cactus varieties of cubic forms: apolar local artinian ...€¦ · cactus varieties of cubic forms:...

58
Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [–, J. Jelisiejew, P. Macias Marques, K. Ranestad] Alessandra Bernardi Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [–, J. Jelisiejew, P. Macias Marques, K. Ranestad] Alessandra Bernardi Univeristy of Bologna (Italy) November 13th, 2014 Tensors in Computer Science and Geometry Simons Institute, Berkeley 1 / 26

Upload: others

Post on 05-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Cactus Varieties of Cubic Forms:

Apolar Local Artinian Gorenstein Rings

[–, J. Jelisiejew, P. Macias Marques, K. Ranestad]

Alessandra Bernardi

Univeristy of Bologna (Italy)

November 13th, 2014

Tensors in Computer Science and Geometry

Simons Institute, Berkeley1 / 26

Page 2: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Brief

1 Waring rank and Cactus rank

2 Theorem: Dimensions of Cactus varieties for cubic forms

3 Apolarity

4 Local apolar schemes

5 Proof of the Theorem

2 / 26

Page 3: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Waring rank

F ∈ Sd = K [x0, . . . , xn]d homog. of deg d (charK 6= 2, 3)

Definition

Waring rank: min r ∈ N s.t. F = Ld1 + · · ·+ Ld

r with Li ∈ S1

Veronese: νd : P(S1)→ P(Sd), [L] 7→ [Ld ]

min r ∈ N s.t. [F ] ∈ r -th secant space to νd(P(S1))

The shortest length of a smooth finite scheme Γ ⊂ P(S1) s.t.

[F ] ∈ 〈νd(Γ)〉, Γ = {[L1], . . . , [Lr ]}

3 / 26

Page 4: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Cactus rank

Remove “smooth”

Definition

Cactus Rank: min r ∈ N s.t. ∃ finite (Gor.) scheme Γ of length r

s.t. [F ] ∈ 〈νd(Γ)〉

Secr (νd(P(S1))) = ∪Γ∈HilbrP(S1),Γsmooth〈νd(Γ)〉 Secant variety to

Veronese

Cactusr (νd(P(S1))) = ∪Γ∈HilbrP(S1)〈νd(Γ)〉 Cactus variety

4 / 26

Page 5: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Cactus rank

Remove “smooth”

Definition

Cactus Rank: min r ∈ N s.t. ∃ finite (Gor.) scheme Γ of length r

s.t. [F ] ∈ 〈νd(Γ)〉

Secr (νd(P(S1))) = ∪Γ∈HilbrP(S1),Γsmooth〈νd(Γ)〉 Secant variety to

Veronese

Cactusr (νd(P(S1))) = ∪Γ∈HilbrP(S1)〈νd(Γ)〉 Cactus variety

4 / 26

Page 6: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Theorem

We focus on CUBIC forms

Theorem

When r ≤ 17, then

dimCactusr (X3,n) = dimSecr (X3,n).

When 18 ≤ r ≤ 2n + 2, then dimCactusr (X3,n) > dim Secr (X3,n) and

dimCactusr (X3,n) =

=

min{

148

r 3 − 38r 2 + rn + 5

3r − 2,

(n+3

3

)− 1}, if r ≥ 18 even,

min{

148

r 3 − 716

r 2 + rn + 11948

r − 6516,(n+3

3

)− 1}, if r ≥ 18 odd.

[CNJ] : r ≤ 13 Any local scheme is smoothable (=flat limit of smooth)

5 / 26

Page 7: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Theorem

We focus on CUBIC forms

Theorem

When r ≤ 17, then

dimCactusr (X3,n) = dimSecr (X3,n).

When 18 ≤ r ≤ 2n + 2, then dimCactusr (X3,n) > dim Secr (X3,n) and

dimCactusr (X3,n) =

=

min{

148

r 3 − 38r 2 + rn + 5

3r − 2,

(n+3

3

)− 1}, if r ≥ 18 even,

min{

148

r 3 − 716

r 2 + rn + 11948

r − 6516,(n+3

3

)− 1}, if r ≥ 18 odd.

[CNJ] : r ≤ 13 Any local scheme is smoothable (=flat limit of smooth)

5 / 26

Page 8: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Apolarity

S = K [x0, . . . , xn], T = K [y0, . . . , yn]

yα(x [β])

=

x [β−α] if β ≥ α,

0 otherwise.

S1 and T1 are dual spaces.

T is naturally the coordinate ring of P(S1).

Definition

f ∈ S . Apolar ideal: f ⊥ = {ϕ ∈ T |ϕ(f ) = 0}.

Γ ⊂ P(S1) is apolar to F ∈ S if IΓ ⊂ F⊥ ⊂ T .

Lemma (Apolarity Lemma)

Γ ⊂ P(S1) is apolar to F ∈ Sd iff [F ] ∈ 〈νd(Γ)〉 ⊂ P(Sd).

6 / 26

Page 9: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Apolarity

S = K [x0, . . . , xn], T = K [y0, . . . , yn]

yα(x [β])

=

x [β−α] if β ≥ α,

0 otherwise.

S1 and T1 are dual spaces.

T is naturally the coordinate ring of P(S1).

Definition

f ∈ S . Apolar ideal: f ⊥ = {ϕ ∈ T |ϕ(f ) = 0}.

Γ ⊂ P(S1) is apolar to F ∈ S if IΓ ⊂ F⊥ ⊂ T .

Lemma (Apolarity Lemma)

Γ ⊂ P(S1) is apolar to F ∈ Sd iff [F ] ∈ 〈νd(Γ)〉 ⊂ P(Sd).

6 / 26

Page 10: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Apolarity

S = K [x0, . . . , xn], T = K [y0, . . . , yn]

yα(x [β])

=

x [β−α] if β ≥ α,

0 otherwise.

S1 and T1 are dual spaces.

T is naturally the coordinate ring of P(S1).

Definition

f ∈ S . Apolar ideal: f ⊥ = {ϕ ∈ T |ϕ(f ) = 0}.

Γ ⊂ P(S1) is apolar to F ∈ S if IΓ ⊂ F⊥ ⊂ T .

Lemma (Apolarity Lemma)

Γ ⊂ P(S1) is apolar to F ∈ Sd iff [F ] ∈ 〈νd(Γ)〉 ⊂ P(Sd).

6 / 26

Page 11: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Apolarity

S = K [x0, . . . , xn], T = K [y0, . . . , yn]

yα(x [β])

=

x [β−α] if β ≥ α,

0 otherwise.

S1 and T1 are dual spaces.

T is naturally the coordinate ring of P(S1).

Definition

f ∈ S . Apolar ideal: f ⊥ = {ϕ ∈ T |ϕ(f ) = 0}.

Γ ⊂ P(S1) is apolar to F ∈ S if IΓ ⊂ F⊥ ⊂ T .

Lemma (Apolarity Lemma)

Γ ⊂ P(S1) is apolar to F ∈ Sd iff [F ] ∈ 〈νd(Γ)〉 ⊂ P(Sd).

6 / 26

Page 12: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Apolarity

crk(F ) = min r ∈ N s.t. ∃ Γ ∈ Hilbr (P(S1)) : [F ] ∈ 〈νd(Γ)〉

crk(F ) = min r ∈ N s.t. ∃ Γ ∈ Hilbr (P(S1)) : Γ is apolar to F

crk(F ) = min r ∈ N s.t. ∃ Γ ∈ Hilbr (P(S1)) : IΓ ⊂ F⊥

7 / 26

Page 13: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Local apolar scheme

Properties: Tf := T/f ⊥ local Artinian Gorenstein ring ([IK]):

Local: The image of T1 in Tf generates the only max ideal m;

Artinian: Tf is finitely generated as K -mod;

Gor: Tf has 1-dim’l socle (the annihilator of the max ideal).

If F is homog. ⇒ T/F⊥ graded.

8 / 26

Page 14: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Local apolar scheme

F ∈ Sd ⇒ Γ apolar scheme locally Gor. ⇒

Γ = Γ1 ∪ · · · ∪ Γs , with Γi local A.G.

F = F1 + · · ·+ Fs s.t. Γi apolar to Fi

More generally: any Local AG scheme Γi is the AFFINE apolar

scheme of a poly gi ∈ S (unique up to a unit in the ring of diff.

operators): for any LAG T 0/I ,∃ g ∈ S0s.t.I = g⊥.9 / 26

Page 15: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Local apolar scheme

F ∈ Sd ⇒ Γ apolar scheme locally Gor. ⇒

Γ = Γ1 ∪ · · · ∪ Γs , with Γi local A.G.

F = F1 + · · ·+ Fs s.t. Γi apolar to Fi

More generally: any Local AG scheme Γi is the AFFINE apolar

scheme of a poly gi ∈ S (unique up to a unit in the ring of diff.

operators): for any LAG T 0/I ,∃ g ∈ S0s.t.I = g⊥.9 / 26

Page 16: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

F defines Γ:

F ∈ Sd ⇒ Γ = Γ1 ∪ · · · ∪ Γs , with Γi local A.G.

Γ is defined by gi ’s:

Γ = Γ1 ∪ · · · ∪ Γs ⇐ g1 + · · ·+ gs s.t. Γi AFFINE apolar to gi

Plan of the proof of the Theorem:

1 Understand the link between F and the gi ’s.

10 / 26

Page 17: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

F defines Γ:

F ∈ Sd ⇒ Γ = Γ1 ∪ · · · ∪ Γs , with Γi local A.G.

Γ is defined by gi ’s:

Γ = Γ1 ∪ · · · ∪ Γs ⇐ g1 + · · ·+ gs s.t. Γi AFFINE apolar to gi

Plan of the proof of the Theorem:

1 Understand the link between F and the gi ’s.

10 / 26

Page 18: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

1 Understand the link between F and the gi ’s.

g = g (0) + · · ·+ g (d)︸ ︷︷ ︸deg d tail of g

+gd+1 + · · ·+ g (l), deg(g (i)) = i .

Proposition

F ∈ Sd , f = F (1, x1, . . . , xn). Let Γ be a scheme of minimal length

among local schemes supported at [l ] = [1 : 0 : . . . : 0] that are

apolar to F ⇒ Γ is the AFFINE apolar scheme to a poly

g ∈ K [x1, . . . , xn] whose deg d tail equals f .

So g may be chosen s.t. f is its tail (: Γ is also defined by many g ’s

that does not have f as a tail)11 / 26

Page 19: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

1 Understand the link between F and the gi ’s.

g = g (0) + · · ·+ g (d)︸ ︷︷ ︸deg d tail of g

+gd+1 + · · ·+ g (l), deg(g (i)) = i .

Proposition

F ∈ Sd , f = F (1, x1, . . . , xn). Let Γ be a scheme of minimal length

among local schemes supported at [l ] = [1 : 0 : . . . : 0] that are

apolar to F ⇒ Γ is the AFFINE apolar scheme to a poly

g ∈ K [x1, . . . , xn] whose deg d tail equals f .

So g may be chosen s.t. f is its tail (: Γ is also defined by many g ’s

that does not have f as a tail)11 / 26

Page 20: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at [l ]: ZF ,l := V (f ⊥)

Lemma (Buczynski)

Z local supp at [l ] apolar to F ⇒ ∃Z ′ ⊂ Z apolar to F s.t. Z ′ = ZG ,l

for some G ∈ S . Moreover F = Ψ(G ) for some Ψ ∈ T .

⇒ we can choose Γ = ZG ,l for some G s.t. F = Ψ(G ).

If F = Ψ(G ) then f and ψ(g) have the same deg d tail.

Diff (ψ(g)) ⊂ Diff (g)⇒ Zψ(g) ⊂ Γ.

Γ minimal ⇒ suff. to see that Zψ(g) apolar F

(ψ′(ψ(g)) = 0⇒ Ψ′(Ψ(G )) = 0.)

212 / 26

Page 21: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at [l ]: ZF ,l := V (f ⊥)

Lemma (Buczynski)

Z local supp at [l ] apolar to F ⇒ ∃Z ′ ⊂ Z apolar to F s.t. Z ′ = ZG ,l

for some G ∈ S . Moreover F = Ψ(G ) for some Ψ ∈ T .

⇒ we can choose Γ = ZG ,l for some G s.t. F = Ψ(G ).

If F = Ψ(G ) then f and ψ(g) have the same deg d tail.

Diff (ψ(g)) ⊂ Diff (g)⇒ Zψ(g) ⊂ Γ.

Γ minimal ⇒ suff. to see that Zψ(g) apolar F

(ψ′(ψ(g)) = 0⇒ Ψ′(Ψ(G )) = 0.)

212 / 26

Page 22: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at [l ]: ZF ,l := V (f ⊥)

Lemma (Buczynski)

Z local supp at [l ] apolar to F ⇒ ∃Z ′ ⊂ Z apolar to F s.t. Z ′ = ZG ,l

for some G ∈ S . Moreover F = Ψ(G ) for some Ψ ∈ T .

⇒ we can choose Γ = ZG ,l for some G s.t. F = Ψ(G ).

If F = Ψ(G ) then f and ψ(g) have the same deg d tail.

Diff (ψ(g)) ⊂ Diff (g)⇒ Zψ(g) ⊂ Γ.

Γ minimal ⇒ suff. to see that Zψ(g) apolar F

(ψ′(ψ(g)) = 0⇒ Ψ′(Ψ(G )) = 0.)

212 / 26

Page 23: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at [l ]: ZF ,l := V (f ⊥)

Lemma (Buczynski)

Z local supp at [l ] apolar to F ⇒ ∃Z ′ ⊂ Z apolar to F s.t. Z ′ = ZG ,l

for some G ∈ S . Moreover F = Ψ(G ) for some Ψ ∈ T .

⇒ we can choose Γ = ZG ,l for some G s.t. F = Ψ(G ).

If F = Ψ(G ) then f and ψ(g) have the same deg d tail.

Diff (ψ(g)) ⊂ Diff (g)⇒ Zψ(g) ⊂ Γ.

Γ minimal ⇒ suff. to see that Zψ(g) apolar F

(ψ′(ψ(g)) = 0⇒ Ψ′(Ψ(G )) = 0.)

212 / 26

Page 24: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Proof of Proposition

Natural apolar scheme of F at [l ]: ZF ,l := V (f ⊥)

Lemma (Buczynski)

Z local supp at [l ] apolar to F ⇒ ∃Z ′ ⊂ Z apolar to F s.t. Z ′ = ZG ,l

for some G ∈ S . Moreover F = Ψ(G ) for some Ψ ∈ T .

⇒ we can choose Γ = ZG ,l for some G s.t. F = Ψ(G ).

If F = Ψ(G ) then f and ψ(g) have the same deg d tail.

Diff (ψ(g)) ⊂ Diff (g)⇒ Zψ(g) ⊂ Γ.

Γ minimal ⇒ suff. to see that Zψ(g) apolar F

(ψ′(ψ(g)) = 0⇒ Ψ′(Ψ(G )) = 0.)

212 / 26

Page 25: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine apolar

scheme has given length.Propostion⇐⇒ Parameterize the family of cubic

tails f ∈ K [x1, . . . , xn] of g ’s.

Cr,l =⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉

={[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}

Wr,n =⋃

l∈S1Cr,l

Cactusr (νd(P(S1))) =⋃

r1+···+rs=r J(Wr1,n, . . . ,Wrs ,n)

13 / 26

Page 26: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine apolar

scheme has given length.Propostion⇐⇒ Parameterize the family of cubic

tails f ∈ K [x1, . . . , xn] of g ’s.

Cr,l =⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉

={[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}

Wr,n =⋃

l∈S1Cr,l

Cactusr (νd(P(S1))) =⋃

r1+···+rs=r J(Wr1,n, . . . ,Wrs ,n)

13 / 26

Page 27: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine apolar

scheme has given length.Propostion⇐⇒ Parameterize the family of cubic

tails f ∈ K [x1, . . . , xn] of g ’s.

Cr,l =⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉

={[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}

Wr,n =⋃

l∈S1Cr,l

Cactusr (νd(P(S1))) =⋃

r1+···+rs=r J(Wr1,n, . . . ,Wrs ,n)

13 / 26

Page 28: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine apolar

scheme has given length.Propostion⇐⇒ Parameterize the family of cubic

tails f ∈ K [x1, . . . , xn] of g ’s.

Cr,l =⋃

suppZl=[ld ],l(Zl )≤r 〈Zl〉

={[F ] ∈ P(Sd)|f = g≤d for some g ∈ Sloc with dim Diff (g) ≤ r}

Wr,n =⋃

l∈S1Cr,l

Cactusr (νd(P(S1))) =⋃

r1+···+rs=r J(Wr1,n, . . . ,Wrs ,n)

13 / 26

Page 29: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Plan of the proof of the Theorem:

1 Understand the link between F and the gi ’s.

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine

apolar scheme has given length.

Propostion⇐⇒

Parameterize the family of cubic tails f ∈ K [x1, . . . , xn] of g ’s.

Find a discrete invariant for LAG schemes, parameterize the

cubic tails of all polynomials that define a scheme with given

invariant.

3 Show which invariants have the biggest family of cubic tails.

(Invariant: Hilbert function with symmetric decomposition) 14 / 26

Page 30: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Plan of the proof of the Theorem:

1 Understand the link between F and the gi ’s.

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine

apolar scheme has given length.

Propostion⇐⇒

Parameterize the family of cubic tails f ∈ K [x1, . . . , xn] of g ’s.

Find a discrete invariant for LAG schemes, parameterize the

cubic tails of all polynomials that define a scheme with given

invariant.

3 Show which invariants have the biggest family of cubic tails.

(Invariant: Hilbert function with symmetric decomposition) 14 / 26

Page 31: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Plan of the proof of the Theorem:

1 Understand the link between F and the gi ’s.

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine

apolar scheme has given length.

Propostion⇐⇒

Parameterize the family of cubic tails f ∈ K [x1, . . . , xn] of g ’s.

Find a discrete invariant for LAG schemes, parameterize the

cubic tails of all polynomials that define a scheme with given

invariant.

3 Show which invariants have the biggest family of cubic tails.

(Invariant: Hilbert function with symmetric decomposition) 14 / 26

Page 32: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

2 Parameterize the set of poly’s g ∈ K [x1, . . . xn] whose affine

apolar scheme has given length.

Find a discrete invariant for local AG schemes, parameterize the

cubic tails of all polynomials that define a scheme with given

invariant.

f ∈ S , deg(f ) = d , f ⊥ ⊂ T

Tf := T/f ⊥∼−→τ

Diff (f ) = {ψ(f ) |ψ ∈ T}

ψ 7→ ψ(f )

15 / 26

Page 33: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Iarrobino

Tf is local ⇒ one max ideal m.

m-adic filtration:

Tf = m0 ⊃ · · · ⊃ md+1 = 0

T ∗f =⊕d

i=0mi

mi+1

Loewy filtration:

Tf = (0 : md+1) ⊃ · · · ⊃

(0 : m) ⊃ 0

Interpr. in terms of partial of f

mi τ7→Partial of order at

least i of f (deg ≤ d − i)

(Order of a partial f ′ of f =

largest order of ψ ∈ T s.t.

f ′ = ψ(f ))

(0 : mi )τ7→

Diff (f )i−1 =partials of deg

at most i − 1 of f

16 / 26

Page 34: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Order filtration: Diff (f ) = Diff (f )0 ⊇ Diff (f )1 ⊇ · · · ⊇ Diff (f )d

Degree filtration: Diff (f ) = Diff (f )d ⊇ Diff (f )d−1 ⊇ · · · ⊇ Diff (f )0

Different filtrations (f not homog)

but

(0 : mi )

(0 : mi−1)∼=(

mi−1

mi

)∨ Diff (f )i+1

Diff (f )i' Diff (f )i+1

Diff (f )i

and for the double filtration:

Diff (f )ai =Partials of deg at most i and order at least d − i − a

Q∨a,i 'Diff (f )ai

Diff (f )ai−1 + Diff (f )a−1i

' Diff (f )iaDiff (f )i−1

a + Diff (f )ia−1

So the Hf of the two filtrations are dual to each other.17 / 26

Page 35: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

In particular

Hf (i) = dimK (Diff (f ))i − dimK (Diff (f )i−1)

has symmetric decomposition:

H =∑a≥0

∆a

each ∆a symm. around (d − a)/2, i.e. ∆a(i) = ∆a(d − a− i)

where dim(Q∨a,i ) = ∆f ,a(i).

Every partial sum∑α

a=0 ∆Qa is the Hf of a K -alg. generated in deg 1.

(Various restrictions on the possible decompositions (Mgc))

18 / 26

Page 36: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Our goal was to parameterize the set of poly’s f ∈ K [x1, . . . , xn] with

a given length for their subschem Zf

Example

f = x31 + x2

2 , Length(Zf ) = 5:

1(f ) = f = x31 + x2

2

y1(f ) = x21 y2(f ) = x2

y 21 (f ) = x1 y 2

2 (f ) = 1

y 31 (f ) = 1

H = 1 2 1 1

∆0 = 1 1 1 1

∆1 = 0 1 0 0

Next step: Characterize poly’s f with given symm decomp. for Hf .

19 / 26

Page 37: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Our goal was to parameterize the set of poly’s f ∈ K [x1, . . . , xn] with

a given length for their subschem Zf

Example

f = x31 + x2

2 , Length(Zf ) = 5:

1(f ) = f = x31 + x2

2

y1(f ) = x21 y2(f ) = x2

y 21 (f ) = x1 y 2

2 (f ) = 1

y 31 (f ) = 1

H = 1 2 1 1

∆0 = 1 1 1 1

∆1 = 0 1 0 0

Next step: Characterize poly’s f with given symm decomp. for Hf .

19 / 26

Page 38: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

A general cubic form F ∈ S = C[y0, . . . , yn] with even local cactus

rank 2m,m ≤ n is projectively equivalent to some

f3 + x0f2 + x20 f1 + x3

0 f0

where

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

The forms of local cactus rank 2n form a family of codimension(n−1

2

)+ 1 in the space of cubic forms C[x0, . . . , xn]3.

20 / 26

Page 39: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

A general cubic form F ∈ S = C[y0, . . . , yn] with even local cactus

rank 2m,m ≤ n is projectively equivalent to some

f3 + x0f2 + x20 f1 + x3

0 f0

where

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

The forms of local cactus rank 2n form a family of codimension(n−1

2

)+ 1 in the space of cubic forms C[x0, . . . , xn]3.

20 / 26

Page 40: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

A general cubic form F ∈ S = C[y0, . . . , yn], with odd local cactus

rank 2m + 1,m ≤ n is projectively equivalent to some

f3 + xmx21 + x0f2 + x0x2

m + x20 f1 + x3

0 f0

where

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

The forms of local cactus rank 2n + 1, n > 3 form a family of

codimension(n−2

2

)− 1 in the space of cubic forms C[x0, . . . , xn]3.

21 / 26

Page 41: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

A general cubic form F ∈ S = C[y0, . . . , yn], with odd local cactus

rank 2m + 1,m ≤ n is projectively equivalent to some

f3 + xmx21 + x0f2 + x0x2

m + x20 f1 + x3

0 f0

where

f3 ∈ C[x1, . . . , xm−1]3,

f2 ∈ 〈x1, ..., xn〉 · 〈x1, ..., xm−1〉,

f1 ∈ 〈x1, ..., xn〉,

f0 ∈ C.

The forms of local cactus rank 2n + 1, n > 3 form a family of

codimension(n−2

2

)− 1 in the space of cubic forms C[x0, . . . , xn]3.

21 / 26

Page 42: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

3 Show which invariants have the biggest family of cubic tails.

Cr ,l =⋃

supp(Zl )=ν3([l ]),l(Zl )≤r 〈Zl〉 ⇔ Parameterize the family of cubic

tails f ∈ K [x1, . . . , xn] of g ’s:

Vr (3, n) = {f | f = g≤3 for some g ∈ K [x1, . . . , xn], dim Diff (g) ≤ r}

V (3,∆, n) = {f≤3 | f ∈ K [x1, . . . , xn],∆f = ∆}

Vr (3, n) =⋃

l(∆)≤r

V (3,∆, n)

For which Hf and which ∆, v(3,∆, n) := dim(V (3,∆, n)) attains its

max given r? =⇒ max(v(3,∆, n)) =upper bound for

vr (3, n) := dim(Vr (3,∆))22 / 26

Page 43: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

3 Show which invariants have the biggest family of cubic tails.

Cr ,l =⋃

supp(Zl )=ν3([l ]),l(Zl )≤r 〈Zl〉 ⇔ Parameterize the family of cubic

tails f ∈ K [x1, . . . , xn] of g ’s:

Vr (3, n) = {f | f = g≤3 for some g ∈ K [x1, . . . , xn], dim Diff (g) ≤ r}

V (3,∆, n) = {f≤3 | f ∈ K [x1, . . . , xn],∆f = ∆}

Vr (3, n) =⋃

l(∆)≤r

V (3,∆, n)

For which Hf and which ∆, v(3,∆, n) := dim(V (3,∆, n)) attains its

max given r? =⇒ max(v(3,∆, n)) =upper bound for

vr (3, n) := dim(Vr (3,∆))22 / 26

Page 44: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

3 Show which invariants have the biggest family of cubic tails.

Cr ,l =⋃

supp(Zl )=ν3([l ]),l(Zl )≤r 〈Zl〉 ⇔ Parameterize the family of cubic

tails f ∈ K [x1, . . . , xn] of g ’s:

Vr (3, n) = {f | f = g≤3 for some g ∈ K [x1, . . . , xn], dim Diff (g) ≤ r}

V (3,∆, n) = {f≤3 | f ∈ K [x1, . . . , xn],∆f = ∆}

Vr (3, n) =⋃

l(∆)≤r

V (3,∆, n)

For which Hf and which ∆, v(3,∆, n) := dim(V (3,∆, n)) attains its

max given r? =⇒ max(v(3,∆, n)) =upper bound for

vr (3, n) := dim(Vr (3,∆))22 / 26

Page 45: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Proposition

r ≥ 7, v(3,∆, n) attains its max for ∆ = (1,m − 1,m − 1, 1), r = 2m,

∆ = (1, 1, 1, 1, 1), (0,m − 2,m − 2, 0), r = 2m + 1

and

v(3,∆, n) =

Me :=(m+2

3

)+ 2m(n −m) + 3m − n − 1, r = 2m,

Mo :=(m+2

3

)+ 2m(n −m) + 3m − 2, r = 2m + 1.

23 / 26

Page 46: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 47: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 48: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 49: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 50: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 51: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 52: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 53: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

Cactusr (X3,n) =⋃

r1+···+rsJ(Wr1,n, . . . ,Wrs ,n)

Wr ,n =⋃

l∈S1Cr ,l Local cactus variety

Cr ,l = Vr (3, n) =⋃

l(∆)≤r V (3,∆, n)

max(v(3,∆, n))⇒ upper bound for vr (3, n), i.e. for dim(Cr ,l)

The largest component of W2m,n is the union as l varies, of projective

varieties whose affine cones are isomorphic to V2m(3, n), so a

parameterization of W2m,n has dimension v2m(3, n)−1 + n.

Similarly, the largest component of W2m+1,n is the union as l varies,

of varieties isomorphic to V2m+1(3, n), so a parameterization of

W2m+1,n has dimension v2m+1(3, n)+n.

BUT parameterization may not be generically finite, the formulas are

upper bounds for the dimension of these varieties.24 / 26

Page 54: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

We have equality if we show that the parameterization is generically

one to one.

When b is even, for a general [F ] ∈Wb,n there is a unique l such

that ZF ,l has length b.

When b is odd, and there is a unique l such that f = πl(F ) is the tail

of a quartic polynomial gl whose apolar scheme Zgl has length b.

So dim(Cactusr (X3,n)) = dim Wr ,n.

25 / 26

Page 55: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

We have equality if we show that the parameterization is generically

one to one.

When b is even, for a general [F ] ∈Wb,n there is a unique l such

that ZF ,l has length b.

When b is odd, and there is a unique l such that f = πl(F ) is the tail

of a quartic polynomial gl whose apolar scheme Zgl has length b.

So dim(Cactusr (X3,n)) = dim Wr ,n.

25 / 26

Page 56: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

We have equality if we show that the parameterization is generically

one to one.

When b is even, for a general [F ] ∈Wb,n there is a unique l such

that ZF ,l has length b.

When b is odd, and there is a unique l such that f = πl(F ) is the tail

of a quartic polynomial gl whose apolar scheme Zgl has length b.

So dim(Cactusr (X3,n)) = dim Wr ,n.

25 / 26

Page 57: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

Proof of the Thm

We have equality if we show that the parameterization is generically

one to one.

When b is even, for a general [F ] ∈Wb,n there is a unique l such

that ZF ,l has length b.

When b is odd, and there is a unique l such that f = πl(F ) is the tail

of a quartic polynomial gl whose apolar scheme Zgl has length b.

So dim(Cactusr (X3,n)) = dim Wr ,n.

25 / 26

Page 58: Cactus Varieties of Cubic Forms: Apolar Local Artinian ...€¦ · Cactus Varieties of Cubic Forms: Apolar Local Artinian Gorenstein Rings [{, J. Jelisiejew, P. Macias Marques, K

Cactus

Varieties of

Cubic Forms:

Apolar Local

Artinian

Gorenstein

Rings

[–, J.Jelisiejew,P. MaciasMarques,

K.Ranestad]

Alessandra

Bernardi

THANKS!

26 / 26