cargo securing – comparison of different quality roads · 1016 martin vlkovský, petr veselík...

9
1015 ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 67 88 Number 4, 2019 CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS Martin Vlkovský 1 , Petr Veselík 2 1 Department of Logistics, Faculty of Military Leadership, University of Defence in Brno, Kounicova 65, 662 10 Brno, Czech Republic 2 Department of Quantitative Methods, Faculty of Military Leadership, University of Defence in Brno, Kounicova 65, 662 10 Brno, Czech Republic To link to this article: https: / / doi.org / 10.11118 / actaun201967041015 Received: 10. 4. 2019, Accepted: 26. 6. 2019 To cite this article: VLKOVSKÝ MARTIN, VESELÍK PETR. 2019. Cargo Securing – Comparison of Different Quality Roads. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(4): 1015 – 1023. Abstract The article deals with the subject of the impact which road surfaces have onto cargo and the securing of cargo against shocks during road transport. The applicability of the key EN 12191‑1:2010 standard is discussed, not only for common conditions, but also for specific transport conditions on low‑quality road surfaces. Part of the article involves carrying out a transport experiment on a road paved with granite blocks and on a highway, from which data on the impact of shocks on cargo (acceleration coefficients values) were obtained. The data were statistically evaluated and compared to the normatively determined values of these acceleration coefficients. A parametric statistical analysis (two‑sample t‑test) was used to compare the values of the acceleration coefficients from the two types of surfaces. The analysis conducted shows statistically significant differences between the data measured on the road paved with granite blocks and on the highway. Using correlation analysis, the dependence of the acceleration coefficient values and inertial forces affecting cargo during transport were verified. For the relevant axes (x – longitudinal and y – transverse), a very strong correlation was found. Keywords: transport, cargo securing, acceleration coefficient, inertial force, parametric methods, two‑sample t‑test INTRODUCTION Although cargo securing in road freight vehicles is not a new issue, a number of shortcomings occurs in this area. The main shortcomings include above all the link with road traffic accident rates, or the event of traffic accidents caused by incorrect or insufficient cargo securing. Within the European Union, it is estimated that up to 25% of all accidents caused by truck drivers are caused by improper cargo securing (EC DGET, 2014). The Automotive Manufacturers and Importers Association (APIA) in cooperation with the ČESMAD Bohemia association organized a conference where other alarming numbers were heard. Every third day, a truck accident occurs due to an inappropriate cargo securing in the Czech Republic (CR). Traffic accidents, however, can only be considered as the tip of the iceberg, as it

Upload: others

Post on 07-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

1015

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS

Volume 67 88 Number 4, 2019

CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS

Martin Vlkovský1, Petr Veselík2

1�Department�of�Logistics,�Faculty�of�Military�Leadership,�University�of�Defence�in�Brno,�Kounicova�65,�662 10 Brno,�Czech Republic

2�Department�of�Quantitative�Methods,�Faculty�of�Military�Leadership,�University�of�Defence�in�Brno,�Kounicova 65,�662 10 Brno, Czech Republic

To�link�to�this�article: https: /  / doi.org / 10.11118 / actaun201967041015Received: 10.�4.�2019, Accepted: 26.�6.�2019

To�cite�this�article: VLKOVSKÝ MARTIN,�VESELÍK�PETR.�2019.�Cargo�Securing – Comparison�of�Different�Quality�Roads.� Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,�67(4): 1015 – 1023.

Abstract The�article�deals�with�the subject�of�the impact�which�road�surfaces�have�onto�cargo�and�the securing�of� cargo� against� shocks� during� road� transport.� The  applicability� of� the  key� EN� 12191‑1:2010�standard�is�discussed,�not�only�for�common�conditions,�but�also�for�specific�transport�conditions�on�low‑quality�road�surfaces.�Part�of�the article�involves�carrying�out�a transport�experiment�on�a road�paved�with�granite�blocks�and�on�a highway,� from�which�data�on� the  impact�of�shocks�on�cargo�(acceleration�coefficients�values)�were�obtained.�The data�were�statistically�evaluated�and�compared�to� the  normatively� determined� values� of� these� acceleration� coefficients.� A  parametric� statistical�analysis� (two‑sample� t‑test)�was�used� to� compare� the values�of� the acceleration�coefficients� from�the two�types�of�surfaces.�The analysis�conducted�shows�statistically�significant�differences�between�the data�measured�on� the road�paved�with�granite�blocks�and�on� the highway.�Using�correlation�analysis,� the dependence�of� the acceleration�coefficient�values�and� inertial� forces�affecting� cargo�during�transport�were�verified.�For�the relevant�axes�(x –  longitudinal�and�y – transverse),�a very�strong�correlation�was�found.�

Keywords:� transport,� cargo� securing,� acceleration� coefficient,� inertial� force,� parametric�methods,�two‑sample�t‑test�

INTRODUCTION

Although�cargo�securing�in�road�freight�vehicles�is� not� a  new� issue,� a  number� of� shortcomings�occurs�in�this�area.�The main�shortcomings�include�above�all� the  link�with� road� traffic�accident� rates,�or�the event�of�traffic�accidents�caused�by�incorrect�or�insufficient�cargo�securing.�Within�the European�Union, it is estimated that up to 25% of all accidents

caused by truck drivers are caused by improper cargo�securing�(EC�DGET,�2014).�The� Automotive� Manufacturers� and� Importers�

Association�(APIA)�in�cooperation�with�the ČESMAD�Bohemia� association� organized� a  conference�where� other� alarming� numbers� were� heard.�Every� third� day,� a  truck� accident� occurs� due� to�an� inappropriate� cargo� securing� in� the  Czech�Republic� (CR).� Traffic� accidents,� however,� can�only� be� considered� as� the  tip� of� the  iceberg,� as� it�

Page 2: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

1016 Martin Vlkovský, Petr Veselík

was found during inspections on Czech roads that almost half of all cargo was not secured properly (SISA / ČESMAD�BOHEMIA,�2018).�The� DEKRA� company� reports� an� analogous�

number,�although�only� in� the segment�of�vehicles�over� 12 t� (DEKRA,� 2016).� A  shortcoming� in�the  statistics� is� the  monitoring� of� the  technical�causes� of� traffic� accidents� with� different� internal�classifications.� In� 2017� the  “improper� stowage�of� cargo”� caused� almost� 30%� of� accidents�caused� by� technical� defects� in� the  CR� (POLICE�OF� THE  CR,� 2018).� The  overloading� of� trucks� is�a  related�problem,�where,� according� to�data� from�the Road�Transport�Services�Centre�established�by�the  Ministry� of� Transport� of� the  Czech� Republic,�almost�half�of�the vehicles�were�overloaded�during�weight�checks�(ROAD�TRANSPORT�CENTER,�2014).Shortcomings� in� the area�of� cargo� securing� can�

be divided into:• Deliberate: primarily�for�economic�reasons,�such�as�overloading�vehicles,�choosing�an insufficient�number of fastening devices, or using old and damaged�fasteners.�

• Caused�by�negligence: primarily�due� to� the  lack�of� knowledge� of� the  relevant� regulations� and�requirements� on� fastening� the  cargo,� including�the choice�of�suitable�fasteners.�

• Unintentional:  that� is,� when� the  worker�responsible� for� loading� the  cargo� distributes�the  fasteners� in� good� faith� in� accordance� with�the known�regulations�and�requirements.�

Based� on� the  list� above,� it� can� be� stated� that�the  first� two� problems� are� primarily� those� of�management  –  motivation� and� supervision� over�subordinates’�activities.�The last�problem�is�instead�a  transport‑technical� one,� where� for� the  purpose�of correct cargo securing, it is necessary to know� the  parameters� of� transportation� before�securing� is� deployed.� Such� parameters� include�knowing� the  (assumed)�magnitude� of� the  inertial�forces� affecting� cargo� during� transport.� These�can be determined using normative values of acceleration� coefficients� on� individual� axes� (x, y and z),� however� this� is� a  theoretical� assumption�based�on�empirical�studies�carried�out� in� the past�when�the parameters�of�the transport�system�were�different� (e.g.� vehicles,� road� surfaces).� A  more�laborious� and� time‑consuming� procedure� is�the experimental�detection�of�shocks�(acceleration�coefficient� values)� during� transport� under� similar�conditions�using�data�loggers.�Such�measurements,�ceteris paribus,� assist� in� choosing� the  appropriate�load‑securing� methods� for� transportation� under�similar�conditions.�

Such�an�experimental�approach�is�of�importance�in cases where realistically measured shocks (magnitude� of� the  acceleration� coefficients)�do� not� correspond� with� the  normative� values�of� the  acceleration� coefficients� according� to�EN 12195‑1:2010�(EN�12195‑1:2010).�The� article� further� focuses� on� the  last�

area:  unintentional� non‑compliance� with�the requirements�of�cargo�securing.�In�such�cases,�an� improvement� in� the  human� management�system� would� not� result� in� the  desired� effect�because� the  problem� is� the  absence� of� relevant�data that is necessary either for software processing of� the  cargo� securing� plan,� or� for� a  manual�solution.� On� the  basis� of� pre‑research,� significant�deviations� were� found,� especially� under� specific�conditions – on� low‑quality�roads� (Vlkovský  et al., 2017;� Vlkovský  et  al.,� 2018).� In� connection� with�the  accident� rate,� it� is� also� possible� to� quantify�the  impact� of� improper� or� insufficient� cargo�securing� economically� in� the  form� of� social� loss�caused�by�death�or�injury�to�persons�and�property�losses�(Vlkovský,�Veselík�and�Grzesica,�2018).�These�impacts�may�be�significantly�greater�during�

the  transport� of� dangerous� goods.� In� such� cases,�it� is� not� possible� to� speak� of� a  higher� likelihood�of an accident, but of higher impact on persons, technology,�infrastructure,�and�the environment.�In�the context�of�the above,�the likelihood�of�a traffic�accident�will� be� higher� on� low‑quality� roads� (see�Risk�Matrix�in�Fig. 1).The�transport�of�dangerous�goods�on�low‑quality�

roads� is� carried� out� by,� for� example,� the military�(ammunition,� fuel,� etc.)� or� farmers� (pesticides,�disinfecting chemicals, diesel, pressure cylinders, etc.),�(Walter,�2018).�Fig.  1� shows� that� the  transport� of� dangerous�

goods� on� low‑quality� roads�would,�without� other�measures,�appear�in�the red�part�of�the risk�matrix�(signifying�“intolerable”).�The impact�of�dangerous�goods on persons, technology, infrastructure and the environment�in�a case�of�a traffic�accident�can�be�mitigated�by�complying�with� the requirements�of� the  European� Agreement� on� the  International�Carriage� of� Dangerous� Goods� by� Road� (ADR,�2017).� Such� experiments� include� a  requirement�on�a vehicle’s� technical� condition� that� can� reduce�the likelihood�of�a road�accident.�During�transport�on� low‑quality�roads,� it�can�be�assumed�that�with�a  greater� impact� of� shocks� onto� a  vehicle� and�cargo� (Grzesica,� 2018),� the  likelihood� of� a  traffic�accident� increases�hypothetically.�This�risk�will�be�all�the greater�if�the input�parameters�for�choosing�the  securing� method� do� not� correspond� with�the  given� type� of� a  transport� route.� The  values�

Page 3: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

� Cargo�Securing�–�Comparison�of�Different�Quality�Roads� 1017

of� the  acceleration� coefficients� defined� in� EN�12195:1‑2010� (EN� 12195:1‑2010)� are� intended�for use on common roads although there may be differences – see�e.g.�(Vlkovský�and�Rak,�2017).The�issue�of�freight�transport�is�the area�of�road�

transport,�which�is�based�on�a wide�range�of�general�regulations,� as� well� as� specific� manuals� covering�the transport�of�specific�commodities.�In�accordance with�the standard�EN�12195‑1:2010�(EN 12195‑1:2010), EN� 12195‑2:2000� (EN  12195‑2:2000)� is� used�for� the  tested� method� of� fastening� with� the  aid�of� fastening� straps.� For� correct� fastening� it� is�necessary�to�know�the capacity�of�the load‑bearing�anchoring� points,� which� is� covered� by� EN�12640:2000�(EN�12640:2000),�and�the construction�of�the trucks�or�semi‑trailers�and�trailers�according�to� EN� 12642:2001� (EN� 12642:2001).� Instructions�of� the  Association� of� German� Engineers� VDI�2700:2009�(VDI�2700:2009)�are�applicable�too.�

The principles of proper cargo securing are further elaborated by other multinational institutions,� in� particular� the  European Best Practice Guidelines on Cargo Securing for Road Transport� (UNECE,� 2014)� or� the  IMO / ILO / UNECE Code of Practice for Packing of Cargo Transport Units� (CTU� Code,� 2014),� or� focused� on� dangerous�goods  –  European Agreement Concerning the  International Carriage of Dangerous Goods by Road� (ADR,� 2017),� or� for� abnormal� goods  – Road Safety:  Best Practice Guidelines on Cargo Securing and Abnormal Transport� (EC� DGET,� 2016).� These�standards, manuals and documents are further elaborated� by� specific� multinational� companies,�reflecting� the  transport� of� commodities� that� are�the subject�of�their�businesses.�Several�monographs�are� dedicated� to� the  issue� of� cargo� securing.� It� is�worth�mentioning�T.�Lerher’s�book�Cargo Securing in Road Transport Using Restraining Method with Top‑Over Lashing,� where� the  author� discusses�some general rules of road cargo securing with

particular�focus�on�top‑over�lashing�(Lerher,�2015).�The monograph�of�T.�Lerher�builds�on�the book�by�G.� Grossman� and� M.� Kassman� on� Safe Packaging and Load Securing in Transport, who present in their�book�the methods�of�cargo�securing,�including�top‑over� lashing� models� using� fastening� straps�(Grossman��and��Kassman,�2018).�The� specifics� of� oversized� cargo� are� then�

discussed� by� W.� Galor� and� a  team� of� authors� in�his book Carriage and Securing of Oversized Cargo in Transport� (Galor  et  al.,� 2011)� or� in� the  paper�(Vrabel et al.,�2018).�Articles�dealing�with�the area�of�cargo�securing�are�usually�focused�on�the issue�of� software� simulations,� e.g.� (Zong  et  al.,� 2017)�or� (Neumann,� 2015).� The  discussion� on� the  data�source� for� models� (e.g.� acceleration� coefficients)�appear� rather� sporadically,� e.g.� (Zámečník  et  al., 2017�or�Jagelčák,�2017).�

MATERIALS AND METHODS

To� obtain� the  necessary� data� for� the  statistical�analysis,� a  transport� experiment� was� conducted�with� the  medium� freight� terrain� vehicle� Tatra�810‑V‑1R0R26�13�177�6 × 6.1R� (hereinafter�“T‑810”)�(Kolmaš,�2007)�on�a highway�and�a low‑quality�road�(road�paved�with�granite�blocks)�with�a mileage�of�less�than�45,000 km.�The transport�experiment�was�carried�out�with�the T‑810�without�load.As� a  measuring� device� a  three‑axis�

accelerometer� with� data� logger� and� OMEGA  – –  OM‑CP‑ULTRASHOCK‑5� calibration� certificate�with� the  measurement� range� ± 5 g� was� used�to� record� the  shocks� (acceleration� coefficient�values)�on�each�of�the three�axes�(x – longitudinal,�y  –  transverse� and� z  –  vertical)� every� second.�The measuring� device� was� placed� on� the  central�steel�frame�of�the vehicle�body.

The measurements were made under optimal climatic� conditions,� the  transport� routes� were�

1: Risk Matrix

Page 4: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

1018 Martin Vlkovský, Petr Veselík

dry, no precipitation was recorded during the measurements�and�the visibility�was�excellent.�The  outdoor� temperature� ranged� from�7� to� 11 °C.�The  measurements� were� also� not� influenced� by�traffic�jams�or�slow‑moving�vehicles.�The�first�data�set�(d1)�contains�data�(acceleration�

coefficient� values)� from� the  transport� on�the highway�section�Brno – Vyškov,�where�the data�set� consists� of� 3,804� values� (1,268� for� each� axis).�The  average� speed� of� transport�was� 76.66� km.h–1.�The  second�data� set� (d2)� contains� the  acceleration�coefficient� values� collected� on� the  road� paved�with�granite�blocks�on�the section�Dědice�(training�area)  –  Vyškov� and� consists� of� 1,203� values� (401�per�axis).�The average�transport�speed�was�roughly�half�that�of�the first�data�set: 38.60�km.h–1.�The aim�of� the  article� is� to� statistically� evaluate� the  two�measured� data� sets� (d1 and d2)� and� consequently�compare� them� to� the  values� of� normatively�determined�values�of�acceleration�coefficients�and�(theoretical)� values� of� the  inertial� forces� obtained�from�the calculations�according�to�the relationships�of�the standard�(EN�12195‑1,�2010).�Before�the statistical�analysis,�normality�tests�were�

performed�using�skewness�and�kurtosis�coefficients�(Johnson� � and� � Wichern,� 1992).� The  significance�level� was� α = 0.05.� The  data� normality� was� also�verified� using� Q‑Q� plots� and� histograms.� The  Q‑Q�plots� were� drawn� for� acceleration� coefficients� in�each� of� the  three� axes� (x, y, z).� Although� in� some�data�sets�the distribution�of�acceleration�coefficients�was� not� normal� but� symmetrical� (which� was�verified� by� Q‑Q� plots,� histogram� and� skewness�coefficients)�and� included�outliers,� further�analysis�was� carried� out� assuming� normal� distribution.�When�comparing�two�independent�data�sets�d1 and d2� from� two� normal� distributions,� both� the match�of� variance� (σ1

2 = σ22)� and� the  match� of� mean�

values� (µ1 = µ2)�were� tested� (Neubauer  et al.,� 2012).�When� testing� the  absolute� values� of� mean� values�(arithmetic�means�of�acceleration�coefficient�values�on� individual� axes)� were� used,� i.e.� µ1(abs),� or� µ2(abs) because�of�the value�distribution.�Because�the shocks�

oscillate� around� the  value� 0� except� for� the  z‑axis�where� the  coordinate� axis� is� shifted� by� 1 g� and�the  measuring� range� is� limited� by� the  measuring�device.�The� comparison� of� the  calculated� arithmetic�

means� of� the  absolute� acceleration� coefficient�values� and� the  inertial� forces�with� the normative�values is also shown graphically taking into account� the  value� exceeding� twice� the  normative�values – see�Tab. I.Using� the  correlation� analysis,� specifically�

the  Pearson� correlation� coefficient� (Hendl,�2015),� a  statistical� link� between� the  acceleration�coefficient�values�and� the  resulting� inertial� forces�acting�on�the load�was�found.�The values�of�inertial�forces� (Fx and Fy)� are� calculated� (implicitly)� from�the  tensile� strength� requirements� of� the  lashing�straps�and�the equality�of�the two�forces: 

[ ]µ

µ α

⋅ ⋅ ⋅⋅

⋅ ⋅x z

x s

c  –  c m gF  =  n f       

2n   sinN

( ) [ ]µ

µ α

⋅ ⋅ ⋅⋅

⋅ ⋅x z

x s

c  –  c m gF  =  n f       

2n   sinN

( ),� (1)

[ ]µ

µ α

⋅ ⋅ ⋅⋅

⋅ ⋅

y z

y s

c –    c  m  gF  =   f        

2n sin

( )N ,� (2)

where Fx is longitudinal, Fy transverse inertial force� to� the  vehicle� movement,� respectively (see�Fig.  2),� cx, cy, cz� are� the  acceleration� coefficients�the individual�axes,�µ�is�the coefficient�of�friction,�m is�the mass�of�the load,�g�is�the gravity�acceleration,�fs is�the coefficient�of�safety�for�frictional�lashing,�n is� the required�number�of� lashing�straps�and�α is the angle�between� the  lashing� strap�and� the deck�of�the vehicle.�

RESULTS

It�is�clear�from�the statistical�analysis�of�data�sets�that� the  relatively� large� number� of� acceleration�coefficients� exceeded� the  normative� values� stated�in� the  standard� EN� 12195‑1:2010,� which� are� set�

I: The arithmetic means and medians of the absolute values of the acceleration coefficients for all axes and arithmetic means of inertial values for both datasets (values which exceed normative limits are highlighted in yellow, and the values which exceed normative limits by more than two are highlighted in red)

Acceleration coefficients [–] Inertial forces [N]

Arithmetic mean Median Arithmetic mean

cx cy cz x y z Fxn Fyn Fxi Fyi

d1 0.601 0.640 1.638 0.590 0.610 1.620 30,363 19,820 17,989 12,265

d2 0.916 0.999 2.005 0.860 0.900 1.950 43,441 40,455 17,989 12,265

Page 5: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

� Cargo�Securing�–�Comparison�of�Diff�erent�Quality�Roads� 1019

as�follows: 0.8,�0.6�and�1.0�for� the x, y and z�axes,�respectively.� In� data� set� d1,� the  normatively� set�limits� were� exceeded� in� 20.61%� of� cases,� and�exceeded� by� a  factor� of� two� in� 0.58%� of� cases.�The excess�was�most�common�on�the y‑axis.�In�data�set d2,�the normatively�set�limits�were�exceeded�in�61.68%� of� cases,� by� a  factor� of� two� in� 10.72%� of�cases.�Also,�the excess�on�y‑axis�prevailed,�although�the diff�erences�between�axes�were�smaller�than�in�the d1 data�set.�Tab.� I� shows� the  results� of� the  descriptive�

statistics� for� the  absolute� acceleration� coeffi��cient�values,� specifi�cally� the  arithmetic� means� and�medians� for� the axes�x, y and z, for both datasets (d1 and d2).� In� addition,� the  table  also� includes�the  results� of� inertial� forces� values,� which� are�essential� for� the  choice� of� cargo� securing� system�(not� the  value� of� acceleration� coeffi��cients).�The magnitude�of�the inertial�forces�was�calculated�using� formulas� (1)� and� (2)� and� further�normative�limits� (Fxn and Fyn).� Subsequently,� the  relevant�values of inertial forces were calculated for both data�sets�(marked�as�Fxi and Fyi�in�Tab. I).�It�can�be�seen�from�Tab. I�that�the lowest�arithmetic�mean�of�the absolute�values�of�the acceleration�coeffi��cients�(0.601)�was�measured�on�the x‑axis�of�the fi�rst�data�set.� Contrarily,� in� the  second� data� set,� the  highest�arithmetic� mean� of� the  absolute� values� of�the acceleration�coeffi��cients�(2.005)�was�measured�on�the z‑axis.�The�descriptive�statistics�presented�in�Tab. I�show�

that�the data�sets�diff�er�greatly.�The average�values�of�the inertial�forces�on�the x‑axis�and�y‑axis�were�exceeded� in� both� data� sets,� in�d2 even more than twice.�In�the second�dataset,�normatively�set�limits�according� to� EN� 12195‑1:2010� were� exceeded� in�fi�ve� cases,� where� the  excess� reached� almost� 67%�

for�the y‑axis.�In�contrast,�in�d2,�the excess�occurred�only� in� two� cases� on� the  y‑axis� and� the  excess�was�relatively�small – less�than�7%.�This�is�mainly�due� to� the  relatively� low� normative� values� of�acceleration�coeffi��cients�on�the y‑axis�(cy),�which�is�based� on� greater� risks�when� loosening� the  cargo�in�the direction�transverse�to�vehicle�motion.�Both�data� sets� will� be� subjected� to� detailed� statistical�analysis�in�next�part�of�this�article.Because� the  measured� data� (the  values� of�

acceleration� coeffi��cients)�were� considered� coming�from�normal�distribution�for�all�axes,�a parametric�two‑sample� t‑test�was� used� to� evaluate� both� data�sets.� The  test� was� performed� for� all� three� axes�at� a  signifi�cance� level� of� α  =  0.05.� The  results� of�the performed�tests�are�shown�in�Tab. II.�In�the fi�rst�column� of� this� table,� the  relevant� acceleration�coeffi��cients� are� listed.� In� the  second� column�(AHF),� an  alternative� test� hypothesis� of� variance�match� is� shown.� In�column�F,� the  test� statistics�of�variance�match�test�is�shown.�In�the fourth�column�the  alternative� hypothesis� of�mean� values�match,�and�fi�nally,�the column�denoted�t�contains�the test�statistics� of� a  mean� values� match� test� assuming�heteroskedasticity.�The� results� of� the  two‑sample� t‑test� shown� in�

Tab. II�show�that�statistically�signifi�cant�diff�erences�exist�between�the two�data�sets�at�the signifi�cance�level α = 0.05� for� the  two� tested� statistics.� These�results�point�to�the very�diff�erent�values�of�shocks�generated� on� the  highway� (d1)� and� on� the  road�paved�with� granite� blocks� (d2)� despite� the  almost�halved� average� speed� of� vehicles� on� low‑quality�roads.Subsequent� one‑sided� tests� showed,� at�

the  signifi�cance� level� α = 0.05,� that� for� both�monitored�parameters�(arithmetic�mean�of�absolute�

2: Directions of inertial forcesSource: Sdružení�řidičů�CZ,�z.s.,�2019

Page 6: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

1020 Martin Vlkovský, Petr Veselík

values� and� variances),� there� is� a  statistically�significant� difference� between� both� data� sets� on�all� three� axes� and� for� cx, cy and cz it is valid that the arithmetic�means�of�absolute�values�are�smaller�for d1 than for d2�(µ1 < µ2)�or�the variances�of�values�are smaller for d1 than for d2�(σ1

2 < σ22).

Considering� the  laboriousness� of� determining�the inertial�values�especially�for�practice,�the extent�of� correlation� between� acceleration� coefficients� (cx a cy)�and� the relevant� inertial�values� (Fxi and Fyi)� is�further� calculated.� For� the  calculation� the  Pearson�correlation� coefficient� was� used.� First,� however,�a  graphical� comparison� was� made,� the  values� of�the  inertial� forces� were� plotted� on� the  horizontal�axis�and�the corresponding�acceleration�coefficients�were�plotted�on�the vertical�axis.�In�both�cases,�it�was�shown�that�the given�pairs�show�a linear�trend – see�Fig.  3.� Since� the  individual� graphs�well� document�the linear�trend,�the statistical�relationship�between�the  acceleration� coefficients� and� the  resulting�

inertial� forces� acting� upon� the  cargo�was� assessed�with� the Pearson�correlation�coefficient�as�well.� Its�values�are�shown�in�Tab. III.Fig.  3� and� the  Pearson� correlation� coefficient�

values� in�Tab.  III� show�a very�strong�dependence�between� the  corresponding� acceleration�coefficients�and�the values�of�inertial�forces�acting�upon�cargo.�The values�of�the Pearson�correlation�coefficient� range� from� 0.990� to� 0.997.� From� such�a  strong� dependence� between� the  measured�coefficients� and� the  calculated� inertial� values,�it� can� be� concluded� that� the  results� can� already�be� interpreted� from� the  acceleration� coefficient�analysis� (measured� shocks).� Nevertheless,�the  analysis� shows� a  difference� in� the  extent�of� exceeding� the  normatively� set� limits� for�the  acceleration� coefficient� and� the  subsequent�difference� contrary� to� the  inertial� forces� by�using� the  normatively� determined� acceleration�coefficient�values.�

II: Results of a two‑sample t‑test for all axes

Acceleration coefficients [–] AHF F AHt t

cx σ12 ≠ σ2

2 0.163* µ1 ≠ µ2 –18.406*

cy σ12 ≠ σ2

2 0.256* µ1 ≠ µ2 –15.833*

cz σ12 ≠ σ2

2 0.174* µ1 ≠ µ2 –17.102*

*�indication�of�the values�of�relevant�statistics,�when�the related�null�hypothesis�was�rejected�at�the 5%�significance�level

3: Correlation analysis between cx and Fxi (left figure) and cy and Fyi (right figure)

III: Correlation between acceleration coefficients and the corresponding inertial values

Fx1 Fx2 Fy1 Fy2

cxi 0.995 0.990 – –

cyi – – 0.997 0.994

Page 7: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

� Cargo�Securing�–�Comparison�of�Different�Quality�Roads� 1021

DISCUSSION

It� follows� from� the  performed� analysis� that�on� the  examined� T‑810� vehicle,� the  shocks�generated� on� the  high‑quality� road� (highway)�and� the  lower‑quality� road� (paved�with� granite�blocks)� differ� in� a  statistically� significant� way.�On� the  basis� of� the  one‑sided� test,� it� is� clear�that� the  cargo� securing� requirements� will� be�higher in terms of lashing capacity during cargo transport�on�granite‑block‑paved�roads.�It�can�be�assumed� that� the  similar� conclusion� will� apply�to�other� types�of�vehicles� too.�The key� impact�of�the results� is� then�on�vehicles�which�operate�on�lower‑quality� roads� (military,� integrated� rescue�system,�farmers,�etc.).The� benefit� may� also� be� seen� in� an� increase�

in� the  safety� of� the  cargo� securing� during�the  transport� of� dangerous� goods,�where� the  risk�arising� from� improper�or� insufficient� fastening�of�the  load� may� be� significantly� higher.� In� military�conditions,� is�spoken�primarily�of� the transport�of�

ammunition�and� fuel� in�multinational�operations.�In� the  case� of� farmers,� transport� of� pressure�cylinders, fuels, pesticides, disinfection chemicals or hazardous waste from agricultural production are� the  most� dangerous.� Potential� accidents� can�cause�damage�to�the health�of�persons,�the vehicle�and� other� technical� equipment� and� last� but� not�least�the environment.�Also,� the  impact� of� shocks� and� vibrations� onto�

the vehicle�and�driver� is�a  relatively� independent�area.� The  vehicle� may� experience� faster� wear�due to shocks and vibrations, which can shorten the  maintenance� period� or� cause� more� frequent�occurrence of defects, which must be removed at� extra� cost.� The  impact� on� drivers� is�mainly� in�the health�area,�where� shocks�and�vibrations� can�cause fatigue, reduced attention span, longer reaction� time� (Buscuházy  et  al.,� 2016),� impaired�perception� and� reduced� performance� as� a  result�of�muscle,� joint,� tendon� and� other� pain� and� thus�negatively�affect�cargo�securing�in�general.

CONCLUSION

Statistical� analysis� of� data� sets� from� the  transport� experiment� had� led� to� important� findings�regarding� the existence�of�statistically�significant�differences�between� the measured�values�of�shocks generated on highways and roads paved with granite blocks, which can be considered as third‑class�roads.�This�conclusion�has�impacts�mainly�on�completely�different�requirements�for�cargo�securing�on�roads�of�different�quality�(that�is,�different�classes�of�roads).The� basic� evaluation� of� the measured� values� of� the  acceleration� coefficients� show� significant�differences�in�the number�of�exceedances�of�the prescribed�values�during�the given�transports.�On� the  highway,� the  normatively� set� limits�were� exceeded� in� 20.61%� of� cases,� and� exceeded�by�a factor�of�two�in�0.58%�of�cases.�However,�in�third‑class�road,�normatively�set�limits�were�exceeded� in�61.68%�of�cases,�by�a  factor�of� two� in�10.72%�of�cases.�This� implies�much�higher�likelihood� of� emergencies� during� transport� (cargo� release,� accidents,� etc.)� on� the  third‑class�road�despite�a significantly� lower�transport�speed.�The results�of� the performed�t‑test� indicate�a statistically�significant�differences�at�a significance�level�α = 0.05�between�the two�types�of�road�surfaces�in�both�monitored�parameters�(arithmetic�means�and�variances).�The�correlation�between�the experimentally�determined�values�of�the acceleration�coefficients�and�the resulting�inertial�forces�is�verified�for�practical�use.�The Pearson�correlation�coefficient�ranges�from�0.990�to�0.997,�indicating�a strong�linear�dependence.�Thus,�from�the experimentally�determined� the  acceleration� coefficients� values,� conclusions� can� be�made�without� acceptable�inertial�calculations�with�adequate�accuracy.Changes� in� the  Czech� transport� system,� especially� after� 1989,� are� evident.� It� is� not� only�infrastructure,�but�also�means�of�transport�and�increased�transport�capacity.�The poor�condition�of�many�transport�routes�in�the Czech�Republic�can�result�not�only�in�increased�repair�costs�and�shortened�vehicle�life‑cycles�(Binar et al.,�2017),�but�also�in�increased�accident�rates,�which�can�be�discussed�in�an�economic�context�(Vlkovský,�Veselík�and�Grzesica,�2018).�Further�research�will�focus�on�the analysis�of�case�studies�for�other�relevant�vehicle�types�(e.g.�T‑815,�including�container�carriers),�types�of�transport�routes�(road�classes)�or�for�other�modes�of� transport.�The  influence�of� shocks�on�cargo�securing�method�or� road�safety�as� such�would�be appropriate to take into account also for transport optimization tasks and models, whether in�military�conditions�(Stodola,�2018)�or�in�other�areas�such�as�agricultural�production�(Kučera�

Page 8: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

1022 Martin Vlkovský, Petr Veselík

and�Krejčí,� 2013� or�Košíček  et  al.,� 2012).� The  aim�of� every� transport� is� above� all� to� transport�cargo – that�is,�safely�and�nowadays�it�is�becoming�increasingly�important�at�what�cost.�Damage�to� cargo,� other� technical� equipment,� infrastructure,� environment� or� even� injury� or� death� of�persons� is�a key�issue�which�is�best�dealt�with�by�prevention.�This�means�by�appropriate�and�sufficient�cargo�securing,�including�the proper�training�of�persons�responsible,�especially�loading�teams�and�drivers.

AcknowledgementThe� paper� was� written� with� the  support� of� the  project� of� long‑term� strategy� of� organization�development: ROZVOLOG: Development�of�Capabilities�and�Sustainability�of�Logistics�Support�(DZRO�ROZVOLOG�2016 – 2020)�funded�by�the Ministry�of�Defence�of�the Czech�Republic.

REFERENCES

ASSOCIATION�OF�GERMAN�ENGINEERS.�2009.�Securing of Loads on Road Vehicles.�VDI�2700.�Berlin:�VERLAG.BINAR,�T. et al.�2017.�The spread�of�corrosion�in�cast�iron�and�its�effect�on�the life�cycle�of�transportation�vehicles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,�65(2):�383–389.

BUCSUHÁZY,� K.  et  al.� 2016.� Analysis� of� Driver� Reaction� Time� Using� the  Acquisition� of� Bionsignals.� In:�Proceedings of the 3rd International Conference on Traffic and Transport Engineering. University of Belgrade, 24–25�November.�Belgrade:�City�Net�Scientific�Research�Center�Ltd.,�pp.�68–74.

DEKRA.� ©2016.� Cargo Securing in Road Transport [in Czech: Zajištění nákladu v  silniční dopravě].  �[Online].� Available� at:� https://www.dekra‑automobil.cz/akademie/konference‑prihlaska/pdf/Semsch_prezentace_01_�CZ.pdf�[Accessed:�2019,�January�05].

ECONOMIC� COMMISION� FOR� EUROPE� –� INLAND� TRANSPORT� COMMITTEE.� 2017.� European Agreement Concerning the International Carriage of Dangerous Goods by Road.�New�York�and�Geneva:�UNECE.

EUROPEAN�COMMISION�–�DIRECTORATE‑GENERAL�FOR�ENERGY�AND�TRANSPORT.�2016.�Road Safety: Best Practice Guidelines on Cargo Securing and Abnormal Transport.� [Online].�Available�at:�https://ec.europa.eu/transport/road_safety/sites/� roadsafety/files/vehicles/doc/abnormal_transport_guidelines_en.pdf� [Accessed:�2019,�January�16].

EUROPEAN� COMMISION� –� DIRECTORATE‑GENERAL� FOR� ENERGY� AND� TRANSPORT.� 2014.� European Best Practice Guidelines on Cargo Securing for Road Transport.� [Online].� Available� at:�www.uirr.com/fr/component/downloads/downloads/�302.html�[Accessed:�2019,�January�15].

EUROPEAN� COMMITTEE� FOR� STANDARDIZATION.� 2000.� Load Restraint Assemblies on Road Vehicles – Safety – Part 2: Web Lashing Made From Man‑made Fibres.�EN�12195‑2.�Brussels:�CEN.

EUROPEAN� COMMITTEE� FOR� STANDARDIZATION.� 2000.� Securing of Cargo on Road Vehicles – Lashing Points on Commercial Vehicles for Goods Transportation – Minimum Requirements and Testing.�EN�12640.�Brussels:�CEN.

EUROPEAN�COMMITTEE�FOR�STANDARDIZATION.�2001.�Securing of Cargo on Road Vehicles – Body Structure of Comercial Vehicles – Minimum Requirements.�EN�12642.�Brussels:�CEN.

EUROPEAN�COMMITTEE�FOR�STANDARDIZATION.�2010.�Load Restraining on Road Vehicles – Safety – Part 1: Calculation of Securing Forces.�EN�12195‑1.�Brussels:�CEN.

GALOR,�W. et al.�2011.�Carriage and Securing of Oversize Cargo in Transport.�Szczecin:�Akademia�Morska.GROSSMANN,�G.�and�KASSMAN,�M.�2018.�Safe Packing and Load Securing in Transport.�3rd�Edition.�Renningen:�Expert�Verlag.�

GRZESICA,� D.� 2018.� Measurement� and� Analysis� of� Truck� Vibrations� during� Off‑road� Transportation.�In: Proceedings of the 14th International Conference on Vibration Engineering and Technology of Machinery.�MATEC�Web�of�Conferences,�10 – 13�September.�Lisbon.

HENDL,�J.�2015.�Overview of Statistical Methods [in Czech: Přehled statistických metod].�Prague:�Portál.JAGELČÁK,� J.� 2007.� Equation� of� the  Standard� EN� 12195‑1� Stipulates� Unreasonable� Demands� for� Cargo�Securing.�Communications,�9(4):�30–33.

JOHNSON,� R.� A.� and� WICHERN,� D.� W.� 1992.� Applied multivariate Statistical Analysis.� Englewood� Cliffs:�Prentice‑Hall�International.

KOLMAŠ,� V.  et  al.� 2007.� Catalog of Automotive and Tracked Vehicles Used in the  ACR [in Czech: Katalog automobilní a pásové techniky používané v AČR].�Prague:�Ministry�of�Defence�of�the Czech�Republic�–�AVIS.

Page 9: CARGO SECURING – COMPARISON OF DIFFERENT QUALITY ROADS · 1016 Martin Vlkovský, Petr Veselík was found during inspections on Czech roads that almost half of all cargo was not

� Cargo�Securing�–�Comparison�of�Different�Quality�Roads� 1023

KOŠÍČEK,�M.  et  al.� 2012.� Route� Planning�Module� as� a  Part� of� Supply� Chain�Management.�Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,�60(2):�135–142.

KUČERA,�P.�and�KREJČÍ,�I.�2013.�Contribution�of�Simple�Heurisitcs�for�the Vehicle�Routing�Problem – A Case�Study�of�a Small�Brewery.�Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,�61(7):�2393–2401.

LERHER,�T.�2015.�Cargo Securing in Road Transport Using Restraining Method with Top‑over Lashing.�New�York:�Nova.

NEUBAUER,�J. et al.�2012.�Principles of Statistics: Applications in Technical and Economic Disciplines [in Czech: Základy statistiky: Aplikace v technických a ekonomických oborech].�Prague:�Grada.

NEUMANN,�V.�2015.�Possibilities�of�Vehicle�Movement�Evaluation.�In:�Proceedings of the 19th International Scientific Conference on Transport Means.�Kaunas�University�of�Technology,�22–23�October.�Kaunas:�Kaunas�University�of�Technology,�pp.�177–180.

POLICE� OF� THE� CR.� ©2018.� Accident� Statistics� 2017� [in� Czech:� Statistika� nehodovosti� 2017].� Policie České republiky.  [Online].� Available� at:� http://www.policie.cz/clanek/statistika‑nehodovosti‑900835�.aspx?q=Y2hudW09Mw%3d%3d�[Accessed:�2019,�January�28].

ROAD�TRANSPORT�CENTER.�©2014.�Mobile�Expert�Units [in�Czech:�Mobilní�expertní� jednotky]. Centrum služeb pro silniční dopravu.� [Online].� Available� at:� https://www.cspsd.cz/mobilni‑expertni‑jednotky�[Accessed:�2019,�January�28].

SDRUŽENÍ�ŘIDIČŮ�CZ,�Z.S.�2019.�Základní informace o upínaní nákladu.�[Online].�Available�at:�http://soubory.proridice.eu/naklady/upevneni_nakladuCZ.pdf�[Accessed:�10.�6.�2019].

SISA/ČESMAD�BOHEMIA.�2018.�Almost�Half�of�the Cargo�Is�Not�Secured�Properly�[in�Czech:�Téměř�polovina�nákladu�není�správně�upevněna]. Dopravní noviny.�[Online].�Available�at:�http://www.dnoviny.cz/silnicni‑doprava/temer‑polovina‑nakladu‑neni‑spravne‑upevnena�[Accessed:�2019,�January�21].

STODOLA,� P.� 2018.� Information Support of Commander´s Decision‑making Process [in Czech: Informační podpora rozhodovacícho procesu velitele].�Prague:�PowerPrint.

UNITED� NATIONS� ECONOMIC� COMMISSION� FOR� EUROPE.� 2014.� IMO/ILO/UNECE Code of Practice for Packing of Cargo Transport Units (CTU Code).� [Online].� Available� at:� https://www.unece.org/fileadmin/DAM/trans/doc/2014/wp24/CTU_�Code_January_2014.pdf�[Accessed:�2019,�January�16].

VLKOVSKÝ,�M.�and�RAK,�L.�2017.�Cargo�Securing�in�Selected�Vehicles�and�Transport�of�Explosives�[in�Czech:�Upevnění�nákladu�u�vybraných�druhů�vozidel�a přeprava�třaskavin].�Perner‘s Contacts,�12(3):�101–110.

VLKOVSKÝ,�M.  et  al.� 2017.� Cargo� Securing�During� Transport�Depending� on� the  Type� of� a  Road.� In:  IOP Conference Series: Materials Science and Engineering of the  World Multidisciplinary Civil Engineering‑Architecture‑Urban Planning Symposium.�12–16�June.�Prague:�IOP�Publishing�Ltd.�pp.�1–9.

VLKOVSKÝ,�M.  et  al.� 2018.�Wavelet� Based�Analysis� of� Truck� Vibrations� during�Off‑road� Transportation.�In: Proceedings of the 14th International Conference on Vibration Engineering and Technology of Machinery.�MATEC�Web�of�Conferences,�10–13�September,�Lisbon.

VLKOVSKÝ,�M.,�VESELÍK,�P.�and�GRZESICA,�D.�2018.�Cargo�Securing�and� its�Economic�Consequences.� In:�Proceedings of the 22nd International Scientific Conference on Transport Means Part I. Kaunas University of Technology,�3–5�October.�Kaunas:�Kaunas�University�of�Technology,�pp.�129–135.

VRABEL,�J. et al.�2018.�Determination�of�the Maximum�Permissible�Cargo�Length�Exceeding�the Articulated�Vehicle�Length�in�Order�to�Detect�its�Critical�Rotation�Radius.�In:�Proceedins of 11th International Scientific and Technical Conference on Automotive Safety.� Institute�of�Electrical� and�Electronics�Engineers,� 18 – 20�April.�Casta�Papiernicka:�Institute�of�Electrical�and�Electronics�Engineers.

WALTER,�M.�2018.�ADR Agreement in Agriculture [in Czech: Dohoda ADR v zemědělství].�[Online].�Available�at:�https://www.�zscr.cz/download/files/Dohoda_ADR_v_zemedelstvi.pdf�[Accessed:�2019,�February�10].

ZÁMEČNÍK,� J.  et al.� 2017.� Influence�of�a Lashing�Strap�Winding� in�Tensioning�Ratchet�on� the Results�of�the Strength�Tests�and�Cyclic�Loading�Tests�According�to�the Standard�EN�12195‑2.�Communications,�19(2):�10–17.

ZONG,� C.  et  al.� 2017.� Research� on� the  Influence� of� Cargo� Securing� Force�with� Typical� Road�Alignments�and� Vehicle� Working� Conditions.� In:� Proceedings of the  4th International Conference on Transportation Information and Safety.�Institute�of�Electrical�and�Electronics�Engineers,�8 – 10�August.�Banff:�Institute�of�Electrical�and�Electronics�Engineers,�pp.�27–32.

Contact informationMartin�Vlkovský:�[email protected]�Veselík:�[email protected]