calculus i - lecture 4 - limits c - eserved@d = *@let ...gerald/math220d/lec4.pdf · section 2.5 |...

75
Calculus I - Lecture 4 - Limits C Lecture Notes: http://www.math.ksu.edu/˜gerald/math220d/ Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html Gerald Hoehn (based on notes by T. Cochran) February 3, 2014

Upload: others

Post on 09-Jan-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Calculus I - Lecture 4 - Limits C

Lecture Notes:http://www.math.ksu.edu/˜gerald/math220d/

Course Syllabus:http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

February 3, 2014

Page 2: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.5 — Calculating Limits Algebraically

There are two main types of limits we generally encounter inCalculus I:

1. Plug-in Types

Generally this is the case if there is no denominatorapproaching 0.

2. 00 type Limits

These are the most important types in Calculus.

Recall, 00 is an undefined quantity, so plug-in fails.

Page 3: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.5 — Calculating Limits Algebraically

There are two main types of limits we generally encounter inCalculus I:

1. Plug-in Types

Generally this is the case if there is no denominatorapproaching 0.

2. 00 type Limits

These are the most important types in Calculus.

Recall, 00 is an undefined quantity, so plug-in fails.

Page 4: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.5 — Calculating Limits Algebraically

There are two main types of limits we generally encounter inCalculus I:

1. Plug-in Types

Generally this is the case if there is no denominatorapproaching 0.

2. 00 type Limits

These are the most important types in Calculus.

Recall, 00 is an undefined quantity, so plug-in fails.

Page 5: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (Plug-in Type)

Evaluate limx→π

√3x2 − 1

sin2 x − cos(2x).

Solution:

limx→π

√3x2 − 1

sin2 x − cos(2x)

=

√3π2 − 1

sin2 π − cos(2π)=

√3π2 − 1

0− 1= −

√3π2 − 1

The function f (x) =√

3x2−1sin2 x−cos(2x)

is defined and continuous near

x = π and solimx→π f (x) = f (π).

Page 6: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (Plug-in Type)

Evaluate limx→π

√3x2 − 1

sin2 x − cos(2x).

Solution:

limx→π

√3x2 − 1

sin2 x − cos(2x)

=

√3π2 − 1

sin2 π − cos(2π)=

√3π2 − 1

0− 1= −

√3π2 − 1

The function f (x) =√

3x2−1sin2 x−cos(2x)

is defined and continuous near

x = π and solimx→π f (x) = f (π).

Page 7: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (Plug-in Type)

Evaluate limx→π

√3x2 − 1

sin2 x − cos(2x).

Solution:

limx→π

√3x2 − 1

sin2 x − cos(2x)

=

√3π2 − 1

sin2 π − cos(2π)=

√3π2 − 1

0− 1= −

√3π2 − 1

The function f (x) =√

3x2−1sin2 x−cos(2x)

is defined and continuous near

x = π and solimx→π f (x) = f (π).

Page 8: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (Plug-in Type)

Evaluate limx→π

√3x2 − 1

sin2 x − cos(2x).

Solution:

limx→π

√3x2 − 1

sin2 x − cos(2x)

=

√3π2 − 1

sin2 π − cos(2π)=

√3π2 − 1

0− 1=

−√

3π2 − 1

The function f (x) =√

3x2−1sin2 x−cos(2x)

is defined and continuous near

x = π and solimx→π f (x) = f (π).

Page 9: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (Plug-in Type)

Evaluate limx→π

√3x2 − 1

sin2 x − cos(2x).

Solution:

limx→π

√3x2 − 1

sin2 x − cos(2x)

=

√3π2 − 1

sin2 π − cos(2π)=

√3π2 − 1

0− 1= −

√3π2 − 1

The function f (x) =√

3x2−1sin2 x−cos(2x)

is defined and continuous near

x = π and solimx→π f (x) = f (π).

Page 10: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (Plug-in Type)

Evaluate limx→π

√3x2 − 1

sin2 x − cos(2x).

Solution:

limx→π

√3x2 − 1

sin2 x − cos(2x)

=

√3π2 − 1

sin2 π − cos(2π)=

√3π2 − 1

0− 1= −

√3π2 − 1

The function f (x) =√

3x2−1sin2 x−cos(2x)

is defined and continuous near

x = π and solimx→π f (x) = f (π).

Page 11: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0Plug-in method does not work

limx→2

2x2 − 4x

x − 2= lim

x→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1= 4.

Page 12: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0Plug-in method does not work

limx→2

2x2 − 4x

x − 2= lim

x→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1= 4.

Page 13: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0

Plug-in method does not work

limx→2

2x2 − 4x

x − 2= lim

x→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1= 4.

Page 14: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0Plug-in method does not work

limx→2

2x2 − 4x

x − 2= lim

x→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1= 4.

Page 15: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0Plug-in method does not work

limx→2

2x2 − 4x

x − 2

= limx→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1= 4.

Page 16: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0Plug-in method does not work

limx→2

2x2 − 4x

x − 2= lim

x→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1= 4.

Page 17: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0Plug-in method does not work

limx→2

2x2 − 4x

x − 2= lim

x→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1

= 4.

Page 18: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: (00 type)

Evaluate limx→2

2x2 − 4x

x − 2.

Solution:

Always start any limit problem with a plug-in test.

Plug-in:2 · 22 − 4 · 2

2− 2=

0

0Plug-in method does not work

limx→2

2x2 − 4x

x − 2= lim

x→2

2x(x − 2)

(x − 2)

= limx→2

2x

1(x 6= 2, so (x − 2) cancels out)

=2 · 2

1= 4.

Page 19: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Graphical interpretation of the limit in previous example

y = 2x2−4xx−2 = 2x (for x 6= 2)

Page 20: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Three tricks for 00 type limits

1. Factor top and bottom and cancel the factor approaching 0.

2. Do some algebraic simplification first.

3. Use conjugate trick.

Trick 1 we did in the previous example.

Page 21: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Three tricks for 00 type limits

1. Factor top and bottom and cancel the factor approaching 0.

2. Do some algebraic simplification first.

3. Use conjugate trick.

Trick 1 we did in the previous example.

Page 22: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Three tricks for 00 type limits

1. Factor top and bottom and cancel the factor approaching 0.

2. Do some algebraic simplification first.

3. Use conjugate trick.

Trick 1 we did in the previous example.

Page 23: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Three tricks for 00 type limits

1. Factor top and bottom and cancel the factor approaching 0.

2. Do some algebraic simplification first.

3. Use conjugate trick.

Trick 1 we did in the previous example.

Page 24: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Three tricks for 00 type limits

1. Factor top and bottom and cancel the factor approaching 0.

2. Do some algebraic simplification first.

3. Use conjugate trick.

Trick 1 we did in the previous example.

Page 25: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x= −1

9.

Page 26: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x= −1

9.

Page 27: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x= −1

9.

Page 28: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x= −1

9.

Page 29: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x= −1

9.

Page 30: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x= −1

9.

Page 31: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x

= −1

9.

Page 32: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Trick 2: Algebraic simplifications first

Problem: Compute limx→3

1x −

13

x − 3.

Solution:

Plug-in Test:13− 1

33−3 = 0

0 type

limx→3

1x −

13

x − 3= lim

x→3

33

1x −

13

xx

x − 3

= limx→3

3−x3x

x−31

= limx→3

3− x

3x· 1

x − 3

= limx→3

−(x − 3)

3x· 1

x − 3

= limx→3

−1

3x= −1

9.

Page 33: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Note: 00 type limits can come out to equal any number or D.N.E.

(e.g. infinite limits ±∞ or left-hand and ride-hand limits aredifferent).

limx→0x

x3= limx→0

1

x2= +∞.

Limit D.N.E. but there is an infinite limit.

Trick 3: Conjugation

Recall: The conjugate of A +√

B is A−√

B.

Example: Rationalize the denominator:1

2−√

3.

Solution:1

2−√

3=

1

2−√

3· 2 +

√3

2 +√

3

=2 +√

3

4− 3= 2 +

√3.

Page 34: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Note: 00 type limits can come out to equal any number or D.N.E.

(e.g. infinite limits ±∞ or left-hand and ride-hand limits aredifferent).

limx→0x

x3= limx→0

1

x2= +∞.

Limit D.N.E. but there is an infinite limit.

Trick 3: Conjugation

Recall: The conjugate of A +√

B is A−√

B.

Example: Rationalize the denominator:1

2−√

3.

Solution:1

2−√

3=

1

2−√

3· 2 +

√3

2 +√

3

=2 +√

3

4− 3= 2 +

√3.

Page 35: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Note: 00 type limits can come out to equal any number or D.N.E.

(e.g. infinite limits ±∞ or left-hand and ride-hand limits aredifferent).

limx→0x

x3= limx→0

1

x2= +∞.

Limit D.N.E. but there is an infinite limit.

Trick 3: Conjugation

Recall: The conjugate of A +√

B is A−√

B.

Example: Rationalize the denominator:1

2−√

3.

Solution:1

2−√

3=

1

2−√

3· 2 +

√3

2 +√

3

=2 +√

3

4− 3= 2 +

√3.

Page 36: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Note: 00 type limits can come out to equal any number or D.N.E.

(e.g. infinite limits ±∞ or left-hand and ride-hand limits aredifferent).

limx→0x

x3= limx→0

1

x2= +∞.

Limit D.N.E. but there is an infinite limit.

Trick 3: Conjugation

Recall: The conjugate of A +√

B is A−√

B.

Example: Rationalize the denominator:1

2−√

3.

Solution:1

2−√

3=

1

2−√

3· 2 +

√3

2 +√

3

=2 +√

3

4− 3= 2 +

√3.

Page 37: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Note: 00 type limits can come out to equal any number or D.N.E.

(e.g. infinite limits ±∞ or left-hand and ride-hand limits aredifferent).

limx→0x

x3= limx→0

1

x2= +∞.

Limit D.N.E. but there is an infinite limit.

Trick 3: Conjugation

Recall: The conjugate of A +√

B is A−√

B.

Example: Rationalize the denominator:1

2−√

3.

Solution:1

2−√

3=

1

2−√

3· 2 +

√3

2 +√

3

=2 +√

3

4− 3= 2 +

√3.

Page 38: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Note: 00 type limits can come out to equal any number or D.N.E.

(e.g. infinite limits ±∞ or left-hand and ride-hand limits aredifferent).

limx→0x

x3= limx→0

1

x2= +∞.

Limit D.N.E. but there is an infinite limit.

Trick 3: Conjugation

Recall: The conjugate of A +√

B is A−√

B.

Example: Rationalize the denominator:1

2−√

3.

Solution:1

2−√

3=

1

2−√

3· 2 +

√3

2 +√

3

=2 +√

3

4− 3=

2 +√

3.

Page 39: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Note: 00 type limits can come out to equal any number or D.N.E.

(e.g. infinite limits ±∞ or left-hand and ride-hand limits aredifferent).

limx→0x

x3= limx→0

1

x2= +∞.

Limit D.N.E. but there is an infinite limit.

Trick 3: Conjugation

Recall: The conjugate of A +√

B is A−√

B.

Example: Rationalize the denominator:1

2−√

3.

Solution:1

2−√

3=

1

2−√

3· 2 +

√3

2 +√

3

=2 +√

3

4− 3= 2 +

√3.

Page 40: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Find limx→3

√x + 1− 2

x − 3.

Solution:

limx→3

√x + 1− 2

x − 3= limx→3

√x + 1− 2

x − 3·√

x + 1 + 2√x + 1 + 2

= limx→3(x + 1)− 4− 2

√x + 1 + 2

√x + 1

(x − 3)(√

x + 1 + 2)

= limx→3(x − 3)

(x − 3)(√

x + 1 + 2)

=1√

3 + 1 + 2=

1

2 + 2=

1

4

Page 41: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Find limx→3

√x + 1− 2

x − 3.

Solution:

limx→3

√x + 1− 2

x − 3= limx→3

√x + 1− 2

x − 3·√

x + 1 + 2√x + 1 + 2

= limx→3(x + 1)− 4− 2

√x + 1 + 2

√x + 1

(x − 3)(√

x + 1 + 2)

= limx→3(x − 3)

(x − 3)(√

x + 1 + 2)

=1√

3 + 1 + 2=

1

2 + 2=

1

4

Page 42: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Find limx→3

√x + 1− 2

x − 3.

Solution:

limx→3

√x + 1− 2

x − 3= limx→3

√x + 1− 2

x − 3·√

x + 1 + 2√x + 1 + 2

= limx→3(x + 1)− 4− 2

√x + 1 + 2

√x + 1

(x − 3)(√

x + 1 + 2)

= limx→3(x − 3)

(x − 3)(√

x + 1 + 2)

=1√

3 + 1 + 2=

1

2 + 2=

1

4

Page 43: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Find limx→3

√x + 1− 2

x − 3.

Solution:

limx→3

√x + 1− 2

x − 3= limx→3

√x + 1− 2

x − 3·√

x + 1 + 2√x + 1 + 2

= limx→3(x + 1)− 4− 2

√x + 1 + 2

√x + 1

(x − 3)(√

x + 1 + 2)

= limx→3(x − 3)

(x − 3)(√

x + 1 + 2)

=1√

3 + 1 + 2=

1

2 + 2=

1

4

Page 44: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Find limx→3

√x + 1− 2

x − 3.

Solution:

limx→3

√x + 1− 2

x − 3= limx→3

√x + 1− 2

x − 3·√

x + 1 + 2√x + 1 + 2

= limx→3(x + 1)− 4− 2

√x + 1 + 2

√x + 1

(x − 3)(√

x + 1 + 2)

= limx→3(x − 3)

(x − 3)(√

x + 1 + 2)

=1√

3 + 1 + 2=

1

2 + 2=

1

4

Page 45: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Find limx→3

√x + 1− 2

x − 3.

Solution:

limx→3

√x + 1− 2

x − 3= limx→3

√x + 1− 2

x − 3·√

x + 1 + 2√x + 1 + 2

= limx→3(x + 1)− 4− 2

√x + 1 + 2

√x + 1

(x − 3)(√

x + 1 + 2)

= limx→3(x − 3)

(x − 3)(√

x + 1 + 2)

=1√

3 + 1 + 2=

1

2 + 2=

1

4

Page 46: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.6 — Squeeze Theorem and Trigonometric Limits

Theorem (Squeeze Theorem)

Suppose f (x) ≤ g(x) ≤ h(h) on an interval containing a and that

limx→a f (x) = L = limx→a h(x).

Conclusion: limx→a g(x) = L.

Example: Find limx→0+ x sin(

1x

).

Solution:

−x ≤ x sin( 1x ) ≤ x (x > 0)

limx→0−x = 0 limx→0 x = 0

Thus, by the Squeeze Theorem, limx→0+ x sin(

1x

)= 0

Page 47: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.6 — Squeeze Theorem and Trigonometric Limits

Theorem (Squeeze Theorem)

Suppose f (x) ≤ g(x) ≤ h(h) on an interval containing a and that

limx→a f (x) = L = limx→a h(x).

Conclusion: limx→a g(x) = L.

Example: Find limx→0+ x sin(

1x

).

Solution:

−x ≤ x sin( 1x ) ≤ x (x > 0)

limx→0−x = 0 limx→0 x = 0

Thus, by the Squeeze Theorem, limx→0+ x sin(

1x

)= 0

Page 48: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.6 — Squeeze Theorem and Trigonometric Limits

Theorem (Squeeze Theorem)

Suppose f (x) ≤ g(x) ≤ h(h) on an interval containing a and that

limx→a f (x) = L = limx→a h(x).

Conclusion: limx→a g(x) = L.

Example: Find limx→0+ x sin(

1x

).

Solution:

−x ≤ x sin( 1x ) ≤ x (x > 0)

limx→0−x = 0 limx→0 x = 0

Thus, by the Squeeze Theorem, limx→0+ x sin(

1x

)= 0

Page 49: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.6 — Squeeze Theorem and Trigonometric Limits

Theorem (Squeeze Theorem)

Suppose f (x) ≤ g(x) ≤ h(h) on an interval containing a and that

limx→a f (x) = L = limx→a h(x).

Conclusion: limx→a g(x) = L.

Example: Find limx→0+ x sin(

1x

).

Solution:

−x ≤ x sin( 1x ) ≤ x (x > 0)

limx→0−x = 0 limx→0 x = 0

Thus, by the Squeeze Theorem, limx→0+ x sin(

1x

)= 0

Page 50: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Section 2.6 — Squeeze Theorem and Trigonometric Limits

Theorem (Squeeze Theorem)

Suppose f (x) ≤ g(x) ≤ h(h) on an interval containing a and that

limx→a f (x) = L = limx→a h(x).

Conclusion: limx→a g(x) = L.

Example: Find limx→0+ x sin(

1x

).

Solution:

−x ≤ x sin( 1x ) ≤ x (x > 0)

limx→0−x = 0 limx→0 x = 0

Thus, by the Squeeze Theorem, limx→0+ x sin(

1x

)= 0

Page 51: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally
Page 52: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

From the diagram: sin θ < θ < tan θ

equivalent to: sin θθ < 1 and θ < sin θ

cos θ , so sin θθ > cos θ

Thus: cos θ <sin θ

θ< 1 (“sandwich”)

Apply Squeeze Theorem: limθ→0 cos θ = cos(0) = 1

limθ→0 1 = 1and we deduce:

Theorem (Basic Trigonometric Limit)

limθ→0sin θ

θ= 1.

Page 53: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

From the diagram: sin θ < θ < tan θ

equivalent to: sin θθ < 1 and θ < sin θ

cos θ , so sin θθ > cos θ

Thus: cos θ <sin θ

θ< 1 (“sandwich”)

Apply Squeeze Theorem: limθ→0 cos θ = cos(0) = 1

limθ→0 1 = 1and we deduce:

Theorem (Basic Trigonometric Limit)

limθ→0sin θ

θ= 1.

Page 54: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

From the diagram: sin θ < θ < tan θ

equivalent to: sin θθ < 1 and θ < sin θ

cos θ , so sin θθ > cos θ

Thus: cos θ <sin θ

θ< 1 (“sandwich”)

Apply Squeeze Theorem: limθ→0 cos θ = cos(0) = 1

limθ→0 1 = 1and we deduce:

Theorem (Basic Trigonometric Limit)

limθ→0sin θ

θ= 1.

Page 55: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

From the diagram: sin θ < θ < tan θ

equivalent to: sin θθ < 1 and θ < sin θ

cos θ , so sin θθ > cos θ

Thus: cos θ <sin θ

θ< 1 (“sandwich”)

Apply Squeeze Theorem: limθ→0 cos θ = cos(0) = 1

limθ→0 1 = 1and we deduce:

Theorem (Basic Trigonometric Limit)

limθ→0sin θ

θ= 1.

Page 56: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

From the diagram: sin θ < θ < tan θ

equivalent to: sin θθ < 1 and θ < sin θ

cos θ , so sin θθ > cos θ

Thus: cos θ <sin θ

θ< 1 (“sandwich”)

Apply Squeeze Theorem: limθ→0 cos θ = cos(0) = 1

limθ→0 1 = 1and we deduce:

Theorem (Basic Trigonometric Limit)

limθ→0sin θ

θ= 1.

Page 57: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x= 4 · 1 = 4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=2 · 15 · 1

=2

5

Page 58: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x

= 4 · 1 = 4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=2 · 15 · 1

=2

5

Page 59: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x= 4 · 1 =

4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=2 · 15 · 1

=2

5

Page 60: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x= 4 · 1 = 4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=2 · 15 · 1

=2

5

Page 61: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x= 4 · 1 = 4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=2 · 15 · 1

=2

5

Page 62: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x= 4 · 1 = 4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=

2 · 15 · 1

=2

5

Page 63: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x= 4 · 1 = 4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=2 · 15 · 1

=

2

5

Page 64: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

Example: Use the basic trigonometric limit to evaluate thefollowing limits.

a) limx→0sin(4x)

x00 type

= limx→04 sin(4x)

4x= 4 · 1 = 4 (basic trig. limit)

b) limx→0sin(2x)

sin(5x)00 type

= limx→0sin(2x)/x

sin(5x)/x

=limx→0

2 sin(2x)2x

limx→05 sin(5x)

5x

=2 · 15 · 1

=2

5

Page 65: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 66: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 67: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 68: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)

=4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 69: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 70: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 71: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))

= limx→0sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 72: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 73: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2

Page 74: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1

=1

2

Page 75: Calculus I - Lecture 4 - Limits C - eserved@d = *@let ...gerald/math220d/lec4.pdf · Section 2.5 | Calculating Limits Algebraically There are two main types of limits we generally

c) limx→0tan(4x)

7x00 type

= limx→0sin(4x)

cos(4x) · 7x

= limx→04 sin(4x)

4x· limx→0

1

7 cos(4x)

= 4 · 1 · 1

7 · cos(0)=

4

7

d) limx→01− cos(x)

x200 type

= limx→0(1− cos(x))(1 + cos(x))

x2 (1 + cos(x))

= limx→01− cos2(x)

x2(1 + cos(x))= limx→0

sin2(x)

x2(1 + cos(x))

= limx→0

(sin(x)

x

)2

limx→01

1 + cos(x)

= 12 · 1

1 + 1=

1

2