can you hear me now (final submitted to gastech 15) - kbr white papers/kbr... ·...

13
Page 1 GasTech 2015 Can You Hear Me Now? The Necessity for Noise Control in LNG Liquefaction Plants Jim Cowling – Chief Technology Engineer Noise & Vibration Sonia PG Sonnier – Senior Noise & Vibration Specialist, KBR, Houston, Texas KBR, 601 Jefferson Street, Houston, TX 77002 USA Introduction Every new LNG export facility, irrespective of where it is to be built in the world, requires some degree of environmental impact assessment administered by the local and/or national legislating authorities. In addition, financial institutions involved in the project may also impose environmental requirements and restrictions. Noise, with inplant noise affecting the plant operators and residential community receptors close to the plant, is one of the environmental issues that must be evaluated and controlled for any LNG project. The key theme for this paper is; the earlier the noise control issues facing a project can be identified, addressed and resolved, the better the outcome for the project. That is outcome measured in the context of compliance with applicable noise limits, minimizing the environmental noise impact, providing a safe and manageable inplant noise environment for the plant operators and minimizing the economic and schedule impact on the project. Contingent on this need to identify the noise control issues early is a need to accurately model and predict the plant noise levels utilizing field verified equipment noise levels and proven reference LNG plant noise models. A hypothetical case study will be examined for a typical 10 Mt/a facility that will highlight the noise control analysis and noise control decisions that need to be addressed during the FrontEnd Engineering Design (FEED) phase of a project. The goal is to emphasize the importance of these critical noise control questions early in the project. This will allow the project to move forward with a feasible and practical Engineering, Procurement & Construction (EPC) Noise Control Basis of Design that is consistent with defined noise limits and environmental impact requirements and includes all operational, safety and economic considerations. LNG Plant Noise Modeling Effective and accurate plant noise modeling and prediction is critical for the successful noise control design for an LNG project. KBR experience has shown that LNG plant noise modeling must be based on a solid foundation of field verified equipment and piping noise data together with proven field verified LNG plant noise models [1] . Nothing gives more credibility in front of the plant owner than the statement “I know how noisy this piece of equipment is because I’ve measured one just like it in the field” and nothing can provide a better footing for the noise control design of an LNG facility. But, of course, that statement requires a significant amount of effort gathering good noise data in the field from a range LNG plants. KBR has been gathering field noise data from early LNG plants in Malaysia and Australia through the more recent LNG developments in Nigeria, Egypt and Algeria. The noise levels on KBR’s most recent LNG plant startup were in almost perfect agreement with those predicted from the plant noise model, again demonstrating the value and accuracy of modeling based on reliable field verified noise data. Many LNG plant Environmental Impact Assessment (EIA) reports and preliminary noise reports exist that provide noise predictions based on suspect or poorly interpreted vendor data that leads to a noise control basis of design that is simply incorrect. These preliminary reports lead the Owner and engineering contractor project management teams in to a false sense of security that everything is fine on the noise front; when the problems to be identified late in a project, or even worse after startup, corrective action is difficult, costly and time consuming.

Upload: phamnhan

Post on 25-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page  1    

GasTech  2015  

Can  You  Hear  Me  Now?    The  Necessity  for  Noise  Control  in    

LNG  Liquefaction  Plants  

Jim  Cowling  –  Chief  Technology  Engineer  Noise  &  Vibration  Sonia  PG  Sonnier  –  Senior  Noise  &  Vibration  Specialist,  KBR,  Houston,  Texas  

KBR,  601  Jefferson  Street,  Houston,  TX  77002  USA    

Introduction  

Every   new   LNG   export   facility,   irrespective   of   where   it   is   to   be   built   in   the   world,   requires   some   degree   of  environmental   impact   assessment   administered   by   the   local   and/or   national   legislating   authorities.   In   addition,  financial  institutions  involved  in  the  project  may  also  impose  environmental  requirements  and  restrictions.    Noise,  with  in-­‐plant  noise  affecting  the  plant  operators  and  residential  community  receptors  close  to  the  plant,  is  one  of  the  environmental  issues  that  must  be  evaluated  and  controlled  for  any  LNG  project.    

The  key  theme  for  this  paper   is;  the  earlier  the  noise  control   issues  facing  a  project  can  be   identified,  addressed  and  resolved,  the  better  the  outcome  for  the  project.  That  is  outcome  measured  in  the  context  of  compliance  with  applicable  noise  limits,  minimizing  the  environmental  noise  impact,  providing  a  safe  and  manageable  in-­‐plant  noise  environment  for  the  plant  operators  and  minimizing  the  economic  and  schedule  impact  on  the  project.  Contingent  on   this  need   to   identify   the  noise  control   issues  early   is  a  need   to  accurately  model  and  predict   the  plant  noise  levels  utilizing  field  verified  equipment  noise  levels  and  proven  reference  LNG  plant  noise  models.  

A  hypothetical  case  study  will  be  examined  for  a  typical  10  Mt/a  facility  that  will  highlight  the  noise  control  analysis  and  noise  control  decisions  that  need  to  be  addressed  during  the  Front-­‐End  Engineering  Design  (FEED)  phase  of  a  project.  The  goal  is  to  emphasize  the  importance  of  these  critical  noise  control  questions  early  in  the  project.  This  will  allow  the  project  to  move  forward  with  a  feasible  and  practical  Engineering,  Procurement  &  Construction  (EPC)  Noise  Control  Basis  of  Design  that  is  consistent  with  defined  noise  limits  and  environmental  impact  requirements  and  includes  all  operational,  safety  and  economic  considerations.  

LNG  Plant  Noise  Modeling  

Effective  and  accurate  plant  noise  modeling  and  prediction  is  critical  for  the  successful  noise  control  design  for  an  LNG  project.  KBR  experience  has  shown  that  LNG  plant  noise  modeling  must  be  based  on  a  solid  foundation  of  field  verified  equipment  and  piping  noise  data   together  with  proven   field  verified  LNG  plant  noise  models[1].  Nothing  gives  more  credibility  in  front  of  the  plant  owner  than  the  statement  “I  know  how  noisy  this  piece  of  equipment  is  because  I’ve  measured  one  just  like  it  in  the  field”  and  nothing  can  provide  a  better  footing  for  the  noise  control  design   of   an   LNG   facility.   But,   of   course,   that   statement   requires   a   significant   amount   of   effort   gathering   good  noise  data  in  the  field  from  a  range  LNG  plants.    KBR  has  been  gathering  field  noise  data  from  early  LNG  plants  in  Malaysia  and  Australia  through  the  more  recent  LNG  developments  in  Nigeria,  Egypt  and  Algeria.  The  noise  levels  on  KBR’s  most   recent   LNG  plant   startup  were   in  almost  perfect  agreement  with   those  predicted   from   the  plant  noise  model,  again  demonstrating  the  value  and  accuracy  of  modeling  based  on  reliable  field  verified  noise  data.  

Many  LNG  plant  Environmental  Impact  Assessment  (EIA)  reports  and  preliminary  noise  reports  exist  that  provide  noise  predictions  based  on  suspect  or  poorly  interpreted  vendor  data  that  leads  to  a  noise  control  basis  of  design  that  is  simply  incorrect.  These  preliminary  reports  lead  the  Owner  and  engineering  contractor  project  management  teams  in  to  a  false  sense  of  security  that  everything  is  fine  on  the  noise  front;  when  the  problems  to  be  identified  late  in  a  project,  or  even  worse  after  startup,  corrective  action  is  difficult,  costly  and  time  consuming.      

Page  2    

It   is   important   to   remember   that   all   new   LNG   plants   have   requirements,   both   legislative   and   contractual,   for  formal  post-­‐startup  noise  acceptance  tests,  often  to  be  performed  by  independent  third  parties.  Inaccurate  noise  modeling  early  in  a  project  will  be  found  out  and  post-­‐startup  is  too  late  to  discover  noise  issues  on  an  LNG  project;  the  consequences  of  needing  to  apply  corrective  noise  control  actions  after  a  plant  is  operational  are  profound  and  potentially  disastrous  for  the  project.  

Modeling   an   LNG  plant   so   that   the   predicted   contours  match  measured   noise   contours   is   also   not   sufficient.   A  plant  noise  model  only  yields  value  when  it  is  modeled  in  sufficient  detail  that  the  effectiveness  of  different  noise  abatement  options  can  be  tested  and  evaluated  in  the  model  before  they  are  include  in  the  design.  This  requires  a  “bottom  up”  approach  where  all  noise  sources  in  the  plant  included  in  the  model  are  modeled  in  sufficient  detail  to  allow  this  analysis.  To  give  a  measure  of  this  level  of  detail,  a  typical  KBR  LNG  train  noise  model  contains  over  6,000  noise  sources.    

LNG  Plant  Noise  Limits  

All  LNG  facilities  must  be  designed  to  comply  with  both  in-­‐plant  noise  limits  that  protect  the  noise  exposure  of  the  plant  operators  and  community  noise   limits  that  protect  the  plant  neighbors  from  excessive  noise   levels.  From  a  design   perspective,   the   distance   to   the   nearest   residential   receptor   will   determine   whether   the   in-­‐plant   noise  limits,  or  the  community  noise  limits  are  the  governing  factor  that  drives  the  overall  project  noise  control  design.  If  the  residential  receptor  is  closer  to  the  plant  then  the  community  noise  limit  will  drive  the  design.  If  the  residential  receptors  are  further  away,  then  the  in-­‐plant  noise  limits  will  be  more  important.  

In-­‐plant  Noise  Limits  

Typically  for  in-­‐plant  noise,  the  driver  is  compliance  with  an  employee  exposure  limit  of  85  dBA  averaged  over  an  8  hour   shift.   In   some   cases,   this   requirement   is   adjusted   to   an   exposure   limit   of   83   dBA   for   facilities   where   the  operators  work  12  hour  shifts.  The  end  result  is  that  projects  typically  have  an  in-­‐plant  work  area  noise  limit  based  on  the  employee  exposure  limit.  There  is  a  provision  to  designate  an  area  of  the  plant  where  the  85  dBA  limit  is  not  feasible  or  practical  as  a  restricted  area,  where  the  use  of  hearing  protection  is  mandatory  to  ensure  that  the  plant  employees  do  exceed  the  exposure  limit.  

The  use  of  restricted  areas  is  an  important  decision  that  must  be  made  early  during  FEED  and  it  is  the  plant  owner  who   must   live   with   these   noise   control   decisions   for   the   life   of   the   plant.   It   is   the   engineering   contractor’s  responsibility  to  provide  the  owner  with  accurate  noise  predictions  together  with  relevant  technical  and  economic  information  to  allow  the  owner  to  make  an  informed  decision.  This  decision  making  process  is  often  times  linked  in  to   an   “As   Low  As   Reasonably   Practical”   (ALARP)   assessment.  While   all   of   the   economic,   operational   and   safety  considerations   associated   with   noise   abatement   are   important,   the   basic   noise   predictions   and   performance  assessment   must   be   accurate   for   the   whole   process   to   be   worthwhile.   It   is   critical   that   these   issues   are   fully  addressed  during  FEED  and  fully  included  in  the  Noise  Control  Basis  of  Design  for  EPC,  and  hence,  fully  considered  and  included  in  the  cost  estimates  for  the  EPC  phase  of  the  project.  

Property  Line  and  Community  Noise  Limits  

Community  and/or  property  line  noise  limits  intended  to  control  the  plant  noise  levels  that  could  impact  neighbors  living  close  to  a  facility  are  naturally   location  specific  and  governed  by  local  regulations  and  laws.  In  addition  the  World   Bank[2]   has   a   set   of   guidelines   that   include   environmental   noise   limits   and   these   are   often   enforced   by  financial  institutions  involved  in  LNG  projects.  

A   summary   of   typical   environmental   or   community   noise   limits   applicable   to   a   range   of   location   where   LNG  facilities  might  be  constructed  is  given  below:  

Page  3    

• United   States   (Environmental   Protection  Agency   (EPA),   used   by   Federal   Energy   Regulatory   Commission  (FERC))  

o Day-­‐Night  Sound  Level  -­‐  Ldn  55  dBA  at  the  nearest  receptor    § Translates  to  continuous  level  of  48.6  dBA  

o Property  line  varies  with  local  ordinances  (70  dBA  typical)  • British  Columbia  (Canada):    

o Residential/  institutional:  day/night-­‐50dBA  &  40dBA    o 40  dBA  at  1,500  meters  for  “pristine  area”  

• Western  Australia  o Property  Line  65  dBA  o Nearest  residential  receptor  45  dBA  

• World  Bank  Guidelines  o Property  Line  (Industrial,  Commercial):  day/night-­‐  70dBA    o Nearest  residential  receptor  45  dBA  

These  noise  limits  lead  to  a  design  for  an  operational  noise  level  of  <50  dBA  at  the  nearest  receptor.  As  mentioned  earlier,  the  distance  to  that  receptor  is  the  critical  location  specific  parameter  that  determines  whether  community  noise   is   a   governing   issue   for   the   project.   It   is   relevant   to   note   that   currently   proposed   new   LNG   facilities,  particularly  those  in  North  America  and  Canada,  tend  to  be  located  closer  to  residential  receptors.  The  noise  limits  below  50  dBA  are  significant  limits  and  must  be  fully  considered  from  the  very  initial  phases  of  a  project  when  site  selection   is  defined.   It   is  also   important   to  perform  a  detailed  baseline  noise  survey  so   that   the   influence  of   the  existing  ambient  noise  levels  can  be  fully  considered  in  noise  control  assessments  and  decisions.  

LNG  Plant  Noise  Sources  

KBR’s  field  noise  surveys  in  operational  LNG  plants  have  shown  the  major  noise  sources  in  the  LNG  train  are  the  air  fin  coolers  and  the  compressor  suction,  discharge  &  recycle  piping  together  with  the  main  compressors  and  their  gas   turbine  drivers.   It   is   important   to   stress  at   this  point   the   importance  of  KBR’s  Vibration  Velocity  Tube   (VVT)  developed  in  cooperation  with  the  Southampton  University  Institute  of  Sound  and  Vibration  Research[3,4].  The  VVT  provides  a  simple  device  for  measuring  piping  noise  in  the  presence  of  relatively  high  background  noise  levels  and  has  been  an  invaluable  tool  in  allowing  KBR  to  understand  the  relative  contributions  of  the  major  noise  sources  in  LNG  plants.  The  relative  sound  power  level  (i.e.  radiated  acoustic  energy)  contributions  of  these  sources  within  an  LNG  train  are  compared  below:  

• Total  sound  power  level  for  one  LNG  Train  –  125  dBA    o Air  Coolers  –  121  dBA  

§ 95  dBA  per  fan  sound  power  level  • <80  dBA  at  1  meter  below  the  air  coolers  

o Compressors  114  dBA  sound  power  level  § Unenclosed  compressor  sound  pressure  level  93  dBA  at  1  meter  

o G/T  Drivers  –  116  dBA  sound  power  level  § Supplier  standard  85  dBA  at  1  meter  sound  pressure  level  with  G/T  enclosure  package  § G/T  Exhaust  –  105  dBA  sound  power  level  

o Compressor  Piping  –  121  dBA  sound  power  level  § Class  D  acoustic  insulation  

• elastomeric  foam  on  suction  piping  • mineral  wool  on  discharge  piping  

o All  other  equipment  in  LNG  Train  –  114  dBA  sound  power  level  § This  category  would  cover  pumps  etc.  

Page  4    

The  air  coolers,  the  compressors  and  their  G/T  drivers  together  with  the  compressor  piping  are  the  dominant  noise  sources   in   the   LNG   train   and   account   for   90%   of   total   sound   power   level   (acoustic   energy)   of   the   train.   The  remaining  10%  of  total  train  sound  power  is  accounted  for  with  all  of  the  other  sources  (pumps  etc.)  

Further  perspective  can  be  added  to  these  numbers  if  we  consider  a  typical  10  Mt/a  LNG  plant  consisting  of  2  x  5  Mt/a  LNG  trains  plus  offsites  and  utilities.  

The  Total  sound  power  level  of  this  Reference  Plant  would  be  calculated  as  follows:  

• LNG  Trains  o LNG  Train  1  –  125  dBA  o LNG  Train  2  –  125  dBA  

• Total  sound  power  level  2  LNG  Trains  –  128  dBA    

• Offsites/Utilities  o Power  Generation  –  122  dBA  o Condensate  Stabilization  –  118  dBA  o Boil-­‐off  Gas  Compressor  –  115  dBA  o Service  Water  Treatment  –  109  dBA  

• Total  for  Offsite/Utilities  –  124  dBA  (approximately  equal  to  one  LNG  Train)  

Total  sound  power  level  (acoustic  energy)  for  the  overall  2  train  LNG  facility  including  offsite/utilities  –  129.5  dBA  

If  we  consider  the  LNG  Train  with  an  overall  sound  power  level  of  125  dBA  then  the  combined  contributions  for  the  air  coolers  and  compressor  piping  at  a  sound  power  level  of  121  dBA  each,  account  for  a  sound  power  level  124  dBA.  The  additional  1  dBA  to  go  to  125  dBA  covers  the  contributions  of  the  compressors  and  drivers  together  with  all  other  equipment  in  the  train.  If  there  is  a  requirement  to  further  reduce  the  noise  levels,  either  within  the  plant  or   at   the   community   location,   then   the   noise   control   effort   needs   to   focus   initially   on   these   two   dominant  groupings   of   noise   sources.   Noise   abatement   for   the   air   coolers   and   the   compressor   piping   have   far   reaching  implications  on  plant  operation,  layout  and  cost  and  must  be  addressed  during  FEED  when  the  impact  of  the  noise  abatement   on   operation,   layout   and   plot   space   can   be   minimized   and   impact   on   project   costs   and   schedule  controlled.  

Noise  Abatement  Options  

This  section  of  the  paper  will  provide  an  overview  of  the  noise  abatement  options  for  the  major  LNG  plant  noise  sources  with  some  details  on  implications  for  project  economics,  operation  and  safety.  

Compressor  Piping    

Acoustic   insulation  is  the  preferred  noise  abatement  option  for  compressor  piping  that  has  provided  proven  and  reliable   results   in   the   field.   The   governing   international   standard   for   acoustic   insulation   is   ISO   15665[5]   which  defines   Classes   A   through   C   mineral   wool   based   acoustic   insulation   systems   with   outer   metal   cladding.   An  additional  Class  D  system,  is  now  widely  used  in  the  industry  and  LNG  plants  in  particular.  

New  elastomeric  foam  based  acoustic  insulation  systems  are  available  that  offer  advantages  for  LNG  applications,  particularly  on   the  cold  suction  side  of   the  compressors.  Mineral  wool  based  acoustic   insulation  systems   in  cold  service   applications   are   dependent   on   the   integrity   of   the   moisture   barrier   because   the   temperature   at   the  interface  with   the   insulation  on   the  pipe  will  be  below   the  dew  point  and  attract   condensation.   If   the  moisture  barrier   fails,   then   the   moisture   will   impregnate   the   mineral   wool   acoustic   insulation   and   reduce   the   acoustic  performance  of  the  insulation  system.  

Page  5    

The  elastomeric  based  acoustic  insulation  systems  consist  of  layers  of  open  cell  and  closed  cell  foam  with  an  outer  rubber  jacketing.  Therefore,  they  have  integral  moisture  barriers.  Also  they  can  offer  layout  benefits  because  Class  C   or   Class   D   performance   systems   have   reduced   overall   thickness   compared   to  mineral  wool   systems.   KBR   has  used   these  cold  service  elastomeric   foam  systems   in  both  ammonia  and  LNG  plant  applications  and  has  verified  field  noise  models  that  validate  the  performance  of  these  systems.  

Elastomeric   foam   insulation   systems  with  metal   outer   cladding   acoustic   insulation   is   available   for  warm   service  compressor   discharge   piping.   These   systems   can   offer   up   to   a   7   dBA   improvement   in   transmission   loss  performance.  They  typically  represent  a  15-­‐20%  increase  in  insulation  costs,  but  do  offer  improved  corrosion  under  insulation  protection,  which  may  be  regarded  as  beneficial  for  floating  LNG  applications.  The  basic  systems  have  a  marginal  impact  on  layout.  But,  flex  temperatures  during  compressor  recycle  must  be  carefully  considered  and  an  additional  layer  of  inner  thermal  insulation  may  be  required  to  ensure  that  interface  temperature  for  elastomeric  acoustic  insulation  is  acceptable.  

Air  Coolers  

Fan  tip  speed  is  the  critical  design  parameter  for  air  cooler  noise  control  design,  but  reducing  the  tip  speed  results  in   operational   and   performance   issues.   The   fan   or   grouping   of   fans   still   has   to   provide   the   necessary   cooling  demanded  by  the  process  conditions.  While  some  of  the  reduction  in  air  flow,  and  hence  cooling,  due  to  reduced  fan  tip  speed  can  be  accounted  for  by  additional  fan  blades  on  the  same  fan  hub  there  is  the  possibility  that  low  noise  requirements  for  air  coolers  may  necessitate  additional  fan  bays  to  provide  the  required  cooling  duty.  

Air  coolers  with  a  noise  performance  of  95  dBA/fan  sound  power  level  are  readily  available  and  are  operational  in  many  LNG  plants  worldwide.  The  move  to  low  noise  fans  at  a  sound  power  level  of  90  dBA,  or  less,  is  much  more  of  a  challenge  and  there  are  a  limited  number  of  suppliers  who  can  meet  this  requirement.  Based  on  recent  project  experience,   the  move   from  95  dBA  per   fan   sound  power   level   air   coolers   to  90  dBA  per   fan   sound  power   level  could  result  in  a  30%  cost  increase  and  30%  increase  in  cooling  area.  

Compressors  and  Gas  Turbine  Drivers  

Acoustic  enclosures  are  not  recommended  for  the  main  compressors  in  an  LNG  plant,  they  have  major  cost  impact,  potentially   exceeding   $2,000,000  per  machine,   together  with   significant  maintenance   access   issues.   In   addition,  enclosures  require  major  safety  considerations  that  must  be  accounted  for;  the  interior  of  the  enclosure  becomes  a   Class   I   Div.   1   electrical   area   classification,   explosive   gas   detection   and   ventilation   systems   will   be   required  together  with  CO2   fire   suppression   system.  An  acoustic   enclosure  over   the   compressors  does  not  eliminate   the  noise  restricted  area  near  the  compressors  because  of  contributions  from  other  dominant  noise  sources  (i.e.  piping  and  air  coolers).  The  project  pays  for  an  85  dBA  at  1  meter  acoustic  enclosure  only  for  the  noise   levels  near  the  compressor  to  still  exceed  85  dBA  because  of  the  contributions  from  the  piping  and  air  coolers.  

Close  fitting  mass  loaded  acoustic  blankets  are  an  option  for  a  compressor  and  can  reduce  the  noise  radiated  by  the  compressor  casing  to  <90  dBA  at  1  meter.  Care  must  be  taken  in  the  design  and  installation  of  the  blankets  to  account  for  icing  on  the  compressor  casing.  

A  Gas  turbine  supplier’s  typical  standard  offering  is  an  85  dBA  at  1  meter  sound  pressure  level  acoustic  enclosure  over  the  machine  with  an  85  dBA  at  1  meter  sound  pressure  level  intake  silencer  and  a  105  dBA  sound  power  level  exhaust  silencer.  Improvements  are  possible  to  take  the  acoustic  enclosure  down  to  a  sound  pressure  level  of  80  dBA  at  1  meter  and  the  exhaust  silencer  down  to  a  sound  power   level  at  the  stack  exit  of  100  dBA,  but  this  will  increase  the  costs  by  $1-­‐2  million  per  machine  

 

 

Page  6    

LNG  Plant  Case  Study  

To  put  some  perspective  on  the  noise  abatement  options  and  decision  making  process  during  the  FEED  phase  of  a  project,  we  can  consider  a  hypothetical  LNG  facility  using  KBR  reference  LNG  train  noise  models.  The  plant  to  be  considered   has   10   Mt/a   capacity   (2   x   5   Mt/a   LNG   Trains)   with   typical   offsites   and   utilities   with   the   nearest  community   receptors   located   1.0   Km   from   the   facility.   Initial   in-­‐plant   and   community   noise   predictions   will   be  based   on   a   readily   achievable  minimum  project   impact   level   of   noise   abatement.   The   noise   abatement   options  addressing  the  compressor  piping  and  air  coolers  will  be  considered  in  the  context  of  both  in-­‐plant  noise  levels  and  community   noise   levels   for   receptors   at   1.0   Km   from   the   LNG   plant.   The   modeling   considers   ground   effects  (hard/soft   ground,   water),   vegetation   screening   (e.g.   trees),   topographic   contour   effects   and   climate   effects  (temperature,  humidity).  The  model  predictions  follow  ISO  9613[6,7],  which  assumes  worst  case  downwind  (5  m/s)  conditions  in  all  directions.  

The  initial  design  for  noise  abatement  is  as  follows:  

• 95  dBA  per  fan  sound  power  level  air  coolers  • Elastomeric  Class  D  acoustic  insulation  on  cold  suction  compressor  piping  • Mineral  wool  Class  D  acoustic  insulation  on  warm  discharge  compressor  piping  • No  acoustic  enclosures  or  acoustic  blankets  on  compressor  casings  • Gas  Turbines  with  Supplier  standard  85  dBA  at  1  meter  package  • G/T  exhaust  silencer  105  dBA  sound  power  level  at  stack  exit  

To   get   some   perspective   it   is   reasonable   to   firstly   consider   the   operational   noise   levels   within   the   LNG   train.  Predicted  noise  contours  are  presented  in  the  following  figures  for  two  compressor  driver  combinations:  

• Fig.  1   -­‐  Predicted  LNG  train  noise  contours  at  grade  level  for  an  LNG  train  with  2  X  LMS  100  gas  turbine  drives  for  the  main  refrigerant  compressors  (2  in  1  configuration)  

At  grade  level  within  the  train  we  have  areas  exceeding  85  dBA  around  the  compressors  with  peak  level  exceeding  90  dBA   in  the   immediate  vicinity  of   the  machines.  These  are  typical   levels   for  a  world  scale  LNG  train  and  these  areas   are   normally   designated   as   hearing   protection   areas   where   the   use   of   appropriate   hearing   protection   is  mandatory.   As   discussed   earlier,   the   compressor   suction   and   discharge   piping   is   a   dominant   grouping   of   noise  sources  and  this  influence  can  be  seen  with  the  extension  of  the  85  dBA  contour  and  80  dBA  contour  following  the  route   of   the   compressor   piping   into   and   along   the   piperack.   The   influence   of   air   cooler   contributions   is   less  pronounced  at  grade  level,  but   it  does  have  the  effect  of  raising  the  general   levels  at  grade  under  the  pipe  rack.  This  influence  will  be  seen  clearer  as  we  investigate  the  influence  of  moving  to  lower  noise  design  air  coolers.  The  other  areas  within  the  train  that  exceed  85  dBA  are  small  localized  areas  around  individual  item  of  equipment.    

Noise  abatement  options  for  the  compressor  piping  and  the  air  coolers  can  now  be  evaluated  for  the  LNG  train.  The  noise  abatement  options  to  be  tested  include:  

• Changing  the  compressor  discharge  piping  to  the  Class  D  elastomeric  foam  insulation  system  with  metal  cladding  that  provides  a  6-­‐7  dBA  improvement  in  overall  system  insertion  loss  compared  the  mineral  wool  based  Class  D  system  

• Change  air  coolers  from  a  nominal  95  dBA  sound  power  level  per  fan  to  low  noise  design  90  dBA  per  fan  sound  power  level  air  coolers  

The  noise  contour  maps  for  these  options  are  presented  in  the  following  figures:  

• Fig.  2  -­‐   LNG  Train  at  Grade  Level  with  Elastomeric  Class  D  System  on  Compressor  Discharge  Piping  

Page  7    

• Fig.  3  -­‐   LNG  Train  at  Grade  Level  with  Elastomeric  Class  D  system  on  Compressor  Discharge  Piping  and  Low  Noise  Design  Air  Coolers  at  90  dBA  per  fan  sound  power  level    

• Fig.  4  -­‐   Air  Cooler  Maintenance  Platform  for  Reference  Noise  Abatement  • Fig.  5  -­‐   Air  Cooler  Maintenance  Platform  with  change  to  Low  Noise  Design  Air  Coolers  at  90  dBA  per  Fan  

Sound  Power  Level  • Fig.  6  -­‐   Air   Cooler   Maintenance   Platform   with   change   to   Elastomeric   Class   D   System   on   Compressor  

Discharge  Piping  only  • Fig.  7  -­‐   Air  Cooler  Maintenance  Platform  with  change  to  Low  Noise  Design  Air  Coolers  at  90  dBA  per  Fan  

Sound  Power  Level  and  Elastomeric  Class  D  System  on  Compressor  Discharge  Piping  

Noise  Abatement  Effects  at  Grade  Level  

Fig.  1  shows  the  base  case  reference  noise  abatement  levels  at  grade  level  within  the  LNG  train.  As  the  compressor  piping  is  upgrade  to  the  elastomeric  foam  Class  D  system  (Fig.  2)  we  see  a  reduction  in  the  area  exceeding  85  dBA  around  the  compressors  of  16%  and  a   further  smaller  6%  reduction  on  the  area  exceeding  85  dBA  when  the  air  coolers   are   changed   to   the   90   dBA   per   fan   sound   power   level     low   noise   design.  While   both   of   these   options  provide  a  reasonable  reduction  in  the  grade  level  noise  the  area  exceeding  85  dBA  is  not  totally  eliminated  and  the  areas  near  the  compressors  would  still  need  to  be  designated  as  restricted  areas.  

This   level  of  noise   reduction   for   these  noise  abatement  options  would  need   to  be  carefully  assessed  during   the  FEED  phase  of  the  project.  Based  on  in-­‐plant  noise  levels  these  noise  reduction  measures  may  not  be  justified  in  the  context  of  restricted  areas,  but,  as  will  be  discussed  later,  the  impact  on  the  community  and  compliance  with  community  noise  limits  must  also  be  considered.    

Noise  Abatement  Effects  at  Air  Cooler  Maintenance  Platform  Level  

The  air  cooler  maintenance  platform  is  an  important  work  area  within  an  LNG  plant  because  maintenance  activities  may  require  personnel  on  the  platform  for  extended  periods.  Many  owners  are  keen  to  control  the  noise  levels  on  this  platform  to  manageable  employee  noise  exposure  levels.    

The  base  case  reference  noise  abatement  with  the  95  dBA  per  fan  sound  power  levels  (Fig.  4)  has  an  extended  area  of  the  air  cooler  platform  exceeding  85  dBA.    When  the  air  coolers  are  changed  to  the  90  dBA  per  fan  sound  power  level   (Fig.  5),  we   see  a   reduction   in   the  areas  exceeding  85  dBA  of  7%.  When  only   compressor  discharge  piping  acoustic   insulation   is   changed   to   the   improved   transmission   loss   elastomeric   insulation   (Fig.6),  we   see   a   similar  10%  reduction  in  the  area  exceeding  85  dBA.  

This   demonstrates   that   on   this   elevated   platform   the   influence   of   both   air   cooler   noise   and   compressor   piping  noise,  with  enhanced  noise  abatement  in  both  cases  provide  similar  levels  of  noise  reduction.  When  both  the  low  noise  design  air  coolers  and  enhanced  elastomeric  insulation  are  applied  we  see  a  more  significant  37%  reduction  in  the  area  exceeding  85  dBA,  but  the  85  dBA  is  not  completely  eliminated.    

Again  this   information  together  with  the  design,   layout  and  cost   information,  would  need  to  be   fully  considered  during  FEED  as  part  the  decision  making  process  on  the  air  cooler  noise  limit  and  compressor  piping  insulation.  This  exercise  would  form  the  basis  for  ALARP  analysis  during  FEED.  

Noise  Abatement  Effects  on  Community  Receptor  

To  evaluate   the  noise   abatement   effects   on   community  noise  we   can   consider   a   receptor   located  1.0  Km  away  from  the  plant  and  assess  performance  against  the  US  EPA  Ldn  –  55  dBA  used  by  FERC,  which  translates  to  a  Leq  -­‐  48.6  dBA  (24-­‐hour  equivalent  continuous  sound  pressure  level).  

Page  8    

Table   1   below   shows   the   predicted   noise   levels   at   the   community   receptor   for   the   range   of   noise   abatement  options  available.  The  elastomeric  insulation  for  the  compressor  discharge  piping  and  the  low  noise  90  dBA  per  fan  air  coolers  discussed  earlier  each  only  reduce  the  community  receptor  noise  level  by  1  dBA  to  50  dBA.  If  both  are  applied  to  the  design  then  the  community  noise  level  reduces  to  49  dBA,  still  1  dBA  short  of  the  target  48  dBA.    

Other  additional  noise  abatement  options  included  going  beyond  the  typical  gas  turbine  suppliers  standard  85  dBA  at  1  m.  acoustic  enclosure  package  and  applying  custom  fit  acoustic  blankets  to  the  main  compressor  casings.  

Table  1  –  Community  Noise  Predictions  for  Residential  Receptor  1.0  Km  from  Property  Line  

Reference  Noise  Abatement  

Elastomeric  Insulation  on  

Comp  Discharge  Piping  

Low  Noise  Design  Air  Coolers  

G/T  Enclosures  80  dBA  at  1m.  

Acoustic  Blankets  on  Compressors  

Predicted  Noise  Level  (dBA)  

• 51   • 50   • 50   • • 49   • • • 48   • • • • 47  

 

The  predicted  community  noise  levels  show  the  importance  and  influence  of  compliance  with  these  noise  limits  at  residential  receptors  on  the  overall  design  of  the  plant.  The  base  reference  design  starts  at  a  predicted  noise  level  of  51  dBA  at  the  community  receptor.  To  put  some  context  on  the  required   level  of  noise  abatement  to  get  the  noise  level  at  the  receptor  location  down  to  48  dBA  is  a  3  dBA  reduction,  which  translates  to  reducing  the  overall  acoustic  energy  being  radiated  by  the  plant  (i.e.  overall  sound  power  level)  by  a  factor  of  two.  

Applying  the  already  discussed  noise  abatement  options  for  the  compressor  piping  and  air  coolers,  the  two  major  groupings  of  noise  sources  in  the  LNG  train,  produces  a  reduction  to  49  dBA,  still  short  of  the  target  48  dBA.  The  additional  step  of  reducing  the  gas  turbine  enclosures  from  85  dBA  at  1  m.  to  80  dBA  at  1m.  and  the  gas  turbine  exhaust  silencer  from  a  sound  power  level  105  dBA  to  100  dBA,  just  gets  to  the  48  dBA  noise  level  at  the  receptor  location.   The   additional   measure   of   adding   the   acoustic   blankets   to   the   main   compressor   casing   provides   an  additional  1  dBA  of  attenuation  and  brings   the  overall  predicted  noise   level  down  to  47  dBA  and  provides  some  margin  in  the  design.  

It   must   be   stressed   that   these   noise   abatement   options   must   be   applied   in   the   correct   order   attacking   the  dominant  noise  sources  first  to  reduce  the  overall  noise  levels.  Applying  the  acoustic  blankets  to  the  compressors  would   not   provide   a   1   dBA   reduction   in   the   community   noise   level   if   the   improved   compressor   piping   acoustic  insulation,  low  noise  design  air  coolers  and  80  dBA  at  1  m.  gas  turbine  package  had  not  already  be  applied  in  the  overall  plant  design.  

Conclusions  

The  value  of  the  KBR  approach  to  LNG  plant  noise  modeling,  based  on  field  validated  noise  survey  data  and  verified  by   independent   third-­‐party   noise   surveys   for   world   scale   LNG   facilities   has   been   discussed   in   the   context   of   a  hypothetical  LNG  plant  noise  study.  The  importance  of  addressing  noise  control  issues  early  in  a  project  has  been  clearly  demonstrated  from  the  perspective  of  both  in-­‐plant  noise  levels  and  the  important  legislative  requirements  to  control  community  noise  levels  to  acceptable  levels.  

Community   and   in-­‐plant   noise   levels   are   inextricably   linked.   Factors   that   influence   in-­‐plant   noise   also   affects  property  line  and  community  noise  and  vice  versa.  KBR’s  modeling  experience  has  demonstrated  that  a  balanced  approach   to  noise   abatement  with   an  understanding  of   the   relative   contributions  of   the  major   noise   sources   is  

Page  9    

essential.  The  major  LNG  plant  noise  sources  are  the  air  coolers  and  compressor  piping  followed  by  the  gas  turbine  driven  compressors.  These  are  the  sources  where  noise  control  effort  needs  to  be  focused  during  PreFEED/FEED  and  ALARP  analysis  with  the  plant  owner.  

This   approach   allows   early   definition   of   the   noise   abatement   options   in   the   context   of   layout   and   site  location/configuration  and  other  project  drivers  including  cost  and  economic  drivers.  Then  with  plant  owner  input  and  consultation  a  reasonable  and  practical  Noise  Control  Basis  of  Design  for  the  EPC  phase  of  the  project  can  be  developed  during  FEED  to  ensure  that  all  noise  abatement  cost  and  design  consideration  are  defined.    The  plant  owner  can  only  have  confidence  in  this  noise  control  basis  of  design  if  the  engineering  contractor  can  demonstrate  that  the  noise  modeling  techniques  have  been  validated  and  field  verified.  

References  

1. James  Cowling  &  Jon  Richards  “Centrifugal  Compressor  Piping  Noise  -­‐  Field  Measurements  and  Accurate  Noise  Modeling  for  Process  Plants”,  InterNoise  2012,  19-­‐22  August  2012.  

2. World  Bank  “Environmental,  Health,  and  Safety  General  Guidelines”  30  April  2007.  3. ISO  15665:2003  Acoustics  –  “Acoustic  insulation  for  pipes,  valves  and  flanges”  4. Holland,   K.R.   and   Fahy,   F.J.   “A   Simple   Transducer   of   Surface   Vibrational   Volume   Velocity”,   Institute   of  

Acoustics  Proc.  Vol.  15  Part  3.  5. Rainey,   J.T.   and   Kushner,   F.   “Using   a   Soundtube   to   Measure   Noise   of   Structural   Sources   in   High  

Background   Noise   Environments”   Proceedings   of   the   9th   Turbomachinery   Symposium,   Texas   A&M  University,  1980.  

6. ISO  9613-­‐1:1993  Acoustics  –  “Attenuation  of  sound  during  propagation  outdoors  -­‐-­‐  Part  1:  Calculation  of  the  absorption  of  sound  by  the  atmosphere”.  

7. ISO   9613-­‐2:1996   Acoustics   –   “Attenuation   of   sound   during   propagation   outdoors   -­‐-­‐   Part   2:   General  method  of  calculation”.  

   

Page  10    

 

Fig.  1  -­‐  Predicted  LNG  train  noise  contours  at  grade  level  for  an  LNG  train  with  2  X  LMS  100  gas  turbine  drives  for  the  main  compressors  (2  in  1  configuration)  

 

Fig.  2  -­‐   LNG  Train  at  Grade  Level  with  Elastomeric  Class  D  System  on  Compressor  Discharge  Piping  

Page  11    

 

Fig.  3  -­‐   LNG  Train  at  Grade  Level  with  Elastomeric  Class  D  system  on  Compressor  Discharge  Piping  and  Low  Noise  Design  Air  Coolers  at  90  dBA  per  fan  sound  power  level  

 

 

Fig.  4  -­‐   Air  Cooler  Maintenance  Platform  for  Reference  Noise  Abatement  

Page  12    

 

 

Fig.  5  -­‐   Air  Cooler  Maintenance  Platform  with  change  to  Low  Noise  Design  Air  Coolers  at  90  dBA  per  Fan  Sound  Power  Level  

 

 

Fig.  6  -­‐   Air  Cooler  Maintenance  Platform  with  change  to  Elastomeric  Class  D  System  on  Compressor  Discharge  Piping  only  

Page  13    

 

 

Fig.  7  -­‐   Air  Cooler  Maintenance  Platform  with  change  to  Low  Noise  Design  Air  Coolers  at  90  dBA  per  Fan  Sound  Power  Level  and  Elastomeric  Class  D  System  on  Compressor  Discharge  Piping