case study: single subject and group analysis

Upload: dixy0

Post on 03-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Case Study: Single Subject and Group Analysis

    1/7

    5/31/20

    Xin Di, PhD & Suril Gohel

    New Jersey Institute of Technology

    An example data - by Dr. Yu-Feng Zang

    Resting-state: eye open vs. eye close

    Preparing Data for analysis Preprocessing

    Hypothesis

    Data analysis

    Local properties

    Connectivity

    Testing Hypotheses and Inferring Results Group inference

    Eye open/Eye closed data from INDI(http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html)

    24 Subjects

    Eye open, 6min, 240 images

    Eye close, 6min, 240 images

    TR 2 second, Voxel size: 3.13.13.5 mm

    Anatomical SPGR image (MPRAGE Image)Specific to resting-state fMRI

    Similar to task fMRI

    Generally is not needed Slice timing

    Motion correction

    Spatial processing Spatial normalization

    Spatial smoothing

    Temporal processing Noise removal

    Filtering

    Global Intensitynormalization/Global

    Regression

    Noise removal

    Physiological noises

    Head motion

    Filtering

    Usually 0.01 0.08 Hz

    Global Intensitynormalization/Globalregression

    Physiological noises

    o Cardiac

    o Respiratory

    Two ways to model

    o Recorded during scanning

    o After Scanning from the

    BOLD fMRI data

    Noise removal

    Physiological noises

    Head motion

    Filtering

    Usually 0.01 0.08 Hz

    Global Intensitynormalization/Globalregression

    WM/CSF Signal

    o High probability threshold

    p > 0.99 not p > 0.5

    o Use eroded WM/CSF masks

    o Use unsmoothed fMRI data

    o Mean time course or

    principle components (Chai et

    al., 2012)

    http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.htmlhttp://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html
  • 7/28/2019 Case Study: Single Subject and Group Analysis

    2/7

    5/31/20

    Noise removal

    Physiological noises

    Head motion Filtering

    Usually 0.01 0.08 Hz

    Global Intensitynormalization/Globalregression

    Head motion

    o Six rigid-body motion

    parameters (translation androtation)

    o First order derivatives

    o Autoregressive model

    (current and previous time

    points) (Friston et al., 1995,

    Yan et al., 2013)

    Noise removal

    Physiological noises

    Head motion Filtering

    Usually 0.01 0.08 Hz

    Global Intensitynormalization/Globalregression

    Global Intensity normalization

    /Global Regression

    o Will introduce negative correlations

    (Murphy et al., 2009; Saad et al., 2012)

    o Enhance neural (LFP)-hemodynamic

    (BOLD) correlations of negative

    connectivity (Keller et al., 2013)

    o Reduce Inter-subject variance (Yan et

    al. 2013)

    o Use with precaution about what

    negative correlation in the data

    represents

    0 50 100 150 200 2501030

    1035

    1040

    1045

    1050

    1055

    0 50 100 150 200 250-8

    -6

    -4

    -2

    0

    2

    4

    6

    0 50 100 150 200 250-6

    -4

    -2

    0

    2

    4

    6

    0 50 100 150 200 250

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    0 50 100 150 200 250

    -300

    -200

    -100

    0

    100

    200

    300

    0 50 100 150 200 250

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    Raw time course Regress out covariates Band-pass filtering

    First 5 PCs of WM First 5 PCs of CSF Motion parameters

    Experiment

    Eye open vs. Eye close

    Goal

    Functional specification

    Local properties

    Functional integration

    Connectivity

    Time-domain Properties

    Standard deviation (Biswal et al., 2007)

    Frequency-domain Properties

    Amplitude of Low-Frequency Fluctuation (ALFF, Zang etal., 2007)

    Fractional Amplitude of Low-Frequency Fluctuation (fALFF,Zou et al., 2008)

    Homogenous Properties

    Regional Homogeneity (ReHo, Zang et al., 2004)

    Network centralities

    Eigen vector centrality (ECM, Lohmann et al., 2010; Wink etal., 2012)

    ALFF (Zang et al., 2007)

    Band-Pass Filtering

    Fourier transform

    Square root

    Average across 0.01 -0.08 Hz - ALFF

    Divided by global mean mALFF Divided by whole

    spectrum - fALFF (Zou etal., 2008) Zang et al., 2007

  • 7/28/2019 Case Study: Single Subject and Group Analysis

    3/7

    5/31/20

    ReHo (Zang et al.,2004)

    Local similarity

    Kendalls coefficient ofconcordance (KCC)

    W=(R

    i)2 n(R )

    2

    1

    12K

    2( n3 n)7 19 27

    ECM (Lohmann et al.,2010)

    The importance of agiven voxel in the WHOLEBRAIN network. Number of nodes connected

    How important theconnected nodes

    Fast ECM (Wink et al.,2012)

    Wink et al., 2012

    mfALFF

    mReHomALFF

    Eye open Eye close

    ECM

    Eye open Eye close

    eye close> eye open

    eye open> eye close

    mALFF mfALFF mReHo ECM

    p < 0.001, cluster level FDR p < 0.05

    i

    -

    ,-

    ,-