One SU terminates one Ater Mux on the TC side in front of:

One ASMB board on the 9120 BSC side

One LIU board on the 9130 BSC Evolution side

4 A Interfaces on the MSC side.

5.2.2 Rules and Dimensioning

The following rules apply:

The G2 TC equipped with MT120 boards adheres to the following rules:

It must contain at least two (ASMC + four TRCUs)

When a new TC rack is needed, the extension is performed by a 9125TC rack.

One G2-TC Full Rack can be installed in front of the 9120 BSC (one full

G2-TC rack means Conf 2: 6 Ater Mux. as two SU are required in frontof one Ater TSU)

The maximum number of racks is three (i.e. 6*3=18 Ater Mux).

96 / 178 3BK 17438 5000 PGZZA Ed.28

Page 97: BSS Configuration

5 TC Configuration

Taking into account the above rules for G2 TC equipped with MT120, theconfiguration rules described in the following table apply for this rack.

Configuration Per Rack Extension /Reduction

Physical/Logical

Minimum Maximum Minimum

G2 TC 2 Ater Mux 6 Ater Mux One Ater Mux

SU 2 6 1

ASMC 2 6 1

TRCU SM 4:1 4 24 4

MT120 - 4 1

Table 18: G2 TC Configurations

Rules:

When creating one logical Ater Mux, the new granularity of hardware addedis: n or one ASMC + 4xATBX + (4x2 DT16)

Before introducing MT120 in a G2 TC, the ASMC must be completed with all

required DT16 (to remove holes in the ASMC).

3BK 17438 5000 PGZZA Ed.28 97 / 178

Page 98: BSS Configuration

5 TC Configuration

5.3 9125 TC

5.3.1 Architecture

The 9125 TC can be used to extend the G2 TC (by mixing a G2 TC and 9125TC within a BSS), for G2 TC replacements and for new BSS.

For G2 TC replacements, one 9125 TC can replace several G2 TC racks.

The 9125 TC can be equipped with up to 48 sub-units (referred to as MT120boards). Each MT120 offers an Ater Mux connection to a BSC and up to fourAtrunk connections to the MSC, so that the 9125 TC offers up to 192 Atrunkconnections to the MSC.

The 9125 TC can be shared between several 9120 BSC. One MT120 board inany slot of any subrack can be allocated to any Ater Mux of a 9120 BSC. TheseBSC can belong to several OMC-R.

The following table describes the 9125 TC configurations.

Configuration Per Rack(Ater Mux)

Extension / Reduction step

Physical Logical

Minimum Maximum Minimum

MT120 2 48 1 1

Table 19: 9125 TC Configurations

The AMR-WB introduces two types of MT120 board, besides the legacy MT120:

MT120 WB

MT120 NB.

The 9125 TC can have two 9125 TC STM1 boards (active and standby). Theyare inserted in a dedicated 9125 TC STM1 subrack, which is located in thebottom part of the TC rack. Each TC MT120 board is connected to both TC9125 STM1 boards (dual star). The link between MT120 and 9125 TC STM1boards is a high speed link (using HSI).

The A and Ater Mux interfaces can use the E1 support or/and the STM1support. The TC 9125 has the SDH interfaces (STM1) on a daughter board on9125 TC STM1, referred to as JATC4S1, dedicated to STM1.

The 9125 TC STM1 boards provide:

Full TC supervision from OMC-R

Remote TC software downloading.

The MT120 boards support following modes:

TCIL mode, when TC is not equipped with TCIF boards and both Atermux

and A interface are E1

HSI mode, when TC is equipped with TCIF boards with two sub modes:

98 / 178 3BK 17438 5000 PGZZA Ed.28

Page 99: BSS Configuration

5 TC Configuration

HSI2a mode, when TCIF board is used only for O&M action on TC. Inthis mode the Atermux and A interface are configured with E1

HSI2b mode, when TCIF board is used for O&M actions and telecom

traffic on STM-1/IP. In this case one or both interface (Atermux and A)can have STM-1/IP configuration.

Note: From cluster point of view all MT120 boards must be in the same mode,TCIL or HSI mode.

5.3.2 Rules and Dimensioning

For Qmux connectivity, all the TC boards connected to one BSC cluster mustbelong to the same TC rack.

For redundancy purposes, a BSC must be connected to a 9125 TC via aminimum two Ater Mux. For example:

24 BSCs with two Ater Mux can be connected to a 9125 TC rack

Six BSCs with eight Ater Mux can be connected to a 9125 TC rack.

Extension

A Qmux cluster is a group of up to six MT120 which ensure the Qmuxsupervision of the boards with the TSC/VTSC of the related BSC. These MT120boards must be always in the same 9125 TC rack.

A Qmux cluster corresponds to one 9120 BSC rack, or to group of six Ater Muxin 9130 BSC Evolution (1..6, 7..12,.).

The notion of Qmux clusters is important during the extension of Ater Mux in aBSC rack, as it can induce modification of the initial configuration.

The maximum number of MT120 boards is equal to 48.

In case of 9130 BSC Evolution:

Atermux 1 to 30 are CS

Atermux 31 to 58 are dedicated to PS

Atermux 59, 60 are PS or HSL

For example, if the extension suited is 32 CS Atermux with 32 MT120, it isneeded to use Atermux 61 and 62 (or higher 63 64...). The ’New Config

TC’ in BSC Terminal must be filled in according to the highest number ofthe Ater Mux of the BSC. In this case 61 and 62.

Different extensions are possible:

Extension of Ater Mux in a BSCIn this case, the Qmux cluster is increased. Recabling of all of the AterMux of a cluster into a new 9125 TC rack is necessary if there are nomore free slots in the 9125 TC.

G2 TC extensionOnce the G2 TC rack maximum capacity (six Ater) is reached, the BSCextension requires TC capacity. In this case, the 9125 TC rack is requiredas the G2 TC rack extension (G2 TC rack is kept). The 9125 TC rackcan be shared afterwards between different BSC extensions. A 9125 TC

3BK 17438 5000 PGZZA Ed.28 99 / 178

Page 100: BSS Configuration

5 TC Configuration

rack can also be added even if the G2 TC rack is not completely filled (inthe case of GPRS holes).

New rack of a 9120 BSC by extension of Ater Mux capacityDepending on the free slot capacity in the 9125 TC, a new 9125 TC maybe required.

New 9130 BSC Evolution configuration

New BSCDepending on the free slot capacity in the 9125 TC, a new 9125 TC maybe required.

STM1 interfaces

The STM1 interfaces are numbered from 1 to 4, instead of 240 E1 links

The TC can be pure STM1, pure E1 or mixed

One STM1 can carry up to 63 E1 (on VC-12)

For STM1 unidirectional, one STM1 interface can be shared between

A and Atermux interfaces

For STM1 bidirectional (optional feature), A and Atermux interfaces must bemapped on different STM1 interfaces. With only 4 STM1 interfaces per TC,

this leads to a constraint, only 169 A interfaces from 192 maximum possibleper TC can be mapped on 3 STM1 interfaces.

BTS

There are a maximum 1024 BTS allowed to be served by a TC rack

as the primary TC

The number of BTS served as secondary TC is unlimited.

IP transport mode requirements are:

TC 9125 STM1 board must be installed in TC 9125 rack

To introduce the interface to the TC 9125 STM1 board, the MT120 software

has to be upgraded.

Depending on N7 Transport Mode for 9130 BSC Evolution the configurationof TS16 is:

For MT120-xB boards

100 / 178 3BK 17438 5000 PGZZA Ed.28

Page 101: BSS Configuration

5 TC Configuration

TDM/LSL TDM/LSL TDM/HSL IP/LSL IP/LSL IP/HSL

AterMuxNumber

1...16 17...30 +61...76

1...30 +61...76

1...16 17...30 +61...76

1...30 +61...76

TS16configuration

N7(GCH)

TCH /GCH(GCH)

TCH /GCH(GCH)

TCH(GCH)

TCH(GCH)

TCH(GCH)

Table 20: TS 16 configuration for MT120 - xB board

Note: If the A Interface is over IP, the Ater Mux TS16 is used for trafficregardless of the BSS Transport Mode.

For boards older than MT120-xB

TDM/LSL TDM/LSLTDM/HSL IP/LSL IP/LSL IP/HSL

Ater MuxNumber

1...16 17...30+61...76

1...30 +61...76

1...16 17...30 +61...76

1...30 +61...76

TS16configuration

N7(GCH)

Notused(GCH)

Not used(GCH)

Not used(GCH)

Not used(GCH)

Not used(GCH)

Table 21: TS 16 Configuration for TC Boards Older than MT120 - xB

3BK 17438 5000 PGZZA Ed.28 101 / 178

Page 102: BSS Configuration

5 TC Configuration

102 / 178 3BK 17438 5000 PGZZA Ed.28

Page 103: BSS Configuration

6 MFS Configuration

6 MFS Configuration

This section describes the MFS, and corresponding features and functions.

3BK 17438 5000 PGZZA Ed.28 103 / 178

Page 104: BSS Configuration

6 MFS Configuration

6.1 MFS in BSSThe MFS enables GPRS in the network. The following figure shows the locationof the MFS in the network.

BTS

Abis

Abis

Atermux

A

Gb

OMC−R

IMT

SGSN

BSC TC

MFS(PCU)

MSC

Gb

Figure 16: MFS in the Network

6.2 9135 MFS

6.2.1 MFS Architecture

The Multi-BSS Fast packet Server (MFS) comprises the sub-systems:

The Control Sub-System (CSS), which is built from two COMPAQ DS10

servers, one of which is active and one of which is standby (referred to asthe Control Station)

Telecom Sub-System (TSS), which is a set of GPU and JBETI boards

Hub subsystem, which consists of duplicated 100 Mbit/s Ethernet networks

for interconnection. In the case of GB over IP, there is no hub.

104 / 178 3BK 17438 5000 PGZZA Ed.28

Page 105: BSS Configuration

6 MFS Configuration

The following figure shows the MFS architecture.

/HU

B

From / to BSCand TC

AtermuxInterfaces

AtermuxInterfaces

AtermuxInterfaces

Gb Interface

Gb Interface

Gb Interface

Control Station

GPU

GPU

GPUE

ther

net L

AN

IP / Ethernetto OMCR

From / toSGSN

Figure 17: 9135 MFS Architecture

An MFS includes at least one subrack equipped with:

16 (maximum) GPU boards (minimum is 2, including 1 spare)

Two redundant Ethernet Hubs

Two redundant Control Stations

One IOLAN with 8 ports.

6.2.1.1 GPRS Processing UnitThe GPRS Processing Unit (GPU) board is part of the MFS, and is linked toone BSC.

The GPU supports the Packet Control Unit (PCU), as defined by GSM. ThePCU allows the BSS to access the GPRS service to SGSN.

The PCU is split into two parts:

The Packet Management Unit (PMU), which handles asynchronous

functions and control functions

The Packet Traffic Unit (PTU), which handles synchronous radio functions

and data transfer functions.

There are a maximum of 16 PCM links per GPU board. The use of these PCMlinks is not dedicated, and each interface can be connected to BSS or NSSentities. The supported interfaces are:

Mixed Ater transport TCH from the BTS to existing the TC on the BSC

side and TC side

Gb connects the MFS directly to SGSN, through the Frame Relay Network

or through the MSC. The capacity required depends on GCH in Ater Mux.

The GPU AB and GPU AC supports 264 cells.

LCS in the GPU also implements the SMLC function. For more information,refer to LCS in BSS (Section 6.4.2).

3BK 17438 5000 PGZZA Ed.28 105 / 178

Page 106: BSS Configuration

6 MFS Configuration

6.2.1.2 Multiple GPU per BSSIn order to increase the GPRS capacity of the BSS in terms of the number ofPDCH, it is possible to connect several GPUs boards to the BSC to support thePCU function.

The maximum number of GPUs to be connected to a BSC depends on theconnection capacity of the BSC.

The GPU linked to same BSS do not need to be in same MFS subrack.

All cells of a certain BTS are mapped on a GPU.

Cell Mapping

Mapping a cell means associating a cell with a GPU.

Remapping a cell means that a cell, already linked to a GPU, is moved toanother GPU.

The mapping of cells onto GPU is performed by the MFS control station, whichdefines the mapping of cells onto LXPU (logical GPU, which represent eitherthe primary GPU, or the spare GPU in the case of a switchover).

All the GPRS traffic of one cell is handled by one, and only one, GPU.

The following figure shows the BSC connection for mulit-GPU per BSS.

Figure 18: BSC Connection for Multi-GPU per BSS

In terms of the BSC connection, the BSC is transparent to this behavior andignores the mapping of cells per GPU. The BSC is only impacted by a greaternumber of LAPD or TCP links.

For inter-GPU links, there are two 100Mbs Ethernet links, which interconnectthe GPU and the Control Station. These links are used to exchange informationbetween GPU.

106 / 178 3BK 17438 5000 PGZZA Ed.28

Page 107: BSS Configuration

6 MFS Configuration

6.2.2 MFS Configuration

There are two MFS configurations:

StandardThe MFS includes one telecom subrack with a minimum two GPU (1+1)and can be extended up to 16 (15+1) GPU. The second telecom subrack isonly wired and is not equipped.

Standard pre-equippedThe MFS includes two equipped and wired telecom subracks. The maximumcapacity is 32 GPU (2 * (15+1)).

The following table describes the MFS capacity for DS10.

MFS Configuration Standard StandardPre-Equipped

Number of equipped telecomsubrack

1 2

Minimum GPU + One GPU forredundancy

1+1 1+1

Maximum GPU + One GPU forredundancy

15+1 2(15+1)

Maximum BSS 15 22

Maximum GPRS GCH per MFSsubrack

(480*15) 7200 (480*30) 14400

Table 22: MFS Capacity for DS10

6.2.3 MFS Clock Synchronization

The MFS can operate in the following clock synchronization modes, which aredefined via the IMT:

Autonomous

Centralized

Synchro. Fixed Configuration.

Note: The Synchro. Fixed Configuration mode, using GPU cascading, isonly for MFS created in Release B6.2.

The selected mode is valid for the complete MFS.

Clock synchronization can come from TC then 9130 BSC Evolution, thenSGSN or from another entry provided by the customer. In the case of Gb overIP, the synchronization cannot come from the SGSN.

Cascading refers to interconnections between GPUs.

3BK 17438 5000 PGZZA Ed.28 107 / 178

Page 108: BSS Configuration

6 MFS Configuration

The following rules apply:

In the case of a multi PLMN, when the MFS is connected to different SGSN,

these SGSN are not necessarily synchronized together. If they are not,central clocking and cascade clocking cannot be used on the MFS side;

refer to PLMN Interworking (Section 2.4).

In the case where Secure Single Gb is used, SGSN/autonomous mode isnot possible.

An MFS with two subracks must be synchronized at the subrack level, so ifthis synchronization comes from the TC, four links are needed (two per MFSsubrack). If the synchronization comes from an SGSN (synchronized itself froman MSC), the synchronization must be ensured from this SGSN towards thetwo MFS subracks.

One subrack can also be synchronized to the other, so that only two linksare needed.

6.2.3.1 Autonomous ModeThere must be two secured links between each GPU and the synchronizingsource. Each GPU has its own synchronization links.

6.2.3.2 Centralized ModeSynchronization is performed at subrack level, and so there it is recommendedto have two synchronizing PCM links connected to the correspondingsynchronizing PCM-TTPs for each master GPU, leading to a total of foursynchronizing PCM links. The master GPU gives the synchronization, andthere are two master GPU per subrack.

6.2.3.3 Synchro. Fixed Configuration or Cascading ModeThe Synchro. Fixed Configuration mode requires the use of GPU cascading.

When the feature is activated from the IMT, the clock synchronization isperformed from ports 14 and 15 on each GPU.

On first GPU, the two primary synchronization interfaces (ports 14 and 15)can be any G.703/G.704 interfaces with no traffic.

At the OMC-R, for each GPU:

The BSC (dedicated GPRS Ater Mux) and SGSN (Gb) ports (0 to 7) are

configured as usual for traffic

The last eight GPU ports (8 to 15) are configured as SGSN (Gb) portsbut with no data paths assigned.

From a hardware point of view, the GPU ports (8 to 15) are linked at the DDFto create the synchronization distribution scheme.

To prevent alarm reports towards the OMC-R, all unused ports (from 8 to 15) ofeach GPU are looped at the DDF side (TX path looped on RX path).

This synchronization type is used only in old field equipment which doesnot support the centralized mode.

108 / 178 3BK 17438 5000 PGZZA Ed.28

Page 109: BSS Configuration

6 MFS Configuration

6.3 9130 MFS Evolution

6.3.1 MFS Architecture

The following figure shows the global 9130 MFS Evolution hardwarearchitecture:

SSW(duplicated)

OMCPw

GP

Mux

LIU1

LIUn

LIU Shelf(21 slots)

Ra

dio

Ne

two

rk L

inks

External Ethernet Links

E1

ATCA Shelf (14 Slots)

OMCPr

y

These boards are used in ATCA and LIU shelves.

The MFS can be in:

One or two shelves: single without BSC Evolution. When the MFS is singlethe type of BSC has no importance.

Only one shelf: sharing the rack with BSC Evolution.

3BK 17438 5000 PGZZA Ed.28 109 / 178

Page 110: BSS Configuration

6 MFS Configuration

6.3.2 MFS Stand Alone Configuration

The following table gives the number of boards for each configuration.

Board Mono ShelfConfiguration

Two ShelfConfiguration

OMCP 1+1 1+1

SSW 1+1 2+2

GP 9*+1 21+1

or

16+1

E1 concentration boards orMUX board

1+1 1+1

LIU boards 8 16

* : As no extension is possible for MFS in rack shared configurations, options 14x E1 per GP or 16 x E1 per GP exist and the maximum number of GP islimited to eight GP instead of nine GP.

Table 23: Maximum MFS Configurations on MX Platform

The following rules apply:

Maximum number of GP boards: 22 (21+ 1 standby GP)

The maximum number of E1 per GP managed by MFS software is 16

The maximum number of BSS is 21

The maximum number of cells per GP is 500.

For other objects (PDCH group, FrBR, PVC, etc.), the same values are

maintained.

The following table lists the supported LIU/GP configurations.

TTP Number Synchronization Preferred RelativePosition to BSC

Maximum MFSSubrack Number

Configurations

12 TTP centralized

autonomous

remote /colocalized

2 subracks 21 GP

9 GP

16 GP

14 TTP centralized remote BSC 1 subrack 8 GP

16 TTP autonomous colocalized BSC 1 subrack 8 GP

110 / 178 3BK 17438 5000 PGZZA Ed.28

Page 111: BSS Configuration

6 MFS Configuration

6.3.3 9130 MFS Evolution and 9130 BSC Evolution Rack SharedConfigurations

A rack shared configuration for a 9130 MFS Evolution and a 9130 BSCEvolution consists of:

1 x BSC configuration and a 1 x MFS configuration in the same cabinet

2 x BSC configurations in the same cabinet.

In both cases:

Each equipment is considered as independent (choice of each configurationfree in the limit of 1 x ATCA shelf per configuration)

In the case of the BSC and MFS, they are not considered as a standalone

node, and the MFS NE can be used by the rack shared BSC, but also byother nearby BSCs (9130 BSC Evolution based or 9120 BSC). (MFS NE is

not fully or only dedicated to BSC traffic located in the same rack)

The O&M access can be shared.

6.3.3.1 Rack Shared by 9130 BSC Evolution - 9130 MFS EvolutionThe following table shows the board configurations by shelf.

Equipment BSC Capacity (TRX) MFS Capacity

200 400 600 800 1000 "9 GP"

ATCA Shelf 1 1

CCP 1+1 2+1 3+1 4+1 5+1 NA

TPGSM 2 NA

GP NA 1 to 9

SPARE GP NA 1

OMCP 2 2

SSW 2 2

LIU Shelf 1 1

MUX 2 2

LIU 8 16 8

Note: Quantity of TPGSM, OMCP, SSW and MUX boards have to beconsidered as 1 active + 1 standby for redundancy function per shelf.

6.3.3.2 Rack Shared by Two 9130 BSC EvolutionBoard configurations in each ATCA and LIU shelf are identical to a single BSC.

3BK 17438 5000 PGZZA Ed.28 111 / 178

Page 112: BSS Configuration

6 MFS Configuration

6.3.4 MFS Clock Synchronization

There are two modes:

The autonomous mode, whereby each GPU receives the clock signal on

dedicated E1s (at least two links for redundancy)

The centralized mode, whereby two dedicated GP receive the clock signal

on dedicated E1s and transmit it to the other GPs.The 9130 MFS Evolution allows 12 E1 per GP with centralized clock.

When defining the synchronizing PCM-TTPs, it is recommended to:

Select two PCM-TTPs that are not connected to the same LIU board

Select two PCM-TTPs that are not connected to the same BSC.

In order to support the 12E1/GP in centralized mode, the MFS should be athardware level according to HTS 1.4.3.

The selection of the set of two E1 is done:

Based on the configured links

With the following priorities: TC then 9130 BSC Evolution, then SGSN.

During the MFS installation with a centralized clock, the operator must firstconfigure the E1 that is physically connected first.

112 / 178 3BK 17438 5000 PGZZA Ed.28

Page 113: BSS Configuration

6 MFS Configuration

6.4 Common Functionalities

6.4.1 GPRS in BSS

6.4.1.1 GPRS ConfigurationsWithin the Alcatel-Lucent BSS, two communication planes are used:

The transmission planeThe PCU at the MFS converses with the CCU on the BTS side, via GCH,transparently through the BSC.

The control plane. The following two signaling interfaces are used:

The GPRS Signaling Link (GSL) between the MFS and BSC. This link is

used for coordination between the BSC and the PCU, mainly for GPRScapacity on demand, and for GPRS paging, access request and access

grant when the CCCH is used for GPRS.

The Radio Signaling Link (RSL) between the BTS and the BSC. TheRSL is mainly used for GPRS paging, access request and access grant,

when the CCCH is used for GPRS.

The following configurations are supported:

The Gb interface can be routed via the G2 TC and 9125 TC to the SGSN

across the MSC

The MFS can be connected to one OMC-R only

The MFS and all connected BSS are managed by the same OMC-R. The

BSS connected to the same MFS can be linked to different MSC.

6.4.1.2 GPRS General Dimensioning and Rules

O

S

Maximum Quantity

(No Multiple GPU)

Maximum Quantity

(Multiple GPU*)

BSS per 9135 MFS O, S 22 22

BSS per 9130 MFS Evolution O, S 21 21

BSS per GPU S 1 1

GPU per BSS O, S(onmaximumvalue)

1 12 GPU per BSS(committed value)

GPU per 9135 MFS O, S 24=2(11+1) 32=2*(15+1) (DS10)

GPU per 9130 MFS Evolution 1 shelf O, S 8+1 8+1

GPU per 9130 MFS Evolution 2shelves

O, S 21+1 21+1

3BK 17438 5000 PGZZA Ed.28 113 / 178

Page 114: BSS Configuration

6 MFS Configuration

O

S

Maximum Quantity

(No Multiple GPU)

Maximum Quantity

(Multiple GPU*)

Number of GCH simultaneouslyallocated per GPU

S 240 240

Number of GCH simultaneouslyallocated per GP

S 1560 1560

Number of PDCH reached on GP S 960 PDCH CS-2

912 PDCH MCS-1

784 PDCH CS-4/MCS-5

520 PDCH MCS-6

390 PDCH MCS-7

312 PDCH MCS-9

960 PDCH CS-2

912 PDCH MCS-1

784 PDCH CS-4/MCS-5

520 PDCH MCS-6

390 PDCH MCS-7

312 PDCH MCS-9

Ater Mux 9120 BSS - 9135 MFS O 8 17 (minimum (AterMux-1, nb.GPU*8))

Ater Mux 9120 BSS - 9130 MFSEvolution

O 6 17 (minimum (AterMux-1, nb.GPU*6))

Ater Mux 9130 BSS-MFS O 16 48 (or 46 in case of HSL)

Cells / GPU AB S 264 264

Cells / GPU AC S 264 264

Cells / GP S 500 500

Cells / 9135 MFS S 2000 2000

Cells / 9130 MFS Evolution S 4000 4000

Frame Relay BC / GPU O, S 120 120

BVC per GPU AB S 266 266

BVC per GPU AC S 266 266

BVC per GP S 500 500

TRX with PDCH per Cell O,S 16 16

Allocated PDCH per TRX S 8 8

NSE per 9135 MFS O, S 30=2*(15)(DS10) 30=2*(15)(DS10)

NSE per 9130 MFS Evolution O, S 21 21

Allocated GICs per BSC 480=4*120 2000

BVC-PTP 240 240

114 / 178 3BK 17438 5000 PGZZA Ed.28

Page 115: BSS Configuration

6 MFS Configuration

O

S

Maximum Quantity

(No Multiple GPU)

Maximum Quantity

(Multiple GPU*)

NS-VC per NSE O, S 120 120

Bearer Channel per MFS O, S 300 300

Bearer Channel Per PCM O, S 31 31

PVC per BC S 1 1

SGSN_IP_Endpoint per GPU O, S 1 1

O : Operator Choice

S : System Check

* : GPU concerns the logical unit, and GP is expressed for 9130 MFS Evolution.

Table 24: GPRS General Dimensioning

The following rules and recommendations apply:

CS traffic going through the MFS is transparently connected. Thecross-connection capacity in the MFS is at the 64k TS level.

Gb traffic going to the TC is routed transparently at the TC site

There is no GPRS traffic directly on the BSC-TC Ater Mux

Maximum 1 GSL per Ater Mux. The GSL is located on TS28 of the 2ndtributary

When frame relay (Gb) is supported on a PCM, bearer channels on this

PCM are organized in a bundle of N*64Kbit/s TS. These TS are consecutive.N=1..31.

Ater Mux TS routed transparently at TC site are supported by a singletributary at A interface

The DS10 MFS supports 8 BSC/MFS links (and 32 gicGroup instances per

GPU). The 9130 MFS Evolution supports up to 16 BSC/9130 MFS Evolutionlinks (and up to 52 gicGroup instances per GP).

6.4.2 LCS in BSS

6.4.2.1 IntroductionLocation Services (LCS) are new end-user services which provide thegeographical location of a mobile station (i.e. longitude, latitude and optionallyaltitude).

LCS are applicable to any target mobile station, whether or not the mobilestation supports LCS, but with restrictions concerning the choice of positioningmethod when LCS or individual positioning methods are not supported bythe mobile station.

The LCS functions resides in an entity (including the mobile station) within thePLMN, or in an entity external to the PLMN.

3BK 17438 5000 PGZZA Ed.28 115 / 178

Page 116: BSS Configuration

6 MFS Configuration

LCS provides the position of the target mobile station. Depending on thepositioning techniques.

6.4.2.2 Logical ArchitectureLCS support requires new functions in the network sub-system, and optionally,on the radio side, depending on the positioning technique and on the networksynchronization.

These new functions are respectively:

The Gateway Mobile Location Center (GMLC)

The Serving Mobile Location Center (SMLC).

The following figure shows the LCS logical architecture.

BTS

BTSBSC

SMLC

MFS

Router

SAGI

LSN1 LSN2

SGSN

MSC

GMLC

HLR

Lg

Lg

Lh

GsInterface

LbInterface

Gb Interface

A Interface

MS

A−GPSServer

Figure 19: Generic LCS Logical Architecture

As shown:

The GMLC is the first NE serving external Location Application (LA) access

in a GSM PLMN. The GMLC requests routing information from the HomeLocation Register (HLR) via the Lh interface. After performing registration

authorization, it sends positioning requests to the MSC and receives finallocation estimates from the MSC or the SGSN via the Lg interface.

The SMLC is the NE which serves the client. The SMLC manages the

overall coordination and scheduling of the resources required to performingmobile station positioning. The SMLC calculates the final location estimate

and accuracy to obtain the radio interface measurements required to locatethe mobile station in the area it serves. The SMLC is connected to the

BSS (via the Lb interface).

116 / 178 3BK 17438 5000 PGZZA Ed.28

Page 117: BSS Configuration

6 MFS Configuration

6.4.2.3 BSS and Cell ConfigurationLCS is an optional feature in the Alcatel-Lucent BSS. This feature can beblocked by the manufacturer. When provided to the customer, LCS can beenabled or disabled by the operator at cell level.

To have LCS support for a cell, the operator must:

Attach the BSC to an MFS in order to declare the BSC in the MFS. This

leads to the download of the BSS configuration (GPRS and LCS-relatedattributes of the BSS, even if GPRS or LCS is not supported) in the MFS

Provide the geographical coordinates of the cell

Activate GPRS for the cell (i.e. set the MAX_PDCH to > 0, so that the cell is

locked for GPRS if the operator does not want to have GPRS running onthis cell)

Configure all the required transmission resources (Ater and Gb resources)on the GPU(s) connected to the BSC

Activate LCS (by setting the EN_LCS flag, the common BSC/MFS

parameter, to true ) on the BSS handling the cell

Enable at least one of the following flags: EN_CONV_GPS,EN_MS_ASSISTED_AGPS, EN_MS_BASED_AGPS

Enable the EN_SAGI flag, to indicate whether the SAGI interface isconfigured for the BSS (physical and transport level configuration) for

GPS LCS only.

Ater resources are required (GSL, Gb).

The OMC-R provides centralized management of the LCS.

6.4.2.4 RulesThe following rules apply:

LCS is supported in the CS domain

A-GPS positioning methods can be used if the new SAGI interface has

been installed

An MFS with a router in front presents one IP address to the GPS server.Reciprocally, the GPS server presents one IP address to a router in front of

the MFS

The router is external to the MFS, which implies that it is not supervised by

the MFS. The declaration of SAGI interface is supported by a EN_SAGI

flag defined on a per BSS basis.

3BK 17438 5000 PGZZA Ed.28 117 / 178

Page 118: BSS Configuration

6 MFS Configuration

6.4.3 HSDS in BSS

6.4.3.1 Definitions and PrerequisitesThe High Speed Data Service (HSDS) consists of:

A basic service to offer CS3 and CS4 for GPRS and MCS1 to MCS9 for(E)GPRS (two optional features)

Additional functions such as:

Adapting radio resource allocation in order to take into account (E)GPRS

mobile station

The ability to avoid Ater blocking.

(E)GPRS is 2.5 to 3 times more efficient than GPRS, regardless of thefrequency band, the environment and the mobile velocity.

EDGE is available in BSS with minimum impact on the network. There is nohardware impact on the MFS and the BSC, and the 9100 BTS is EDGE-readysimply by plugging in the EDGE-capable TRX where and when it is needed.

GPRS Coding Schemes

Two new coding schemes exist for GPRS in Release B9:

CS-3

CS-4.

The following table lists the coding schemes and the corresponding modulationtypes and maximum transmission rates.

Scheme Modulation Maximum Rate [Kbps] per Radio TS

CS-4 GMSK 20

CS-3 GMSK 14.4

CS-2 GMSK 12

CS-1 GMSK 8

Table 25: GPRS Coding Schemes

118 / 178 3BK 17438 5000 PGZZA Ed.28

Page 119: BSS Configuration

6 MFS Configuration

(E)GPRS Modulation and Coding Schemes

(E)GPRS enables the support of data transmission at a bit rate which exceedsthe capabilities of GPRS.

(E)GPRS relies on new modulation and coding schemes on the air interface,allowing a data throughput which is optimized with respect to radio propagationconditions (referred to as link adaptation).

The basic principle of link adaptation is to change the Modulation and CodingSchemes (MCS) according to the radio conditions. When the radio conditionsworsen, a more protected MCS (more redundancy) is chosen for a lowerthroughput. When the radio conditions become better, a less protected MCS(less redundancy) is chosen for a higher throughput.

Nine modulation and coding schemes are proposed for enhanced packet datacommunications ((E)GPRS), providing raw RLC data rates ranging from 8.8kbit/s (the minimum value under the worst radio propagation conditions perTS) up to 59.2 kbit/s (the maximum value achievable per TS under the bestradio propagation conditions). Data rates above 17.6 kbit/s require that 8-PSKmodulation is used on the air interface, instead of the regular GMSK.

The following table lists the coding schemes and the corresponding modulationtypes and maximum transmission rates.

Scheme Modulation Maximum Rate [Kbps] per Radio TS

MCS-9 8-PSK 59.2

MCS-8 8-PSK 54.4

MCS-7 8-PSK 44.8

MCS-6 8-PSK 29.6 A/27.2 A padding

MCS-5 8-PSK 22.4

MCS-4 GMSK 17.6

MCS-3 GMSK 14.8 A/13.6 A padding

MCS-2 GMSK 11.2

MCS-1 GMSK 8.8

Table 26: (E)GPRS Modulation and Coding Schemes

3BK 17438 5000 PGZZA Ed.28 119 / 178

Page 120: BSS Configuration

6 MFS Configuration

HSDS

HSDS provides support for GPRS with CS1 to CS4, and for (E)GPRS withMCS1 to MCS9.

There are 3 families of modulation and coding schemes:

Family A: MCS3, MCS6, MCS8 and MCS9

Family B: MCS2, MCS5 and MCS7

Family C: MCS1 and MCS4.

Each family has a different unit of payload:

37 bytes: family A

34 bytes: family A padding (MCS3, MCS6 and MCS8)

28 bytes: family B

22 bytes: family C.

The different code rates within a family are achieved by transmitting a differentnumber of payload units within one radio block.

When four payload units are transmitted, these are split into two separate RLCblocks (i.e. with separate sequence numbers).

When a block has been retransmitted with a given MCS, it can be retransmitted(if needed) with a more robust MCS of the same family.

The following figure shows the choice of modulation schemes.

GMSK 8PSK

MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7 MCS8 MCS9

FamilyC

FamilyB

FamilyA

padding

FamilyA

RLC Data Block Unit of Payload (in bytes)

22 22 22

28 28 28 28 28

28 28

34+3 34+3 34+3 34 34

34 34

37 37

37 37

37 37 37

The choice of modulation schemes is based on the measurement of thebit error probability (BEP).

The coding scheme and the radio modulation rates are modified to increase thedata traffic throughput of a given radio TS. This implies that the increase ofthroughput is handled on the Abis and Ater interfaces (previously, for each radioTS in use, only a 16kb/s nibble was allocated on both interfaces).

120 / 178 3BK 17438 5000 PGZZA Ed.28

Page 121: BSS Configuration

6 MFS Configuration

Ater Interface

In order to handle a throughput higher than 16Kb/s on the Ater interface,several Ater nibbles are dynamically allocated by the MFS Telecom.

Abis Interface

On the Abis interface, to handle a throughput higher than 16Kb/s, severalAbis nibbles are also used. The configuration is dynamic for TRX insidethe same BTS.

A number of 64k EXTS (Extra TS) are defined for each BTS by O&M. Thisgroup of TS replaces the number of transmission pool types used previously.

Due to the increase in Abis resource requirements, a single Abis link may notbe enough to introduce HSDS into a large BTS configuration. In this case, asecond Abis link is required (see Two Abis Links per BTS (Section 7.9) ).

M-EGCH

This term is used to refer to a link established between the MFS and the BTS.

One M-EGCH is defined per TRX.

Enhanced Transmission Resource Management

A dedicated manager sequences the GCH establishment, release, redistributionor pre-emption procedures.

The transmission resource manager is on the MFS/GPU level. It handles bothAbis and Ater resources (GCH level).

It is in charge of:

Creating and removing the M-EGCH links

Selecting, adding, removing, and redistributing GCHs over the M-EGCHlinks

Managing transmission resource preemptions

Managing Abis and/or Ater congestion states

Optionally, monitoring M-EGCH links usage, depending on the (M)CS of

their supported TBFs (UL and DL).

Abis Nibble Rule

To ensure that each cell of a given BTS is able to support PS traffic at all times,there must be a minimal number of Abis nibbles for every cell in the BTS.

Ater Nibble Rules

A given amount of Ater transmission resource is allocated per GPU. Afterwards,this Ater transmission resource is shared among the 4 DSPs of the GPU,via the GPU on-board Ater switch.

Only 64K Ater TS are handled at GPU level between the DSPs. Therefore,a 64K Ater TS is moved from one DSP to another if, and only if, all of itsfour 16K Ater nibbles are free. This is the unique restriction concerning Aternibble sharing at GPU level.

3BK 17438 5000 PGZZA Ed.28 121 / 178

Page 122: BSS Configuration

6 MFS Configuration

6.4.3.2 Transmission PowerGMSK Output Power

GMSK is a constant amplitude modulation.

8-PSK Output Power

For one given TRE, the maximum output power is lower in 8-PSK than in GMSKbecause of the 8-PSK modulation envelope which requires a quasi-linearamplification.

The TRE transmit power in 8-PSK does not exceed the GMSK transmit powerin the sector and in the band.

8-PSK is a varied digital phase modulation.

Leveling of 8-PSK Output Transmission Power is new in Release B8.

For a TRE, there is a major difference in the output transmission power betweenthe GMSK and the 8-PSK modulation. This is shown in the following table.

G4 TRE MediumPower

G4 TRE HighPower

GMSK (CS1-CS2/MCS1-MCS4) 46.5 dBm 47.8 dBm

8-PSK (MCS5-MC9) 41.8 dBm 44.0 dBm

Table 27: GMSK and 8-PSK Transmission Power Differences

The following table shows the output power values for GERAN TRA.

GERAN TRA / EDGE+ TRA

RIT name GMSK power 8-PSK power Ref Sensitivity

GSM900 GTT09 2*45 W / 46,5 dBm 2*30 W / 44,8 dBm - 116 dBm Twin TRA

GTH09 90W / 49,5 dBm 40W / 46,0 dBm - 119 dBm HP / 4 RX TRA

DCS1800 GTT18 2*35 W / 45,4 dBm 2*30 W / 44,8 dBm - 116 dBm Twin TRA

GTH18 70W / 48,5 dBm 30W / 44,8 dBm - 119 dBm HP / 4 RX TRA

GSM850 GTM08 45 W 30W

60W 40W

PCS1900 GTM19 35 W 30W

60W 30W

The (E)GPRS TBF can be allocated on the BCCH TRX, and the BCCHfrequency must have a quite stable radio transmission power.

The Modulation Delta Power is the difference between the GMSK output powerof the sector for the TRE band, and the 8-PSK output power of the TRE.According to the 8-PSK delta power value, a TRE is called "High Power" or

122 / 178 3BK 17438 5000 PGZZA Ed.28

Page 123: BSS Configuration

6 MFS Configuration

"Medium Power". 8-PSK High Power Capability is true if Modulation DeltaPower is less than 3 dB.

6.4.3.3 RulesThe following rules apply:

TCU Allocation:

Extra Abis TS are allocated only on the FR TCU

RSL, OML and TCH are mapped on a TCU, regardless of extra Abis TS

Extra Abis TS are moved automatically from one TCU to another

Allocation priorities (from highest to lowest)

PS TRX/TRE are ordered according to the following rules:

PS allocation is preferred on the BCCH TRX. PS_PREF_BCCH_TRX

indicates whether or not the PS requests will be preferentially servedwith PDCH(s) of the BCCH TRX

0: No preference. The TRX ranking algorithm handles the BCCH

TRX as a non-BCCH TRX

1: PS requests preferentially served on BCCH TRX. The TRX rankingalgorithm ensures that the BCCH TRX has the highest preference to

carry PS traffic (provided that the BCCH TRX can carry PS traffic,i.e. TRX_PREF_MARK = 0 on that TRX)

2: PS requests served on BCCH TRX with lowest priority. The

TRX ranking algorithm ensures that the BCCH TRX has the lowestpreference to carry PS traffic (provided that the BCCH TRX can carry

PS traffic, i.e. TRX_PREF_MARK = 0 on that TRX).

The TRE hardware capability

G4 TRE or 9110-E Micro BTS is preferentially used for PS allocation

TRE with 8-PSK HP capability is preferentially used for PS allocation

The DR TRE configuration is preferentially used for CS allocations

The maximum PDCH group criterion

The TRX Identifier.

BTS configuration

Only 9100 BTS (including 9100 Micro-BTS) support the HSDS

A mix of the G4 TRE medium power and G4 TRE high power (that

offers a higher output power useful for 8-PSK modulation) in the same9100 BTS is allowed

To support MCS1 to MCS9, an 9100 BTS must be upgraded with some

G4 TREs

TWIN TRA is supported only with SUMA, not with SUMP.

For BSC connectivity, two A-bis extra timeslots are equivalent to one Full

Rate TRX

3BK 17438 5000 PGZZA Ed.28 123 / 178

Page 124: BSS Configuration

6 MFS Configuration

The maximum number of Extra Timeslots in the BSC is 717

MFS capacity:

The MFS capacity is defined by the maximum throughput of the GPU

The maximum throughput of the GPU is the minimum of:

PPC maximum throughput

4 x DSP maximum throughput.

For example, for a 9135 MFS, the maximum throughput for a DSP, in onedirection, is about 800 kbit/s for pure GPRS and 1 Mbit/s with (E)GPRS

(with some assumptions regarding MCS and CS distribution)

The support of 8PSK in UL is optional for the mobile station

MAX_(E)GPRS_MCS = MCS-2 must be avoided.

124 / 178 3BK 17438 5000 PGZZA Ed.28

Page 125: BSS Configuration

6 MFS Configuration

6.4.4 Gb over IP

With the introduction of GBoIP, telecom traffic towards/from the SGSN goesthrough the router from/in the MFS.

The following table lists the Gb over IP connectivity mains output.

9130 MFSEvolution

O&M One LAN

(No RIP)

O&M Two LAN

(RIP)

Telecom OneLAN

B9 Supported Supported -

B10, B11 Supported Supported -

B10, B11 withGboIP

Supported Not supported Supported

9135 MFS O&M One LAN

(No RIP)

O&M Two LAN

(RIP)

Telecom OneLAN

B9 Supported Not supported -

B10, B11 Supported Not supported -

B10, B11 withGboIP

Supported Not supported Supported

Where:

For a 9130 MFS Evolution

O&M one LAN means:If O&M/Telecom flows use the same IP interface, internally the MFS usesa VLAN tag for the MFS external flows. The same VLAN tag is usedfor both O&M and telecom flows. There is one Vlan id per switch. Thisis the default topology.If O&M/Telecom flows use a different IP interface, there are differentrouters or different switching functions of the same router.In the case of router redundancy, a VRRP or VRRP-like protocol mustbe supported.

O&M two LAN means:The case of the same IP interface used for O&M/Telecom flows isnot supported.The case of a different IP interface used for O&M/Telecom flows isnot recommended.

3BK 17438 5000 PGZZA Ed.28 125 / 178

Page 126: BSS Configuration

6 MFS Configuration

For 9135 MFS

O&M one LAN means:If O&M/Telecom flows use the same IP interface, there are differentsubnets. This is the nominal case.If O&M/Telecom flows use a different IP interface, there is an extraIP interface on the router side.In the case of router redundancy, a VRRP or VRRP-like protocol mustbe supported.The MFS hubs must be replaced accordingly.

O&M two LAN means:This case is not applicable.

And:

Static routing solution with no RIP means:Both control station are on the same physical LAN. The two wires connectedto the router are connected to the same switching function of the router.

Dynamic routing with RIP means:The control stations are connected to two distinct LANs, one per MFSswitch. A dedicated subnet is associated with each LAN.

IP endpoints configuration can be:

StaticNS-VCs and NS-VLs can be established by administrative means.There are up to 16 SGSN IP endpoints per NSE.

DynamicNS-VCs and NS-VLs can be established by auto-configurationprocedures.The client/server principle applies: the SGSN is the server, while theBSS is a client.There are up to 16 pre-configured IP endpoints per NSE.In dynamic mode, the OMC forbids the creation of a secondpre-configured endpoint.

Assumptions:

When GboIP is activated, there must be one IP address per active GPU

Gb over IP is supported on:

The 9130 MFS Evolution

The 9135 MFS with DS10 control station equipped with Alcatel-LucentOmniStack LS 6224 switches

The support of GBoIP needs a B11 MFS but also a B11 version of the BSS

associated with the concerned GPU

On the SGSN side, it is possible to have two SGSN_IP_ENDPOINTs foreach NSE (one to support the control plane and the other to support the

user plane).

126 / 178 3BK 17438 5000 PGZZA Ed.28

Page 127: BSS Configuration

6 MFS Configuration

6.4.5 Other Common Functionalities

The following elements do not change:

There is no change in the radio configuration mechanisms, and same

parameters are used

There is no change in the Ater/Gb transmission configuration and display

The hardware supervision is still handled through the IMT

There is no change in the OMC/MFS communication.

Some boards of 9130 MFS Evolution are common with 9130 BSC Evolution:OMCP, switch, LIU, MUX, shelf manager.

If the MFS single secured Gb feature is used, the GPU synchronization inautonomous mode can be used through the BSC links or through the TC links ifthe Gb and the synchronization from the TC do not share the same Ater Mux.

6.5 Delta 9130 MFS Evolution versus 9135 MFSThis section describes the main differences between the 9130 MFS Evolutionand the 9135 MFS.

The following figure shows Ater Allocation on LIU boards for a standalone MFS.

LIU 1 LIU 2 LIU 3 LIU 4 LIU 5 LIU 6 LIU 7 LIU 8 LIU 9 LIU 10 LIU 11 LIU 12 LIU 13 LIU 14 LIU 15 LIU 16

1 1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 2412 2 18 34 50 66 82 98 114 130 145 162 178 194 210 226 2423 3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 2434 4 20 36 52 68 84 100 116 132 148 164 180 196 212 228 2445 5 21 37 53 69 85 101 117 133 149 165 181 197 213 229 2456 6 22 38 54 70 86 102 118 134 150 166 182 198 214 230 2467 7 23 39 55 71 87 103 119 135 151 167 183 199 215 231 2478 8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 2489 9 25 41 57 73 89 105 121 137 153 169 185 201 217 233 249

10 10 26 42 58 74 90 106 122 138 154 170 186 202 218 234 25011 11 27 43 59 75 91 107 123 139 155 171 187 203 219 235 25112 12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 25213 13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 25314 14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 25415 15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 25516 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Configurations for 4, 9, and 21 GPUs Colors shown affectation of LIU per GPU

GPU 1, 5, 9, 13, 17, 21

GPU 2, 6, 10, 14, 18

GPU 3, 7, 11, 15, 19

GPU 4, 8, 12, 16, 20

21 x GPU

4 x GPU9 x GPU

3BK 17438 5000 PGZZA Ed.28 127 / 178

Page 128: BSS Configuration

6 MFS Configuration

The following figure shows Ater Allocation on LIU boards for MFS with onlyone subrack.

LIU 1 LIU 2 LIU 3 LIU 4 LIU 5 LIU 6 LIU 7 LIU 8 LIU 9 LIU 10 LIU 11 LIU 12 LIU 13 LIU 14 LIU 15 LIU 161 1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 2412 2 18 34 50 66 82 98 114 130 145 162 178 194 210 226 2423 3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 2434 4 20 36 52 68 84 100 116 132 148 164 180 196 212 228 2445 5 21 37 53 69 85 101 117 133 149 165 181 197 213 229 2456 6 22 38 54 70 86 102 118 134 150 166 182 198 214 230 2467 7 23 39 55 71 87 103 119 135 151 167 183 199 215 231 2478 8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 2489 9 25 41 57 73 89 105 121 137 153 169 185 201 217 233 249

10 10 26 42 58 74 90 106 122 138 154 170 186 202 218 234 25011 11 27 43 59 75 91 107 123 139 155 171 187 203 219 235 25112 12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 25213 13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 25314 14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 25415 15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 25516 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Configurations for 4, 9 GPUs Colors shown affectation of LIU per GPUGPU 1, 5

GPU 2, 6

GPU 3, 7

GPU 4, 8

4 x GPU8 x GPU

The following figure shows Ater Allocation on LIU boards for MFS which arerack shared with the BSC.

LIU 1 LIU 2 LIU 3 LIU 4 LIU 5 LIU 6 LIU 7 LIU 8 LIU 9 LIU 10 LIU 11 LIU 12 LIU 13 LIU 14 LIU 15 LIU 16

1 1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

2 2 18 34 50 66 82 98 114 130 145 162 178 194 210 226 242

3 3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 243

4 4 20 36 52 68 84 100 116 132 148 164 180 196 212 228 244

5 5 21 37 53 69 85 101 117 133 149 165 181 197 213 229 245

6 6 22 38 54 70 86 102 118 134 150 166 182 198 214 230 246

7 7 23 39 55 71 87 103 119 135 151 167 183 199 215 231 247

8 8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248

9 9 25 41 57 73 89 105 121 137 153 169 185 201 217 233 249

10 10 26 42 58 74 90 106 122 138 154 170 186 202 218 234 250

11 11 27 43 59 75 91 107 123 139 155 171 187 203 219 235 251

12 12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 252

13 13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 253

14 14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 254

15 15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 255

16 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Configurations with 4 and 8 GPUs in rack shared with option 16 E1 /GP Colors shown affectation of LIU per GPUGPU 1, 5

GPU 2, 6

GPU 3, 7

GPU 4, 8

4 x GPU8 x GPU

Because the spare GP is not fixed, the mapping changes after switchover.

128 / 178 3BK 17438 5000 PGZZA Ed.28

Page 129: BSS Configuration

6 MFS Configuration

The 9130 MFS Evolution differs from the standard MFS as follows:

The GP replaces the current GPU

The E1 termination shelf replaces the E1 appliques, with the advantage of

separating processing from transmission

No spare physical GP (still N+1 protection scheme)

In the 9130 MFS Evolution, there are only 12/14/16 ports per GP

The fixed synchronization mode does not exist. The clock synchronization is

transmitted over Ethernet (nE1oE) from the E1 board. It is received on thespecific virtual E1 links of the GP and can be configured, as is the case

in the autonomous mode or centralized mode.

Control stations are replaced by the OMCP board

There is a new operating system (OS), and a new Tomas

Installation is via .xml scripts

The 9130 BSC Evolution can be used as clock synchronization

IP transport is supported only by 9130 MFS Evolution

With IP BSS, Gb through TC is not supported

In IP transport mode, the BSS bases the IPGSL, TCSL and the IPGCH

control link on a TCP connection:

Between the 9130 MFS Evolution GP and the 9130 BSC Evolution

CCP for the IPGSL

Between the 9130 MFS Evolution GP and the BTS TRE for IPGCH

Between the 9130 BSC Evolution OMCP and the TC TCIF for the TCSL

In case of IP BSS, there is one IPGSL per GPThe IPGSL IP addresses and port numbers are fixed (OAM) on both GPand CCP sidesIn IP mode, the IP GSL uses a (unique) TCP connection between the GPUand the BSC (CCP board). The TCP connection is opened by the GPU atGPU start time, using one BSC (CCP) IP address / PortNb pairThere is one CCP IP address / PortNb pair per GPU. The same BSC IPaddress can be used by several GPUs with different PortNbs.

For more information about configurations with O&M connection via the 9130BSC Evolution, refer to BSS Routing Configurations document.

3BK 17438 5000 PGZZA Ed.28 129 / 178

Page 130: BSS Configuration

6 MFS Configuration

130 / 178 3BK 17438 5000 PGZZA Ed.28

Page 131: BSS Configuration

7 Abis Interface

7 Abis Interface

This section describes the Abis interface, and corresponding features andfunctions.

The Abis interface is standard ITU-T G.703 / G.704 interface. It is based on aframe structure. The frame length is 256 bits grouped in 32 TS, numbered from0 to 31. The rate of each TS is 64 Kbit/s.

3BK 17438 5000 PGZZA Ed.28 131 / 178

Page 132: BSS Configuration

7 Abis Interface

7.1 Abis Network Topology and TransportFrom a functional point of view, the following topologies exist to physicallyconnect the BTS to the BSC:

Open multi-drop topology CHAINOne PCM link connects up to 15 BTS in serial order and the PCM is notlooped back to BSC by the last BTS.In a chain topology, the BSC is connected by the Abis link to a BTS. TheBTS is connected to a second BTS with a second Abis link, and the secondBTS is in turn connected to a third BTS, and so on.

Note:A star topology is a particular case of a chain with one BTS.The following figure shows a chain topology.

Abis link

BSCBTS BTSBTS

Chain Topology

Figure 20: Chain Topology

Closed multi-drop topology RINGOne PCM link connects up to seven BTS in serial order and the PCM islooped back to BSC by the last BTS.In a ring or loop topology, the last BTS of a chain is connected backto the BSC. This topology provides security as traffic between any BTSand BSC is broadcast on the two paths, and the selection is based ondedicated service bits and bytes.

132 / 178 3BK 17438 5000 PGZZA Ed.28

Page 133: BSS Configuration

7 Abis Interface

The following figure shows a ring or loop topology.

BTSBTS

Chain Topology Abis link

BSC

BTS

Figure 21: Ring or Loop Topology

In IPoEthernet, an Abis BTS Group contains all BTS connected to the

same LAN.

In IP transport mode moving an Abis chain/ring/group between BSCs ofdifferent releases is not supported.

There are several ways of transporting Abis over networks (the following listis not exhaustive):

A terrestrial link referred to as the PCM 2Mbit/s link (64 Kbit/s * 32 Timeslots= 2048 Kbit/s)

A microwave link (same capacity or higher)

Digital cross-connect network equipment, which concentrates 4, 16 or 64

PCM 2Mbit/s link

A microwave hub equivalent to DCN

A satellite link.

7.2 ImpedanceThere are two types of impedance which define the access to the transmissionnetwork:

120 Ohm balanced two twisted pairs

75 Ohm unbalanced two coaxial cables.

Note: It is forbidden to mix impedance in the same BSS.

3BK 17438 5000 PGZZA Ed.28 133 / 178

Page 134: BSS Configuration

7 Abis Interface

7.3 Abis Channel Types

7.3.1 Overview

Three types of channels are mapped in Abis trunks:

The ring control channel RS bits used in rings

Three types of BTS channel:

TCH channels: eight per TRX

HDLC channels which can carry one or more LAPDs

Extra Abis TS.

Mapping on BTS channels on E1 is defined by:

The TS bearing the Qmux

The presence (or not) of the ring control channel

Allocation rules managing the PCM TS to the BTS via Multiplexed

Channel Blocks.

7.3.2 TS0 Use

There are two TS0 modes:

TS0 UsageTS0 usage means that the TS0 carries Qmux.TS0 usage is not supported by the 9130 BSC Evolution.

TS0 TransparencyThe Qmux is carried by any other TS from TS1 to TS31 (TS0 does notcarry Qmux).TS0 transparency is strongly recommended.

134 / 178 3BK 17438 5000 PGZZA Ed.28

Page 135: BSS Configuration

7 Abis Interface

7.4 Signaling Link on Abis Interface

7.4.1 RSL and OML

The GSM Recommendation 08.52 defines two logical links between the BTSand the BSC:

The Radio Signaling Link (RSL) is used for supporting traffic managementprocedures (mobile station to network communication)

The Operation and Maintenance Link (OML) is used for supporting network

management procedures.

An OML TS cannot be mapped on a TS occupied by Extra TS, F/S/R Bits, TCHor RSL. For an unsuccessful OML mapping perform Restore Default Settingsbefore selecting different TS.

Signaling for GPRS traffic is carried over the RSL and/or GCH.

7.4.2 Qmux Bus

A link-denoted Qmux manages and supervises the transmission function of theBSS equipment. This is based on a service Qmux master/slave bus principle.

For transmission function management, the NEs are connected to this Qmuxbus and are in slave mode. An O&M entity referred to as the TranscoderSub-multiplexer Controller (TSC) is the master for the 9120 BSC and the TP forthe 9130 BSC Evolution.

Note: The Qmux bus are replaced by Abis links for 9100 BTS, via theTransmission Management by the OMU feature. Supervision is thenmanaged through the OML.

7.4.3 OML Autodetection

An onsite visit is necessary to update the OML location. The BTS cannotautonomously take into consideration any change of OML address during aMove BTS, hence the development of OML autodetection.

The BTS scans 31 TS on the Abis link to detect where its own OML linkis located. In the case of detection of an available OML, the BTS sends itsidentity (Qmux-id) to the BSC via this available OML. The BSC then reportswhether the BTS is listening to the right OML, or on which TS the BTS can findits dedicated OML.

After a reasonable delay, and without any onsite visit by a technician, the BTSautomatically reestablishes a link to the BSC.

This behavior is available only for 9100 BTS.

3BK 17438 5000 PGZZA Ed.28 135 / 178

Page 136: BSS Configuration

7 Abis Interface

7.5 Signaling Link Multiplexing

7.5.1 Signaling Link Multiplexing Options

The following Signaling Link Multiplexing options apply:

No multiplexing

Static multiplexing of RSL 4*16Kbit/s in one TS. The OML is in anotherTS. Static submultiplexing is not compatible with half rate configurations

(RSL capacity).

64K statistic multiplexing with HR flexibility

A new signaling load parameter (low/high) entered by the operator allowsthe BSC to determine the multiplexing scheme according to:

Normal: 4:1 (resp. 2:1) maximum multiplexing scheme for FR TRX

(resp. for DR TRX)

High 2:1 (resp. for 1:1) maximum multiplexing scheme for FR TRX

(resp. for DR TRX).

The operator gives the number of TRE per sector from the list of TREdeclared during BTS creation. This number must be taken as the DR TRE ineach sector and, in the case of a multiband sector, in each band.

Statistical submultiplexing one RSL and (possibly) one OML, both at 16Kbit/s in the TCH corresponding to the first TS of each TRE.

Note: Three RSLs cannot be multiplexed on one Abis timeslot.

Multiplexing can be done per BTS or per sector.

For example, a BTS with two sectors with two TREs (Full Rate) and one sectorwith four TREs (Full Rate), note for RSL x/y, x=Sector number, y= RSL number:

If multiplexing mode = "BTS" and signalling load = "normal":

First TS = OML + RSL1/1 + RSL1/2 + RSL2/1 + RSL 2/2

Second TS = RSL3/1 + RSL 3/2 + RSL 3/3 + RSL 3/4

If the multiplexing mode is "Per sector" and the signalling load is "normal"for the first sector, "normal" for the second sector and "high" for the third

sector, then the following distribution of the OML and the RSLs over the Abis

timeslots applies:

First TS = OML + RSL1/1 + RSL1/2

Second TS = RSL 2/1 + RSL2/2

Third TS = RSL 3/1 + RSL 3/2

Fourth TS = RSL 3/3 + RSL 3/4

136 / 178 3BK 17438 5000 PGZZA Ed.28

Page 137: BSS Configuration

7 Abis Interface

7.5.2 Signaling Link Multiplexing Rules

The following rules apply:

Static signaling submultiplexing is used only in a BSS with 9100 BTS,

whereby each TRX carries a maximum of eight SDCCH

Statistical submultiplexing 16K, 64K is used only with 9100 BTS. Each TRX

carries a maximum eight SDCCH, and the radio TS0 cannot be used for TCH

For 16k statistical submultiplexing, the TS0 of each TRX must carry a staticsignaling channel (BCCH, static SDCCH).

7.5.3 Multiplexed Channel Block

In order to use 64K statistical multiplexing, the Abis Channels are compoundedby a set of Multiplexed Channel Blocks (MCB).

One MCB connects one to four TRX of a single BTS to a single TCU.

In the 9120 BSC, one TCU can handle up to four MCB, according to thelimit of 32 TCH per TCU.

Each MCB is composed of one multiplexed signaling channel and two toeight Traffic Abis TS.

On the Abis, there are 32 TS.

The following table describes the three types of MCB configurations. MCB 64/3does not exist. There is no mixture of FR and DR in an MCB.

NAME No. Of TS Used /Number of FU

OML/RSL Traffic Rate

MCB 64/4 9/4 1/4 FR only

MCB 64/2 5/2 1/2 FR or DR

MCB 64/1 3/1 1/1 FR or DR

Table 28: Multiplexed Channel Block

3BK 17438 5000 PGZZA Ed.28 137 / 178

Page 138: BSS Configuration

7 Abis Interface

7.6 Mapping Techniques

7.6.1 Mapping Rules

The following rules apply:

The mapping algorithm begins allocating from the highest usable TSnumber downwards, up to the lowest usable TS number, and so on. It

is entirely controlled by the BSC.

The operator can reserve Abis TS per Abis (range of TS from Tsi to TSj)(i and j from 0 to 31 and j>i). The operator can define (per BTS) the

usable TS inside the range defined on the Abis. The operator defines, TSper TS, which one correspond to which BTS. This is necessary in the

case of cross connects.

For 9100 BTS, the two TS required to carry the traffic channels over Abis donot need to be contiguous, but the first set of four traffic channels (TRX-TS

0..3) must always be on a lower Abis-TS than the second set (TRX-TS 4..7)

The Qmux, Rbits and Sbits can be mapped onto any usable TS from

TS0 to TS31

Note: For the 9130 BSC Evolution Qmux, Rbits and Sbits must not bemapped on TS0.

The OML channels can be slotted anywhere by the operator

The RSL and TCH channels are slotted in any available TS by the BSC

The RSL can exist on the second Abis

RSL and traffic channels of one MCB must be on the same PCM link

The parameters which allow to control the Abis allocation are:

Max_PS_TS primary

Max_FR_TRE_primary

Max_DR_TRE_primary.

Note: For an HSDS-configured BTS, refer to the mapping rules (extra Abisnibbles; OML mandatory on first Abis) described in HSDS in BSS(Section 6.4.3).

138 / 178 3BK 17438 5000 PGZZA Ed.28

Page 139: BSS Configuration

7 Abis Interface

7.6.2 Abis-TS Defragmentation Algorithm

Certain types of BTS require that the TCH of a TRE are mapped on twoconsecutive 64Kbit/s PCM TS. There are no rules for the signaling links.

Therefore, for BTS or TRE hardware extensions, two contiguous 64 Kbit/s PCMTS may be required, while only two (or more) isolated PCM TS are free. Analgorithm must be run that creates two consecutive free TS, with minimumtraffic disturbance. This is referred to as defragmentation.

The operator can only add one TRE at a time. This operation is extremely rare(there is no reason to have holes of one TS on Abis).

7.6.3 RSL Reshuffling Algorithm

Note: This section refers only to 9120 BSC.

The RSL_Reshuffle is triggered by an explicit operator command (OMC-R) inthe case of an Add BTS operation.

The RSLs inside one TCU must be moved to make room for new BTSextensions within this TSU.

The RSL_Reshufle is also used to spread the MCB in order to spread SDCCH.

The following algorithms must ensure that FR and DR TCU are not mixed:

An MCB is either FR or DR and can only be mapped onto a TCU of the

same type

Extra Abis TS can only be mapped onto FR TCU

An empty TCU (without any MCB and extra Abis TS) can be set to FR or DR.

The sequence for remapping RSL/TRX and for programming the BIUA isreversed to reduce telecom outage. The scenario is as follows:

1. Construct a new RSL/TRX mapping and save this mapping in the DLS.

2. Reprogram the BIUA based on this new mapping.

3. Activate the new RSL/TRX mapping in the BSC.

Each of these blocks are secured against take over, etc... Point (1) and (3) areprotected with a rollback mechanism.

With HR flexibility, the reshuffling algorithm is kept but the reshuffling process isto be conducted independently for each TCU type.

3BK 17438 5000 PGZZA Ed.28 139 / 178

Page 140: BSS Configuration

7 Abis Interface

7.6.4 Cross-Connect Use on Abis

When cross-connects are used on the Abis, different numbers may be requiredfor the Abis TS used by the BTS (Qmux bus, OML, RSL and TCHs) on theBTS connector and on the BSC connector. This flexibility is supported bythe introduction of a TS mapping table between the BTS connectors andthe BSC connectors.

The TS mapping table is introduced by the operator via the OMC-R andapplied by the BSC when a new BTS-BIE configuration is required, due to amodification of the Abis TSs allocation. In order to keep the Release B6principle of auto-allocation of TREs, this TS mapping table is introduced duringthe Create an Abis chain/ring operation. Also, in order to maintain a relativeflexibility on the TS allocation within the TS reserved for each branch connectedto the cross-connect, the operator must also be able to select the TS which canbe used by each BTS during the "Create BTS" operation.

At the OMC-R, the operator can change usable Abis TS, usable BTS TSand cross-connect tables.

The following figure provides an example of cross-connect use on the Abis.

BSC

BTS2

BTS3

BTS1

BTS 1 TS 2 to 4BTS 2 TS 11 to 15BTS 3 TS 21 to 24

BTS 3 TS 2 to 5

BTS 2 TS 2 to 6

Branch 1

Branch 3

Branch 2

Figure 22: Example of Cross-Connect Use on Abis

The following table lists the possible TS mapping tables for the correspondingAbis chain or ring in the BSC.

TS Number for BSC Side TS Number for BTS Side

2 to 10 2 to 10

11 to 20 2 to 11

21 to 31 2 to 12

Table 29: TS Mapping Table for Corresponding Abis Chain or RingConfigurations

140 / 178 3BK 17438 5000 PGZZA Ed.28

Page 141: BSS Configuration

7 Abis Interface

7.6.4.1 TS Use RulesThe following rules apply for TS use:

The TS which can be used for BTS 1 are 2 to 10

The TS which can be used for BTS 2 are 11 to 20

The TS which can be used for BTS 3 are 21 to 31.

When BTS 1 is created, according to the usable TS, the TS allocated for theBSC connector are 10-9-8, and according to the TS mapping table, the TSallocated for the BTS-BIE are 10-9-8.

When BTS 2 is created, according to the usable TS, the TS allocated for theBSC connector are 15-14-13-12-1, and according to the TS mapping table,the TS allocated for the BTS-BIE are 6-5-4-3-2.

When BTS 1 is created, according to the usable TS, the TS allocated for theBSC connector are 24-23-22-21, and according to the TS mapping table, theTS allocated for the BTS-BIE are 5-4-3-2.

When a TRE is added to BTS 3, according to the usable TS, the TS allocatedfor the BSC connector are 27-26-25, and according to the TS mapping table,the TS allocated for the BTS-BIE are 8-7-6.

7.6.4.2 Cross-Connect Use on Abis RulesCross-connect usage on Abis is supported only if the following rules are applied:

One BTS uses (for itself and for the forwarded Abis link) only PCM TS, which

come from a single BSC connector

If Qmux is used, the BTS must be connected to the Qmux TS. The other

branch must use OML if possible (9100 BTS)

In the case of IP BSS, the TDM cross connect is not supported.

7.6.5 TCU Allocation Evolution in 9130 BSC Evolution

The TCU Allocation Evolution feature enables the removal of different rules inthe 9130 BSC Evolution due to a more flexible TCU allocation approach:

It is no longer necessary to perform a Move BTS when extending the BTS

It is possible to connect the maximum number of TRE, regardless of thetopology

Extra-TS no longer occupy TCU resources.

Note that the following rules for TCU allocation still apply:

The TCU can handle maximum of four FR TREs (four RSLs) or two FR +one DR TRE (three RSLs) or two DR TREs (two RSLs). Therefore, the

TCU can handle a maximum of four Eq. FR RSLs

The TCU can handle a maximum of three OMLs.

3BK 17438 5000 PGZZA Ed.28 141 / 178

Page 142: BSS Configuration

7 Abis Interface

7.7 Abis Link CapacityThe following table lists the number of TS available in one Abis link to use forTCHs and for the signaling channel.

Supervision By Qmux By OML

TS0 Transparency Usage

Open Chain MD 30 31 31

Closed Loop MD 29 30 29

Table 30: Number of TS Available in One Abis Link

The following table lists the number of required TS versus TRE number andsub-multiplexing type in one Abis Link with FR TRE. The assumption is thatthere are no extra TS for PS traffic in this example.

Signaling Multiplex

Nb of TRX No Multiplex Static Statistical 64 Statistical 16

1 4 4 3 2

2 7 6 5 4

3 10 8 8 6

4 13 10 9 8

5 16 13 12 10

6 19 15 14 12

7 22 17 17 14

8 25 19 18 16

9 28 22 20 18

10 31 24 22 20

11 Impossible 26 26 22

12 Impossible 28 27 24

13 Impossible Impossible 30 26

142 / 178 3BK 17438 5000 PGZZA Ed.28

Page 143: BSS Configuration

7 Abis Interface

Signaling Multiplex

14 Impossible Impossible Impossible 28

15 Impossible Impossible Impossible 30

Table 31: Number of Required TS versus TRX Number and Sub-MultiplexingType

The following table provides example FR/DR ratios according to Abis size.

N# ofTRX

DR + FRTRX

Max %HR

N# of TCURequired (DR +FR)

N# of SIG TSs

(Statistical Mux)

(Low SIG Traffic)

1 1+0 100% [frac12] + 0 1

2 1+1 66% [frac12] + [frac14] 2

3 1+2 50% [frac12] + [frac12] 2

4 1+3 40% [frac12] + [frac34] 3*

4 2+2 66% 1 + [frac12] 2

6 2+4 50% 1 + 1 2

8 2+6 40% 1 + 1 [frac12] 3

10 4+6 40% 2 + 1 [frac12] 3

10 3+7 47% 1 [frac12] + 1[frac34]

5*

10 2+8 33% 1 + 2 3

12 4+8 50% 2 + 2 4

14 2+12 25% 1+3 4

* : These numbers result from the need to split any group of three TREs as 2+1 tofacilitate the mapping. Some other choices are possible, as shown by the table.

3BK 17438 5000 PGZZA Ed.28 143 / 178

Page 144: BSS Configuration

7 Abis Interface

7.8 Abis Satellite LinksThe Abis interfaces are designed to use short terrestrial transmission links.

The operator can configure the way an Abis is carried:

Via terrestrial link, or

Via satellite.

When the link is via satellite, the system applies different parameters to wait foran acknowledgement, in order to repeat frames.

Satellite links cannot be used at the same time on the Abis interface and on theAter interface (see Ater Satellite Links (Section 8.7) ).

This feature is only available for 9100 BTSs and later versions.

The following configuration rules apply:

On Abis, the satellite link is considered to be installed between the BSC andthe first BTS of the multidrop. If this is not the case, the drawback is that

timers applied on the first BTS will be unnecessarily lengthened and thisdoes not support high traffic with poor quality links.

Usually, only a part of the TS is routed via the satellite. The customer must

take care to route the required TS.

The type of connection is defined per Abis link.

For BTS where the satellite link is installed, the following features are notavailable:

If GPRS configured, the Support of Paging Coordination in the BSS

Closed multidrop (Abis topology)

The BTS must be configured as a free run (no PCM synchronized) (OCXOsynchronization).

Support of fax and data (in CS mode, transparent and not transparent) dependson timers managed by the NSS part.

GPRS connections are supported over satellite links (Abis or Ater). If GPRS isactivated, there are a number of parameters to be modified.

For OML autodetection via satellite, a timer has been designed to be ableto manage the transmission delay. In that context, OML autodetection viasatellite is possible.

LCS is supported with Abis satellites.

144 / 178 3BK 17438 5000 PGZZA Ed.28

Page 145: BSS Configuration

7 Abis Interface

7.9 Two Abis Links per BTS

7.9.1 Overview

If HSDS is to be introduced in a BTS configuration, and if there are not enoughAbis TS on one Abis link, a second Abis can be attached to the BTS. In thiscase, OML and basic TS and the extra TS for the TRX transmission pools aresplit over the two Abis links.

For a BTS with two Abis links, the operator defines a new parameter,MAX_EXTRA_TS_PRIMARY, which defines the maximum number of extra TS thesystem is allowed to allocate on the first Abis for this BTS.

To keep the maximum free TS on the secondary Abis, the allocation ofextra TS is done in priority on the first Abis until this Abis is full or untilMAX_EXTRA_TS_PRIMARY is reached.

In terms of the Abis topologies supported, the BTS can only manage twotermination points.

The second Abis is useful when there is not enough space on one completeAbis for all BTS TS. This means that the primary Abis must be fully assigned tothe BTS. Therefore, the secondary Abis cannot be attached to a BTS if theBTS is not alone on the primary Abis.

Consequently, only two added Abis topologies are supported.

This is shown in the following figure.

The primary Abis and the secondary Abis of a BTS can be on different TSU ofdifferent racks.

There are no restrictions concerning cross-connection on the primary Abis.

The system does not check for a cross-connect on the secondary Abis.Cross-connection is not supported on the secondary Abis.

3BK 17438 5000 PGZZA Ed.28 145 / 178

Page 146: BSS Configuration

7 Abis Interface

7.9.2 Rules

The following rules apply:

The second Abis per BTS can be used for CS traffic

The second Abis per BTS is used for more than 12 TRX feature in one BTS

OML and basic TS are always mapped to the first link and the extra TS forthe TRX

Transmission pools are split over the two Abis links

Only an 9100 BTS with SUMA boards or 9110-E Micro BTS supportsthe second Abis link

An 9100 BTS with a SUMP board has to be upgraded. An 9100 BTS can

only manage two termination points

Attach Secondary Link – forbidden for externally connected BTS.

This implies that it is not possible to:

Connect a BTS in chain after a BTS with two Abis

Change the Abis from chain to ring if there is a BTS with 2 Abis

Attach a second Abis to a BTS that is not at the end of an Abis chain

Attach a second Abis to a BTS that is in an Abis ring.

Only BTS with G4 TRE or upper are able to support second Abis Link.

It is not possible to have the primary Abis via satellite and the secondary linkby terrestrial means.

146 / 178 3BK 17438 5000 PGZZA Ed.28

Mehrez
Highlight
Page 147: BSS Configuration

8 Ater Interface

8 Ater Interface

This section describes the Ater interface, and corresponding features andfunctions.

3BK 17438 5000 PGZZA Ed.28 147 / 178

Page 148: BSS Configuration

8 Ater Interface

8.1 Ater Network Topology and TransportThere are several ways of transporting Ater Mux over networks (the followinglist is not exhaustive):

A terrestrial link referred to as the PCM 2Mbit/s link (64 Kbit/s * 32 Timeslots= 2048 Kbit/s)

A microwave link (same capacity or higher)

Digital cross-connect network equipment, which concentrates 4, 16 or 64PCM 2Mbit/s link

A microwave hub equivalent to DCN

A satellite link.

IP transport mode is only supported on Ater through Ethernet.

Mixed CS/PS Ater Mux (and as a consequence, Gb insertion on MFS/TC E1link) is when the BSS is switched to IP mode.

8.2 ImpedanceThere are two types of impedance which define access to the transmissionnetwork:

120 Ohm Balanced Two twisted pairs

75 Ohm Unbalanced two Coaxial cables.

Note: It is forbidden to mix impedance in the same BSS.

148 / 178 3BK 17438 5000 PGZZA Ed.28

Page 149: BSS Configuration

8 Ater Interface

8.3 Numbering Scheme on 9120 BSC-Ater/Ater Mux/TC Ater/AInterface

8.3.1 Overview

The following table shows an overall view of the SBL numbering scheme ofthe path trunks from 9120 BSC DTC/ASMB through the PCM Ater Mux tothe transcoder.

The SBL numbering of the TRCU always follows the numbering of therespective DTC/Ater (i.e. from 1...72).

BSC Side PCM G2 TC Side 4:1 TC Rack

DTC/Ater ASMB Ater Mux ASMC ATBXAter/A

1-4 1 1 1 1-4

5-8 2 2 2 5-8

9-12 3 3 3 9-12

13-16 4 4 4 13-16

17-20 5 5 5 17-20

21-24 6 6 6 21-24

Rack 1

25-28 7 7 7 25-28

29-32 8 8 8 29-32

33-36 9 9 9 33-36

37-40 10 10 10 37-40

41-44 11 11 11 41-44

45-48 12 12 12 45-48

Rack 2

49-52 13 13 13 49-52

53-56 14 14 14 53-56

57-60 15 15 15 57-60

61-64 16 16 16 61-64

65-68 17 17 17 65-68

69-72 18 18 18 69-72

Rack 3

3BK 17438 5000 PGZZA Ed.28 149 / 178

Page 150: BSS Configuration

8 Ater Interface

8.3.2 Numbering Scheme on 9120 BSC Side

Ater Mux numbering follows the ASMB numbering, and A Trunk numberingfollows the DTC numbering.

The 9120 BSC has 18 * 4 = 72 A trunks.

The following table shows the numbering scheme for the 9120 BSC side.

SBL Ater-HW-TP SM-Adapt ATR DTC

Physicalobject

Ater Mux ASMB Ater DTC

Numbering 1..18 1..18 1..72 1..72

8.3.3 Numbering Scheme on G2 TC Side

On the G2 TC side, the scheme numbering follows the same scheme as forthe 9120 BSC side.

This is described in the following table.

SBL Ater-HW-TP SM-Adapt ATR A-PCM-TP

Physicalobject

Ater Mux ASMC A Interface ATBX / AInterface

Numbering 1...18 1...18 1...72 1...72

8.3.4 Numbering Scheme on 9125 TC Side

The following table shows the numbering scheme for the 9125 TC side.

SBL Ater-HW-TP SM-Adapt ATR A-PCM-TP

Physicalobject

Ater Mux MT120 A Interface A Interface

Numbering 1...48 1...48 1...192 1...192

150 / 178 3BK 17438 5000 PGZZA Ed.28

Page 151: BSS Configuration

8 Ater Interface

8.3.5 SBL Mapping on Hardware Modules in 9120 BSC

The following figure shows the different kinds of SBLs (with their hardwaremodule mapping) seen at the interface between the MSC and the 9120 BSC(for a TC G2). The internal links between the TIU and SM (on the TC side) andthe internal links between the SM (on the BSC side) and DTC are mapped onthe SBL on which they terminate (SBLs with "TC-ADAPT", "SM-ADAPT" or"A-tr" as SBL type).

MSCSite

BSCSiteASMC ASMB

TC−ADAPT SM−ADAPT SM−ADAPT

A−PCM −TP

DT16

TC16

ATBX

DT16DT16

DT16

ATBX

DT16DT16

DT16

ATBX

ATBX

DT16DT16

ATER−HWAY−TP(Unit type=TC) (Unit type=BSC)

(Unit type=TC) (Unit type=BSC)

ATR

ATER−HWAY−TP

3BK 17438 5000 PGZZA Ed.28 151 / 178

Page 152: BSS Configuration

8 Ater Interface

8.4 Numbering Scheme on 9130 BSC Ev olution-Ater/AterMux/TC Ater/A Interface

8.4.1 Overview

In order to avoid handling large TC configurations and because the 9130BSC Evolution is limited in Erlangs, two kinds of Ater Mux are available withthe 9130 BSC Evolution:

Ater Mux from 1 to 30 and 61 to 76 that can be connected to the MFS orTC: E1 Ater CS (Circuit Switch)

Ater Mux from 31 to 58 that can be connected only to the MFS: E1 Ater

PS (Packet Switch).

The ATER-HWAY-TP 59 and 60 can be used for HSL or PS.

This is why the number of Ater-Hway-TP is not the same on the TC side and onthe 9130 BSC Evolution side. The Ater-Hway-TP from 31 to 58 can only beused for GPRS dedicated Ater Mux.

For a detailed view of the numbering scheme for the 9130 BSC Evolution -Ater Mux, refer to Figure 12.

8.4.2 Numbering Scheme on 9130 BSC Evolution Side

The following table shows the numbering scheme for the 9130 BSC Evolutionside.

SBL Ater-HW-TP

ETU ECU SSW-HW DTC

Physicalobject

Ater Mux LIU E1ConcentrationUnit

EthernetSwitch

DigitalController

Numbering 1...76 1...16 1,2 1,2 1...322

* : DTC: [1..322] [4 x (48 DTC Ater CS + 28 DTC Ater PS + 4 E1 not used)] (CCP) +2 DTCTCH-RM (OMCP: SBLs 305, 306)

152 / 178 3BK 17438 5000 PGZZA Ed.28

Page 153: BSS Configuration

8 Ater Interface

8.4.3 Numbering Scheme on G2 TC Side

On the G2 TC side, the scheme numbering follows the same scheme as forthe 9120 BSC side.

The following table shows the numbering scheme on the G2 TC side.

SBL Ater- HW-TP SM-Adapt ATR A-PCM-TP

Physicalobject

Ater Mux ASMC A Interface ATBX / AInterface

Numbering 1...18 1...18 1...72 1...72

8.4.4 Numbering Scheme on 9125 TC Side

The following table shows the numbering scheme on the 9125 TC side.

SBL Ater- HW-TP SM-Adapt ATR A-PCM-TP

Physicalobject

Ater Mux MT120 A Interface A Interface

Numbering 1...30, 59..76 1...30, 59..76 1...192 1...192

8.4.5 SBLs Mapping on Hardware Modules in 9130 BSC Evolution

The following figure shows the different kinds of SBLs (with their hardwaremodule mapping) seen at the interface between the MSC and the 9130 BSCEvolution (for a TC G2). For the 9130 BSC Evolution, the SBL SM-ADAPT(BSC side) is removed and the SBL ATR becomes logical.

TC Site MX−BSC Site

TP−HW

(Unit type=BSC)

(Unit type=BSC)

ECU

(Unit type=BSC)

ETU

(Unit type=BSC)

LIU

MUX

ATER−HWAY−TP(Unit type=TC)

SM−ADAPT

(Unit type=TC)

TC−ADAPT

A−PCM−TP

TC16

SSW−HW

(Unit type=BSC)

SSW

DT16 DT16

DT16 DT16

DT16 DT16

DT16 DT16

ATBX

ATBX

ATBX

ATBX

ATER−HWAY−TP

3BK 17438 5000 PGZZA Ed.28 153 / 178

Page 154: BSS Configuration

8 Ater Interface

8.5 Signaling on Ater/Ater Mux Side

8.5.1 Overview

Signaling links (A, Ater and Ater Mux links) convey information betweendifferent entities:

Signaling System N7 (SS7)SS7 carries the signaling information relating to call control and mobilitymanagement between the BSS and MSC. The signaling is arrangedaccording to the CCITT Recommendations Q.700-714 for the networkprotocol layer and to GSM 08.08 for the GSM application layer.

X.25An X.25 link is set between the 9120 BSC and the OMC_R. Dependingon the BSC position related to the OMC_R, this link can be directlyestablished from the 9120 BSC to the OMC_R via an X.25 network, orcarried up to the TRCU site or the MSC site on the A trunk and then viaan X.25 Network (TS31).

IPThe connection of 9130 BSC Evolution with the OMC-R is based on theIP protocol on both two routes, namely over direct IP network, or overAter and IP network.

GSLThe GSL handles signaling for GPRS paging and for all synchronizationbetween the BSC and the MFS (TS28).

QmuxQmux is always carried in the first nibble of TS 14.

154 / 178 3BK 17438 5000 PGZZA Ed.28

Page 155: BSS Configuration

8 Ater Interface

8.5.2 SS7 Signaling Link Code

On the BSC/MSC interface, the Signaling Link Code (SLC) included in theheader (the label) of the Message Transfer Part (MTP) level 3 messages iscoded on 4 bits, with values ranging from 0 to 15.

There are no known rules concerning SLC values. The value 0 has no particularrelevance when compared to the others. When less than 16 SS7 links are usedin a given signaling set, the SLC values in use can be non-consecutive.

The SLC is an interface attribute concerning both the BSS and NSS. It is not aprivate DTC attribute. In principle, the SLC values are determined by a bilateralagreement and assigned to the peer BSC and MSC management entities usingO&M configuration procedures. A SLC value is unique within a BSS.

In terms of SLC value allocation:

The BSC ensures that all SS7 links use different SLC values

For each added SS7, its SLC equals the highest SLC which is not alreadyassociated with an equipped SS7. This algorithm is performed for newly

added SS7 in the increasing order of SS7 SBL numbering (i.e. the new SS7with the lowest SBL number must be processed first, and so on).Such an algorithm is flexible enough to be compatible with any alreadyinstalled configuration. Furthermore, in the case of an MSC which does nothandle SLCs equal to "0", it guarantees that the SS7 which is associatedwith the SLC "0" will be always the 16th (this SS7 must remain "OPR").

The MSC is configured accordingly when the corresponding SS7 is initialized.

A BSC linked to an MSC which does not handle SLCs equal to "0" can handle amaximum of 15 SS7s (instead of the usual 16), however, in such a case, themaximum BSC traffic capacity cannot be achieved.

Note: If the configuration has more CCPs, the N7 links can be spread betweenthem. For specific information, refer to Modify SLCs.

3BK 17438 5000 PGZZA Ed.28 155 / 178

Page 156: BSS Configuration

8 Ater Interface

8.5.3 SS7 Links

The following rules apply:

The SLC is known by the MSC and BSC within 4 bits

SBL numbering corresponds to the DTC numbering which follows Atrunk numbering.

The following table shows SS7, Ater Mux, DTC and Ater numbering. TheNetwork Location (NAD) is the DTC location in the BSS.

SBL SS7/DTC/Ater Number Ater Mux

1 1

5 2

9 3

13 4

17 5

21 6

25 7

29 8

33 9

37 10

41 11

45 12

49 13

53 14

57 15

61 16

Table 32: SS7, Ater Mux, DTC and Ater Numbering

There are tree operation modes of a SS7 link:

Low speed (64 kbit/s) [LSL]

High speed (1.984 Mbit/s) [HSL]

A signalling over IP.

156 / 178 3BK 17438 5000 PGZZA Ed.28

Page 157: BSS Configuration

8 Ater Interface

LSL/HSL

The total number of LSL+HSL is a maximum of 48

The maximum number of HSL is 8

To avoid excessive SS7 dimensioning, the number of BSS using HSL on aTC is limited to 4

The maximum signalling load is:

200 Erlang per LSL

4800 Erlang per 2 HSL links

Total 27200 Erlang.

The transmission network between the 9130 BSC Evolution and the MSCensures the frame integrity for timeslots 1 to 3. HSL links are between theBSC and MSC.

The mixed mode (LSL+HSL) is not allowed.

Any Ater Mux defined in the BSC configuration can be used to support HSL, butthe BSC checks that these two Ater Mux:

Do not carry Qmux

Do not carry IP over Ater

Are configured for CS traffic only

Are on two different LIU boards.

A signalling over IP

The N7 signalling is transferred over IP by M3UA

The BSC is connected to MSC directly

TS16 can be used for traffic

This feature transfers the A signalling over IP; it is implemented only in

the BSC Evolution

The BSC and MSC server are in peer-to-peer mode. The MSC serverterminates the SS7 signalling instead of forwarding it to other SS7 signalling

point. And there is no other SS7 signalling point between BSC and MSCserver

One MSC server has only one signalling point code

The A Signalling over IP does not work with the other A signalling transfermodes at the same time

The A Signalling over IP can be used towards several MSC servers

Only the SS7 point code is used as the routing key for M3UA for both MSC

and BSC. The routing key is configured statically instead of being configuredby the routing key registration scenario

The IP address of both MSC and BSC is IPV4.

3BK 17438 5000 PGZZA Ed.28 157 / 178

Page 158: BSS Configuration

8 Ater Interface

8.6 GPRS and GSM Traffic on Ater Mux versus 9120 BSC

8.6.1 Overview

There are two types of Ater Mux links to the MFS:

Dedicated

Mixed.

CS refers to circuit switched GSM traffic and PS refers to packet switchedGPRS traffic.

For dedicated GPRS Ater Mux links, SM (TC site) and associated TRCUs arenot equipped. SS7 TS is not used, with or without GSL LAPD.

Note that in the MFS to BSC direction, on the Ater Mux supporting the "Alarmoctet" (or TS0 information), the MFS will force a fixed pattern that is used atthe BSC site.

For mixed GPRS/CS Ater Mux links, the traffic TS can be used 12.5% or 25%or 50% or 75% or 100% for GPRS, with or without GSL LAPD. SS7 can also becarried on the corresponding Ater Mux (up to 16).

On the Ater Mux, channels located within the TS also containing the Qmuxcannot be used for GPRS.

X.25 links can optionally be carried on the first 2 Ater Mux in the 9120 BSC.

MLPPP can optionally be carried on the first 16 Ater Mux for 9130 BSCEvolution.

Qmux links are always carried on the first 2 Ater Mux from the Ater Muxcluster (group of 6 Ater Mux).

If there is an SS7 link, then the Ater Mux can carry either CS or a mixture ofPS and CS traffic.

158 / 178 3BK 17438 5000 PGZZA Ed.28

Page 159: BSS Configuration

8 Ater Interface

8.6.2 Hole Management in G2 TC

When GPRS is introduced in a BSS and when an Ater Mux is fully dedicated tothe GPRS, the related ASMC in the TC rack and TRCU are not used, becausethe Gb does not go through the TC.

When an Ater Mux dedicated to GSM traffic is added to the BSS later, theASMC in the TC rack and the TRCU which were not used, remain unused andthe added Ater Mux is connected to the following ASMC in the TC rack. Thiscan be considered as a hole in the TC rack configuration where an ASMCwill be never used.

This is shown in the following example:

First state:

Ater Mux is used for GSM traffic

G2 TC rack filled with 4 Ater Mux.

Second state GPRS introduction:

With dedicated Ater for the Gb interface

Ater Mux 5 and 6 are put as NEQ for G2 TC equipment.

Third state GSM traffic increase:

Need additional Ater Mux (TC boards)

A new rack is needed because Ater Mux 5 and 6 are NEQ.

This situation is not applicable to 9125 TC, because the operator configures theMT120 to Ater Mux mapping with 9125 TC terminal.

8.6.3 Sharing Ater Mux PCM Links

The following PCM rules apply:

X is the number of Ater Mux between the BSC and the GPU

Y is the number of Ater Mux between the GPU and the TC (mixed Ater Mux)

Z is the number of Gb Interfaces between the GPU and SGSN

X+Y+Z <= 16 for legacy, 12/14/16 for 9130 MFS Evolution depending on

configuration

When the Ater Mux transports mixed traffic: X=Y

There are a maximum 12/14/16 PCM links at the GPU for traffic. For 9135MFS, in the case of ‘Fixed Synchronization Sources’ feature use, only 8 PCMlinks can be used for traffic.

The minimum number of GPU-TC and GPU-SGSN links (Y+Z) is 1. Themaximum number of BSC-GPU links is 13, and the maximum number ofBSC-MFS links depends on the BSC configuration. It is also possible to haveone complete PCM (X) with GPRS and a direct connection to SGSN (thenY can be null). Z also can be null.

3BK 17438 5000 PGZZA Ed.28 159 / 178

Page 160: BSS Configuration

8 Ater Interface

It is important to note that:

For 9135 MFS:

Each DSP supports 120 GCH

The GPU handles less than 480 GCH to avoid blocking the DSP.

For 9130 MFS Evolution:

Each DSP supports 480 GCH

The GPU handles less than 1920 GCH to avoid blocking the DSP.

A full Ater Mux carries 112 GCH (32 TS - TS0, alarm octet, SS7, GSL)

Five Ater Mux are needed to support 480GCH

The increase of throughput is due to (E)GPRS channels

The usage of mixed Ater Mux (CS+PS) should be minimum.

The next configuration per GPU is as follows:

Five PCM towards BSC (one is mixed)

One PCM towards TC or SGSN

Two PCM towards SGSN

Five bearer channels per PCM SGSN.

8.6.4 Ratio of Mixing CS and PS Traffic in Ater Mux

The following table lists the ratio available to mix CS and PS traffic.

CS TCH PS GCH*

Full 116 Null 0

7/8 100 1/8 16

3/4 84 1/4 32

1/2 56 1/2 60

1/4 28 3/4 88

Null 0 Full 112

* : The indicated number of GCH assumes no GSL

The TS numbers are a maximum value and depend on the presence (ornot) of signaling links.

The use of GSL on a given Ater Mux takes the place of 4GCH nibbles onthis link.

TS 16 is always occupied for N7, even if it is not used.

160 / 178 3BK 17438 5000 PGZZA Ed.28

Page 161: BSS Configuration

8 Ater Interface

8.7 Ater Satellite LinksThe Ater interfaces are designed to use terrestrial transmission links.

The operator can configure the way an Ater is carried, either via a terrestriallink, or via satellite.

When the link is via satellite, the system applies different parameters to wait foracknowledgement, in order to repeat the frames.

Satellite links cannot be used at the same time on both the Ater interface andthe Abis interface (see Abis Satellite Links (Section 7.8) ).

The following configuration rules apply:

On the Ater interface, all the links are handled in the same way. The satellitelink can be installed either on the Ater (between the BSC and the TC), or

on the A interface (between the TC and the MSC). As the latter case iscomparatively rare, the process is referred to as Ater. In the case where

the satellite link is on the A interface, the modification of the transmissionsupervision timer is not useful but is implemented.

In the case where only a part of the TS are routed via the satellite, at least

Qmux, X25/MLPPP (if via A interface) must be routed. Non-routed channelsmust be blocked either from the MSC or from the OMC-R.

If only one link is forwarded, there is no redundancy on SS7, X25/MLPPP, or

Qmux. This configuration is not recommended but it does work.

When A interfaces or Ater interfaces are routed via satellite, the SS7 areconfigured to use Preventive Cyclic Retransmission (PCR).

LCS is supported with Ater satellites.

3BK 17438 5000 PGZZA Ed.28 161 / 178

Page 162: BSS Configuration

8 Ater Interface

The following conditions must be fulfilled if Ater satellites support GPRS:

Increase T200_GSL from 1 sec to 2 sec (in the customer BUL file) in

the MFS

If needed, increase K_GSL from 16 to 32 (in the customer BUL file) inthe MFS

Add GSL links (see the following table).

Value of Nb_Msg_BSCGP(High/Medium/Low factor)

Nb of GSL links(K_GSL = 16)

Nb of GSL links(K_GSL = 32)

0 < <= 32 1

232< <=64

1

64< <=96 3

496< <=128

2

128< <=192 3

192< <=256 4

where Nb_Msg_BSCGP is the number of messages sent by the MFS on theBSCGP interface.

Support of Paging Coordination in the BSS feature is not activated.

162 / 178 3BK 17438 5000 PGZZA Ed.28

Page 163: BSS Configuration

9 A Interface

9 A Interface

The A interface is used to connect the TC to the MSC.

The A-Flex feature allows a BSC to connect to more than one MSC.

3BK 17438 5000 PGZZA Ed.28 163 / 178

Page 164: BSS Configuration

9 A Interface

9.1 A Interface RulesThe following rules apply:

When A-Flex is applied, one or more MSC serve a CS pool-area, but only

one out of these MSC serves each individual MS

A-Flex feature does not work with core network sharing

One and only one MSC server always controls an interface circuit

One BSC connects up to 16 MSC servers

The A-Flex feature requires the A signalling over IP feature

Support of A-Flex by the MSC server is mandatory

Support of the virtual MGW feature by the Media Gateway is mandatory

9.2 Hardware CoverageThe following rules apply:

A-Flex is only implemented in the 9130 BSC Evolution (with TPV1 or TPV3)

The A-Flex feature cannot be used when the Alcatel-Lucent BSS is

connected to a Legacy MSC.

164 / 178 3BK 17438 5000 PGZZA Ed.28

Page 165: BSS Configuration

10 Lb Interface

10 Lb Interface

The Lb interface is used to connect the 9130 BSC Evolution to the SMLC.

The Support of Lb interface by the BSC with SMLC in IP feature allows a 9130BSC Evolution to connect to one SMLC.

3BK 17438 5000 PGZZA Ed.28 165 / 178

Page 166: BSS Configuration

10 Lb Interface

10.1 Lb Interface RulesThe following rules apply:

EN_Lb and EN_LCS cannot be simultaneously Enabled for a B11 Mx

MR3Ed1 onwards BSC

EN_Lb cannot be set on Enabled if the SMLC with at least one Lb endpoint

are not created

Only one SMLC can be created for a given BSC

Up to 4 Lb signaling links can be created for a given SMLC

EN_LB_NMR can be enabled only if EN_LB is already enabled

EN_Lb can be set on Disabled only if all the Lb endpoints of the SMLC

are locked.

10.2 Hardware CoverageThe following rules apply:

Lb Interface is only implemented in the 9130 BSC Evolution (with TPV1or TPV3)

The Lb Interface and the Legacy LCS, are mutually exclusive.

166 / 178 3BK 17438 5000 PGZZA Ed.28

Page 167: BSS Configuration

11 Iur-g Interface

11 Iur-g Interface

The Iur-g interface is used to connect the 9130 BSC Evolution with the RNC.

The Iur-g Interface with Enhanced Control Plane feature allows a 9130 BSCEvolution to be connected with up to 16 neighbour RNCs.

3BK 17438 5000 PGZZA Ed.28 167 / 178

Page 168: BSS Configuration

11 Iur-g Interface

11.1 Iur-g Interface RulesThe following rules apply:

The feature applies on TDM or IP BSS with TDM or IP A-Interface, the

BSS IP configuration must be ready (e.g. one LAN configuration; thepreconditions are the same as in case of A-Signaling over IP)

Iur-g control plane is carried by SCCP/M3UA/SCTP/IP

The feature is optional, is activated from OMC-R and the operator candeclare up to 16 neighbor RNCs for one BSC

Up to 4 Iur-g signaling links are supported by the BSC per RNC

The RNC name and SPC must be unique at BSS level

A new precondition for modifying the BSC SPC is that, if the Iur-g interfaceis activated, all Iur-g signaling links of all RNCs must be locked.

11.2 Hardware CoverageIur-g Interface is only implemented in the 9130 BSC Evolution (with TPV1or TPV3).

168 / 178 3BK 17438 5000 PGZZA Ed.28

Page 169: BSS Configuration

12 GB Interface

12 GB Interface

This section describes the GB interface, and corresponding features andfunctions.

3BK 17438 5000 PGZZA Ed.28 169 / 178

Page 170: BSS Configuration

12 GB Interface

12.1 Gb TopologyThe interface between the MFS and the SGSN is referred to as the Gbinterface. It is supported by 2Mbit/s PCM links of 32 TS at 64Kbit/s.

There are four possible ways to connect the MFS to SGSN:

Via Gb links directly to SGSN

OMC

BSC TC

MSC

GbInterface

MFS

SGSN

MFS−TC InterfaceMixed CS/GPRSCS TS

GPRS TSConversionof Protocol

SM

Atermux Interface

Frame RelayA

Interface

Atermux Interface

Figure 23: Gb Link Directly to SGSN, over Frame Relay

Via Ater Mux links and Gb links through the TC and the MSC, therefore CS

TS are routed transparently to the MSC across the MFS. GPRS TS aretransparent in the TC. GPRS TS are converted to Gb TS in the MFS. The

TC transmission is updated in this case, so that TC is ready when Gb goesto SGSN through the TC (this is known as TC transparency).

BSC TC

MSC

GbInterface

MFS

SGSN

MFS−TC InterfaceMixed CS/GPRS

AtermuxCS TS

GPRS TSConversionof Protocol

Frame Relay

OMC

SM

Figure 24: Gb Link through the TC and MSC

170 / 178 3BK 17438 5000 PGZZA Ed.28

Page 171: BSS Configuration

12 GB Interface

Via Gb links from the MFS to SGSN through the MSC, whereby a PCM isdedicated to Gb interface and GPRS TS are converted to Gb TS in the MFS.

OMC

BSC TC

MSC

MFS

SGSN

MFS−TC InterfaceMixed CS/GPRSCS TS

GPRS TSConversionof Protocol

SM

Atermux Interface

AInterface

Atermux Interface

Frame Relay

GbInterface

Figure 25: Gb Link through the MSC

Via Gb links directly to SGSN, over IP Network.

OMC

BSC TC

MSC

GbInterface

MFS

SGSN

MFS−TC InterfaceMixed CS/GPRSCS TS

GPRS TSConversionof Protocol

SM

Atermux Interface

IP NetworkA

Interface

Atermux Interface

Figure 26: Gb Link Directly to SGSN, over IP Network

12.2 Gb ConfigurationThe BSSGP, Network Service (NS) and physical layer protocols define the Gbinterface. The BSSGP manages GB Interface and Virtual Connections (BVC)identified by their BVCI.

There are three types of BVC:

BVC-PTPVirtual circuit Point to Point assigned for the GPRS traffic of one cell: BVCI>1

BVC-PTMVirtual circuit Point to Multi-point (not used in the BSS): BVCI=1

BVC-SIGSignaling of all BVC-TTP: BVCI=0.

The NS depends on the Intermediate Network Transmission (ITN), in two parts:

3BK 17438 5000 PGZZA Ed.28 171 / 178

Page 172: BSS Configuration

12 GB Interface

With Frame Relay:The Sub-Network Service (SNS) depends on the ITN. At present, the ITNused is Frame Relay. The SNS handles the Permanent Virtual Connections(PVC). Each PVC is associated with one NS-VC. The Data Link ConnectionIdentifier (DLCI) is used to number the PVC. The DLCI=0 is not PVC but isused for signaling on the Bearer Channel BC0.

Without Frame Relay:The Network Service Control (NSC) is independent from the ITN. The NSChandles the NS-VC virtual connections end to end for the MFS-SGSN. AnNetwork Service Element (NSE) is a group of NS-VC.

Only one NSE is declared per GPU board (in the case of multi-GPU perBSS), so that adding a new GPU for a BSS implies the following on the SGSNside for the Gb interface:

The definition of a new NSE (the NSE identifier is unique, is an O&M staticinformation and is given by SGSN)

The definition and declaration on the SGSN side of the PVCs and NS-VCsof this NSE (NS-VCI are O&M static information) in the case of GboFR

The definition and declaration on the SGSN side of the MFS IpEndpoint, in

the case of GboIP.

The Bearer Channel (in the case of Gb over FR) can be a minimum 64 Kbit/sTS or a bulk of adjacent 64 Kbit/s TS or a maximum 31 of 64 Kbit/s TS of E1Digital Hierarchy Transmission Network.

The following figure shows the logical context for the Gb Interface.

The secured single Gb (in the case of Gb over FR) allows the installationof twice as few GB links (only one E1) than with the former recommendedconfiguration rules, which required two PCM-TTP and 2 NS-VC per FR-BCfor redundancy. In the case of a GB failure on a given GPU board, re-routingis done for the whole GB stack (at BSSGP level) of other GPUs of the sameBSS, which have Gb available. There is no impact on the current cell mapping;that is, cells remain mapped on their related GPUs.

FrameRelay

Network

MFS Frame Relay SGSN

BSC1BVCi=0

Callid8BVCi=2

Callid3BVCi=3

Callid9BVCi=4

Callid7BVCi=5

NSEi=1Load Sharing

NSEi=1Load Sharing

NSVC1

NSVC3

PVC(DLCi=16)

BearerChannel=1

BearerChannel=2

BearerChannel=3DLCi=34

DLCi=38

NSVC3

NSVC1

BVCi=0

DLCi=17

BVCi=2

BVCi=3

BVCi=4

BVCi=5

Figure 27: Gb Logical Context

172 / 178 3BK 17438 5000 PGZZA Ed.28

Page 173: BSS Configuration

12 GB Interface

12.3 Gb flex rulesThe following rules apply:

It is proposed to have up to:

16 SGSN IP endpoints per NSE (static configuration)

16 pre-configured IP endpoints per NSE (dynamic configuration).

In case of dynamic configuration, it is proposed to have up to 16 SGSNIP endpoints from a pre-configured IP endpoint.

As the maximum number of NSE/SGSN per GPU is set to 8, the following

dimensioning for NSE and NsVc become:

MFS Configuration MxMFS

GPU number 21

NSE/SGSN per GPU 8

Max NSE per MFS 168

Max GPU per BSS 12

Max NSE per BSS 48

SGSN IP Endpoint per NSE orPre-Configured IP Endpoint per NSE

16

Max SGSN IP Endpoint per MFS 2688

NRI per SGSN 8

When Gb flex is not available (En-Gb-Flex = Disabled in the BSS) in FR

mode, creation of a second NSE, on the same GPU should be refused whenthe BSS transport mode is FR. This check is done to avoid inconsistency

data.

As the link between the NSE and GPU is not direct (but through SGSN IPendpoint or NsVc) the control can be done only when a SGSN IP endpoint

or a NsVc is created in the NSE.

OMC-R should refuse to set the BSS transport mode to FR when Gb flex

feature is enabled.

The NSE can exist without the BSS. But once an NSE is associated to aBSS, we can’t delete the NSE before to remove the association with the

BSS. In the other case, the BSS will try to access to an NSE which doesnot exist any more. With Gb-flex, the NSE can be deleted only if it is not

associated to a BSS.

If BSS Gb Transport Mode is IP, all NSEs belonging to the same SGSN,associated with the same (new) BSS function, holding at least one SGSN

IP endpoint, have the same Configuration type.

3BK 17438 5000 PGZZA Ed.28 173 / 178

Page 174: BSS Configuration

12 GB Interface

174 / 178 3BK 17438 5000 PGZZA Ed.28

Page 175: BSS Configuration

13 CBC Connection, SMSCB Phase 2+

13 CBC Connection, SMSCB Phase 2+

This section describes the GSM Short Message Service Cell Broadcast(SMSCB) features and functions.

3BK 17438 5000 PGZZA Ed.28 175 / 178

Page 176: BSS Configuration

13 CBC Connection, SMSCB Phase 2+

13.1 OverviewThe GSM SMSCB feature allows the distribution of messages from an SMSCBcentre (CBC) to a mobile station listening in idle mode to a general broadcastchannel called the CBCH.

13.2 GSM Cell Broadcast ApplicationsThere are two types of applications for the GSM Cell Broadcast feature:

Applications where the information broadcast relates more or less to mobilestation operation in the network. This type of application is driven directly

by the network/operator. Applications such as home zone indication,charging rate indication or the network condition indication are value added

features for the operator.

Applications where the operator offers the Cell Broadcast facility for useby entities external to the GSM Network. Applications such as road traffic

information, public safety, and advertisements can be a source of additionalrevenue for the operator.

Note that these types of applications can coexist.

13.3 Solutions

13.3.1 9120 BSC Solutions

For the X25 CBC-BSC connection (which differs from the OMC-R connection,but which must be configured in the same way), several alternative solutionsexist:

PSDN

Connection via Ater, extraction at TRCU

Connection via Ater, extraction at MSC.

The solution by default is PSDN. A BSC can be connected to one CBCmaximum.

13.3.1.1 CBC-BSC Interconnection via PSDNNormally, an redundant solution is used for CBC-BSC interconnection. Twolinks can be provided towards the CBC:

Primary link

Secondary link (backup link).

The secondary link is optional. This redundant link, if it exists, is only used if thecommunication with the CBC cannot be achieved using the primary link.

The following figure shows a CBC-BSC interconnection via PSDN.

176 / 178 3BK 17438 5000 PGZZA Ed.28

Page 177: BSS Configuration

13 CBC Connection, SMSCB Phase 2+

BTS1

BTS2

BTS3

BSC1

BSC2

BSC3

Abis Ater Atermux Ater A

PSDN

OMC CBC

SM SM TRCU

MSC1

MSC2

MSC3

SMCB Path

Figure 28: CBC-BSC Interconnection via PSDN

13.3.1.2 CBC-BSC Interconnection via MSCThis solution exists for a private operator who pays a high price for connectionsor for export markets where there are no X.25 networks.

It is preferable that the CBC and OMC-R are collocated (connected to the sameMSC), in order to avoid technical complications including:

The redundancy of the external equipment (router) and transmission lines(LL)

Switchovers

O&M to manage for external equipment (managed generally by proprietary

or SNMP stacks which prevent an integrated Network Management).

The following figure shows CBC-BSC interconnection via the MSC.

3BK 17438 5000 PGZZA Ed.28 177 / 178

Page 178: BSS Configuration

13 CBC Connection, SMSCB Phase 2+

MSC1

MSC2

MSC3

TRCU

BSC1

BSC2

BSC3

BTS1

BTS2

BTS3

Abis A

Router

CBC

SM

SM

Atermux

Ater

Ater

: SMCB Path

OMC

Figure 29: CBC-BSCs Interconnection via the MSC

For more information, refer to BSS Routing Configurations.

13.3.2 9130 BSC Evolution Solutions

The X25 protocol is still supported for the CBC interface, however directconnection of the CBC from the BSC site is no longer supported. The CBCconnection is made through the X25 over Ater at the TC or MSC site. Accordingto the 3GPP definition, the SMS-CB service maintains the X.25 connection.Therefore, the 9130 BSC Evolution keeps transferring X.25 packets to CBCover Ater on the TC/MSC site or directly over the IP network on the 9130 BSCEvolution site. (ML-) PPP or 802.3A/B is used on the 9130 BSC Evolution siteto carry the X.25 packets.

For more information, refer to BSS Routing Configurations.

178 / 178 3BK 17438 5000 PGZZA Ed.28