catalan numbers - mit mathematicsrstan/transparencies/china.pdf · an oeis entry oeis: online...

113
Catalan Numbers Richard P. Stanley Catalan Numbers – p. 1

Upload: doankhanh

Post on 28-Aug-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Catalan NumbersRichard P. Stanley

Catalan Numbers – p. 1

Page 2: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences(Neil Sloane). See http://oeis.org. Adatabase of over 270,000 sequences of integers.

Catalan Numbers – p. 2

Page 3: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences(Neil Sloane). See http://oeis.org. Adatabase of over 270,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

C0 = 1, C1 = 2, C2 = 3, C3 = 5, C4 = 14, . . .

Cn is a Catalan number.

Catalan Numbers – p. 2

Page 4: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences(Neil Sloane). See http://oeis.org. Adatabase of over 270,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

C0 = 1, C1 = 2, C2 = 3, C3 = 5, C4 = 14, . . .

Cn is a Catalan number.

COMMENTS. . . . This is probably the longestentry in OEIS, and rightly so.

Catalan Numbers – p. 2

Page 5: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Catalan monograph

R. Stanley, Catalan Numbers, CambridgeUniversity Press, 2015.

Catalan Numbers – p. 3

Page 6: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Catalan monograph

R. Stanley, Catalan Numbers, CambridgeUniversity Press, 2015.

Includes 214 combinatorial interpretations of Cn

and 68 additional problems.

Catalan Numbers – p. 3

Page 7: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

History

Sharabiin Myangat, also known as Minggatu,Ming’antu ( ), and Jing An(c. 1692–c. 1763): a Mongolian astronomer,mathematician, and topographic scientist whoworked at the Qing court in China.

Catalan Numbers – p. 4

Page 8: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

History

Sharabiin Myangat, also known as Minggatu,Ming’antu ( ), and Jing An(c. 1692–c. 1763): a Mongolian astronomer,mathematician, and topographic scientist whoworked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −∞∑

n=1

Cn−1

4n−1sin2n+1 α

Catalan Numbers – p. 4

Page 9: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

History

Sharabiin Myangat, also known as Minggatu,Ming’antu ( ), and Jing An(c. 1692–c. 1763): a Mongolian astronomer,mathematician, and topographic scientist whoworked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −∞∑

n=1

Cn−1

4n−1sin2n+1 α

No combinatorics, no further work in China.

Catalan Numbers – p. 4

Page 10: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Manuscript of Ming Antu

Catalan Numbers – p. 5

Page 11: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Manuscript of Ming Antu

Catalan Numbers – p. 5

Page 12: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Manuscript of Ming Antu

Catalan Numbers – p. 5

Page 13: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Manuscript of Ming Antu

Catalan Numbers – p. 5

Page 14: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

More history, via Igor Pak

Euler (1751): conjectured formula for numberCn of triangulations of a convex (n+ 2)-gon(definition of Catalan numbers). In otherwords, draw n− 1 noncrossing diagonals of aconvex polygon with n+ 2 sides.

Catalan Numbers – p. 6

Page 15: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Goldbach and Segner (1758–1759): helpedEuler complete the proof, in pieces.

Lamé (1838): first self-contained, completeproof.

Catalan Numbers – p. 7

Page 16: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form(2n)!

n! (n+1)! and showed it counted

(nonassociative) bracketings (orparenthesizations) of a string of n+1 letters.

Catalan Numbers – p. 8

Page 17: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form(2n)!

n! (n+1)! and showed it counted

(nonassociative) bracketings (orparenthesizations) of a string of n+1 letters.

Born in 1814 in Bruges (now in Belgium, thenunder Dutch rule). Studied in France and workedin France and Liège, Belgium. Died in Liège in1894.

Catalan Numbers – p. 8

Page 18: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Why “Catalan numbers”?

John Riordan (1948): introduced the term“Catalan number” in Math Reviews.

Catalan Numbers – p. 9

Page 19: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Why “Catalan numbers”?

John Riordan (1948): introduced the term“Catalan number” in Math Reviews.

Riordan (1964): used the term again in Math.Reviews.

Catalan Numbers – p. 9

Page 20: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Why “Catalan numbers”?

John Riordan (1948): introduced the term“Catalan number” in Math Reviews.

Riordan (1964): used the term again in Math.Reviews.

Riordan (1968): used the term in his bookCombinatorial Identities. Finally caught on.

Catalan Numbers – p. 9

Page 21: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Why “Catalan numbers”?

John Riordan (1948): introduced the term“Catalan number” in Math Reviews.

Riordan (1964): used the term again in Math.Reviews.

Riordan (1968): used the term in his bookCombinatorial Identities. Finally caught on.

Martin Gardner (1976): used the term in hisMathematical Games column in ScientificAmerican. Real popularity began.

Catalan Numbers – p. 9

Page 22: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The primary recurrence

Cn+1 =n∑

k=0

CkCn−k, C0 = 1

Catalan Numbers – p. 10

Page 23: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The primary recurrence

Cn+1 =n∑

k=0

CkCn−k, C0 = 1

e

Catalan Numbers – p. 10

Page 24: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Solving the recurrence

Cn+1 =n∑

k=0

CkCn−k, C0 = 1

Let y =∑

n≥0Cnxn.

Multiply recurrence by xn and sum on n ≥ 0.

Catalan Numbers – p. 11

Page 25: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Solving the recurrence

Cn+1 =n∑

k=0

CkCn−k, C0 = 1

Let y =∑

n≥0Cnxn.

Multiply recurrence by xn and sum on n ≥ 0.

n≥0

Cn+1xn =

n≥0

(

n∑

k=0

CkCn−k

)

xn

Catalan Numbers – p. 11

Page 26: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

A quadratic equation

n≥0

Cn+1xn =

n≥0

(

n∑

k=0

CkCn−k

)

xn

Catalan Numbers – p. 12

Page 27: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

A quadratic equation

n≥0

Cn+1xn =

n≥0

(

n∑

k=0

CkCn−k

)

xn

Now x∑

n≥0Cn+1xn =

n≥1Cnxn = y − 1.

Moreover,∑n

k=0CkCn−k is the coefficient of xn in(∑

n≥0Cnxn)2

= y2, since in general,∑n

k=0 akbn−k

is the coefficient of xn in the product(∑

n≥0 anxn) (∑

n≥0 bnxn)

.

Catalan Numbers – p. 12

Page 28: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

A quadratic equation

n≥0

Cn+1xn =

n≥0

(

n∑

k=0

CkCn−k

)

xn

Now x∑

n≥0Cn+1xn =

n≥1Cnxn = y − 1.

Moreover,∑n

k=0CkCn−k is the coefficient of xn in(∑

n≥0Cnxn)2

= y2, since in general,∑n

k=0 akbn−k

is the coefficient of xn in the product(∑

n≥0 anxn) (∑

n≥0 bnxn)

.

⇒ y − 1

x= y2 ⇒ xy2 − y + 1 = 0

Catalan Numbers – p. 12

Page 29: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =1±

√1− 4x

2x

Which sign is correct?

Catalan Numbers – p. 13

Page 30: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =1±

√1− 4x

2x

Which sign is correct?

Well, in general (Taylor series)

(1+u)α =∑

n≥0

(

α

n

)

un =∑

n≥0

α(α−1) · · · (α−n+1)un

n!.

Catalan Numbers – p. 13

Page 31: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =1±

√1− 4x

2x

Which sign is correct?

Well, in general (Taylor series)

(1+u)α =∑

n≥0

(

α

n

)

un =∑

n≥0

α(α−1) · · · (α−n+1)un

n!.

Let u = −4x, α = 12 , to get

√1− 4x = 1− 2x− 2x2 + · · · .

Catalan Numbers – p. 13

Page 32: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Which sign?

Recall y =∑

n≥0Cnxn = 1±

√1−4x2x .

Catalan Numbers – p. 14

Page 33: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Which sign?

Recall y =∑

n≥0Cnxn = 1±

√1−4x2x .

The plus sign gives

1 + (1− 2x− 2x2 + · · · )2x

=1

x− 1− x+ · · · ,

which makes no sense. The minus sign gives

1− (1− 2x− 2x2 + · · · )2x

= 1 + x+ · · · ,

which is correct.

Catalan Numbers – p. 14

Page 34: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

A formula for Cn

We get

y =1

2x(1−

√1− 4x)

=1

2x

(

1−∑

n≥0

(

1/2

n

)

(−4x)n

)

,

where(

1/2n

)

=1

2(− 1

2)(− 3

2)···(− 2n−3

2)

n! .

Catalan Numbers – p. 15

Page 35: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

A formula for Cn

We get

y =1

2x(1−

√1− 4x)

=1

2x

(

1−∑

n≥0

(

1/2

n

)

(−4x)n

)

,

where(

1/2n

)

=1

2(− 1

2)(− 3

2)···(− 2n−3

2)

n! .

Simplifies to y =∑

n≥01

n+1

(

2nn

)

xn, so

Cn =1

n + 1

(

2n

n

)

=(2n)!

n! (n + 1)!Catalan Numbers – p. 15

Page 36: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Other combinatorial interpretations

Pn := {triangulations of convex (n+ 2)-gon}⇒ #Pn = Cn (where #S = number of elements of S)

We want other combinatorial interpretations ofCn, i.e., other sets Sn for which Cn = #Sn.

Catalan Numbers – p. 16

Page 37: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Other combinatorial interpretations

Pn := {triangulations of convex (n+ 2)-gon}⇒ #Pn = Cn (where #S = number of elements of S)

We want other combinatorial interpretations ofCn, i.e., other sets Sn for which Cn = #Sn.

bijective proof: show that Cn = #Sn by giving abijection

ϕ : Tn → Sn

(or Sn → Tn), where we already know #Tn = Cn.

Catalan Numbers – p. 16

Page 38: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection

Reminder: a bijection ϕ : S → T is a functionthat is one-to-one and onto, that is, for everyt ∈ T there is a unique s ∈ S for which ϕ(s) = t.

Catalan Numbers – p. 17

Page 39: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection

Reminder: a bijection ϕ : S → T is a functionthat is one-to-one and onto, that is, for everyt ∈ T there is a unique s ∈ S for which ϕ(s) = t.

If S, T are finite and ϕ : S → T is a bijection, then#S = #T (the “best” way to prove #S = #T ).

Catalan Numbers – p. 17

Page 40: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Binary trees

4. Binary trees with n vertices (each vertex hasa left subtree and a right subtree, which may beempty)

Catalan Numbers – p. 18

Page 41: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Binary trees

4. Binary trees with n vertices (each vertex hasa left subtree and a right subtree, which may beempty)

Catalan Numbers – p. 18

Page 42: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Binary trees

4. Binary trees with n vertices (each vertex hasa left subtree and a right subtree, which may beempty)

Catalan Numbers – p. 18

Page 43: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with triangulations

Catalan Numbers – p. 19

Page 44: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with triangulations

Catalan Numbers – p. 19

Page 45: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with triangulations

Catalan Numbers – p. 19

Page 46: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with triangulations

Catalan Numbers – p. 19

Page 47: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Binary parenthesizations

3. Binary parenthesizations or bracketings ofa string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

Catalan Numbers – p. 20

Page 48: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Binary parenthesizations

3. Binary parenthesizations or bracketings ofa string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x((xx)(xx)))

Catalan Numbers – p. 20

Page 49: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Binary parenthesizations

3. Binary parenthesizations or bracketings ofa string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x((xx)(xx)))

Catalan Numbers – p. 20

Page 50: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with binary trees

x

xx

x x x x x

xxxxx

x(xx)x x

(xx)(xx)

x((xx)(xx))(x(xx))x

((x(xx))x)(x((xx)(xx)))

Catalan Numbers – p. 21

Page 51: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Plane trees

Plane tree: subtrees of a vertex are linearlyordered

6. Plane trees with n+ 1 vertices

Catalan Numbers – p. 22

Page 52: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Plane tree recurrence

Catalan Numbers – p. 23

Page 53: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Plane tree recurrence

Catalan Numbers – p. 23

Page 54: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with binary trees

a

d

h

i

j g

f

b

ec

h i j

d

ab c

f

e g

a b c

f

h i j

de g

Catalan Numbers – p. 24

Page 55: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The ballot problem

Bertrand’s ballot problem: first published by W.A. Whitworth in 1878 but named after JosephLouis François Bertrand who rediscovered it in1887 (one of the first results in probabilitytheory).

Catalan Numbers – p. 25

Page 56: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The ballot problem

Bertrand’s ballot problem: first published by W.A. Whitworth in 1878 but named after JosephLouis François Bertrand who rediscovered it in1887 (one of the first results in probabilitytheory).

Special case: there are two candidates A and Bin an election. Each receives n votes. What isthe probability that A will never trail B during thecount of votes?

Example. AABABBBAAB is bad, since afterseven votes, A receives 3 while B receives 4.

Catalan Numbers – p. 25

Page 57: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by −1(abbreviated −). Clearly a sequence a1a2 · · · a2nof n each of 1 and −1 is allowed if and only if∑k

i=1 ai ≥ 0 for all 1 ≤ k ≤ 2n. Such a sequenceis called a ballot sequence.

Catalan Numbers – p. 26

Page 58: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’sand n −1’s such that every partial sum isnonnegative (with −1 denoted simply as −below)

111−−− 11−1−− 11−−1− 1−11−− 1−1−1−

Catalan Numbers – p. 27

Page 59: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’sand n −1’s such that every partial sum isnonnegative (with −1 denoted simply as −below)

111−−− 11−1−− 11−−1− 1−11−− 1−1−1−

Note. Answer to original problem (probability thata sequence of n each of 1’s and −1’s is a ballotsequence) is therefore

Cn(

2nn

) =1

n+1

(

2nn

)

(

2nn

) =1

n+ 1.

Catalan Numbers – p. 27

Page 60: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with plane trees

8

2

3

4 105 11

9

76

1

depth first order or preorder

Catalan Numbers – p. 28

Page 61: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with plane trees

1

1

1

1

11

11

11

−−

8

2

3

4 105 11

9

76

1

down an edge: +1, up an edge: −1

1 1 1 − 1 − − − 1 − 1 1 − 1 1 − 1 − −−Catalan Numbers – p. 28

Page 62: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Combinatorial proof

Let Bn denote the number of ballot sequencesa1a2 · · · a2n. We will give a direct combinatorialproof (no generating functions) that

Bn = 1n+1

(

2nn

)

.

Catalan Numbers – p. 29

Page 63: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Binomial coefficients

Reminder. If 0 ≤ k ≤ n, then(

n

k

)

is the number

of k-element subsets of an n-element set.(

n

k

)

=n(n− 1) · · · (n− k + 1)

k!=

n!

k!(n− k)!

Example.(

42

)

= 6: six 2-element subsets of

{1, 2, 3, 4} are

12 13 23 14 24 34.

Catalan Numbers – p. 30

Page 64: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Cyclic shifts

cyclic shift of a sequence b0, . . . , bm: anysequence

bi, bi+1, . . . , bm, b0, b1, . . . , bi−1, 0 ≤ i ≤ m.

There are m+ 1 cyclic shifts of b0, . . . , bm, butthey need not be distinct.

Catalan Numbers – p. 31

Page 65: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The key lemma

Lemma. Let a0, a1, . . . , a2n be a sequence withn+ 1 terms equal to 1 and n terms equal to −1.All 2n+ 1 cyclic shifts are distinct since n+ 1 andn are relatively prime. Exactly one of these cyclicshifts ai, ai+1, . . . , ai−1 has the property that ai = 1and ai+1, ai+2, . . . , ai−1 is a ballot sequence.

Catalan Numbers – p. 32

Page 66: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Example of key lemma

Let n = 4 and consider the sequence1 − 1 1 − 1 − − 1. Five cyclic shifts begin with 1:

1 − 1 1 − 1 − − 1 : no

1 1 − 1 − − 1 1 − : no

1 − 1 − − 1 1 − 1 : no

1 − − 1 1 − 1 1 − : no

1 1 − 1 1 − 1 − − : yes!

Catalan Numbers – p. 33

Page 67: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Example of key lemma

Let n = 4 and consider the sequence1 − 1 1 − 1 − − 1. Five cyclic shifts begin with 1:

1 − 1 1 − 1 − − 1 : no

1 1 − 1 − − 1 1 − : no

1 − 1 − − 1 1 − 1 : no

1 − − 1 1 − 1 1 − : no

1 1 − 1 1 − 1 − − : yes!

Proof of key lemma: straightforward inductionargument not given here.

Catalan Numbers – p. 33

Page 68: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Enumeration of ballot sequences

The number of sequences 1 = a0, a1, . . . , a2n withn+ 1 terms equal to 1 and n terms equal to −1 is(

2nn

)

. (Choose n of the terms a1, . . . , a2n to equal

1.)

Catalan Numbers – p. 34

Page 69: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Enumeration of ballot sequences

The number of sequences 1 = a0, a1, . . . , a2n withn+ 1 terms equal to 1 and n terms equal to −1 is(

2nn

)

. (Choose n of the terms a1, . . . , a2n to equal

1.)

There are n+ 1 cyclic shifts of this sequence thatbegin with 1. Exactly 1 of them gives a ballotsequence (of length 2n) when you remove thefirst term.

Catalan Numbers – p. 34

Page 70: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Enumeration of ballot sequences

The number of sequences 1 = a0, a1, . . . , a2n withn+ 1 terms equal to 1 and n terms equal to −1 is(

2nn

)

. (Choose n of the terms a1, . . . , a2n to equal

1.)

There are n+ 1 cyclic shifts of this sequence thatbegin with 1. Exactly 1 of them gives a ballotsequence (of length 2n) when you remove thefirst term.

Therefore the number of ballot sequences of

length 2n is 1n+1

(

2nn

)

= Cn.

Catalan Numbers – p. 34

Page 71: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Dyck paths

25. Dyck paths of length 2n, i.e., lattice pathsfrom (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),never falling below the x-axis

Catalan Numbers – p. 35

Page 72: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Dyck paths

25. Dyck paths of length 2n, i.e., lattice pathsfrom (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),never falling below the x-axis

Catalan Numbers – p. 35

Page 73: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Dyck paths

25. Dyck paths of length 2n, i.e., lattice pathsfrom (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),never falling below the x-axis

Catalan Numbers – p. 35

Page 74: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Dyck paths

25. Dyck paths of length 2n, i.e., lattice pathsfrom (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),never falling below the x-axis

Walther von Dyck (1856–1934)

Catalan Numbers – p. 35

Page 75: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

11 1 11 1 1 1 1− − − − − − − − −

For each upstep, record 1.For each downstep, record −1.

Catalan Numbers – p. 36

Page 76: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Noncrossing chords

59. n nonintersecting chords joining 2n points onthe circumference of a circle

Catalan Numbers – p. 37

Page 77: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

Catalan Numbers – p. 38

Page 78: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

root

1

1

−1

1

−1

−11

1

−1

−1

1

−1

1 1 − 1 − − 1 1 − − 1−

Catalan Numbers – p. 38

Page 79: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n forwhich there does not exist i < j < k andaj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

Catalan Numbers – p. 39

Page 80: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n forwhich there does not exist i < j < k andaj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

34251768

Catalan Numbers – p. 39

Page 81: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n forwhich there does not exist i < j < k andaj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

3425 768

Catalan Numbers – p. 39

Page 82: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n forwhich there does not exist i < j < k andaj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

3425 768

part of the subject of pattern avoidance

Catalan Numbers – p. 39

Page 83: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with binary trees

(3425)T

(34251768)T

1

(768)T

Catalan Numbers – p. 40

Page 84: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The tree for 34251768

2

8

6

35 7

4

1

Catalan Numbers – p. 41

Page 85: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The tree for 34251768

2

8

6

35 7

4

1

Note. If we read the vertices in preorder, weobtain 12345678.

Exercise. This gives a bijection between312-avoiding permutations and binary trees.

Catalan Numbers – p. 41

Page 86: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

321-avoiding permutations

Another example of pattern avoidance:

115. Permutations a1a2 · · · an of 1, 2, . . . , n withlongest decreasing subsequence of length atmost two (i.e., there does not exist i < j < k,ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231

Catalan Numbers – p. 42

Page 87: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

321-avoiding permutations

Another example of pattern avoidance:

115. Permutations a1a2 · · · an of 1, 2, . . . , n withlongest decreasing subsequence of length atmost two (i.e., there does not exist i < j < k,ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231

more subtle: no obvious decomposition into twopieces

Catalan Numbers – p. 42

Page 88: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with Dyck paths

w = 412573968

Catalan Numbers – p. 43

Page 89: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with Dyck paths

w = 412573968

1

4

2

5

7

9

3

6

8

Catalan Numbers – p. 43

Page 90: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with Dyck paths

w = 412573968

1

4

2

5

7

9

3

6

8

Catalan Numbers – p. 43

Page 91: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

An unexpected interpretation

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

Catalan Numbers – p. 44

Page 92: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

remove largest, insert bar before the element toits left, then replace bar with 1 and a number with−1, except last two

Catalan Numbers – p. 45

Page 93: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

remove largest, insert bar before the element toits left, then replace bar with 1 and a number with−1, except last two

1 2 5 3 4 1

Catalan Numbers – p. 45

Page 94: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

remove largest, insert bar before the element toits left, then replace bar with 1 and a number with−1, except last two

1 |2 5 3 4 1

Catalan Numbers – p. 45

Page 95: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

remove largest, insert bar before the element toits left, then replace bar with 1 and a number with−1, except last two

1 |2 5 |3 4 1

Catalan Numbers – p. 45

Page 96: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

remove largest, insert bar before the element toits left, then replace bar with 1 and a number with−1, except last two

1||2 5 |3 4 1

Catalan Numbers – p. 45

Page 97: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

remove largest, insert bar before the element toits left, then replace bar with 1 and a number with−1, except last two

|1||2 5 |3 4 1

Catalan Numbers – p. 45

Page 98: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Bijection with ballot sequences

remove largest, insert bar before the element toits left, then replace bar with 1 and a number with−1, except last two

|1||2 5 |3 4 1

|1||2 5 |3 4 1

→ 1− 11−−1−

Catalan Numbers – p. 45

Page 99: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Analysis

A65.(b)∑

n≥0

1

Cn= ??

Catalan Numbers – p. 46

Page 100: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Analysis

A65.(b)

n≥0

1

Cn= ??

1 + 1 +1

2+

1

5= 2.7

Catalan Numbers – p. 46

Page 101: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Analysis

A65.(b)

n≥0

1

Cn= 2 +

4√3π

27= 2.806 · · ·

1 + 1 +1

2+

1

5= 2.7

Catalan Numbers – p. 46

Page 102: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Why?

A65.(a)

n≥0

xn

Cn=

2(x+ 8)

(4− x)2+

24√x sin−1

(

12

√x)

(4− x)5/2.

Catalan Numbers – p. 47

Page 103: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Why?

A65.(a)

n≥0

xn

Cn=

2(x+ 8)

(4− x)2+

24√x sin−1

(

12

√x)

(4− x)5/2.

Sketch of solution. Calculus exercise: let

y = 2

(

sin−1 1

2

√x

)2

.

Then y =∑

n≥1

xn

n2(

2nn

).

Catalan Numbers – p. 47

Page 104: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Recall y =∑

n≥1xn

n2(2nn). Note that:

Catalan Numbers – p. 48

Page 105: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Recall y =∑

n≥1xn

n2(2nn). Note that:

d

dxy =

n≥1

xn−1

n(

2nn

)

Catalan Numbers – p. 48

Page 106: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Recall y =∑

n≥1xn

n2(2nn). Note that:

xd

dxy =

n≥1

xn

n(

2nn

)

Catalan Numbers – p. 48

Page 107: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Recall y =∑

n≥1xn

n2(2nn). Note that:

d

dxxd

dxy =

n≥1

xn−1

(

2nn

)

Catalan Numbers – p. 48

Page 108: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Recall y =∑

n≥1xn

n2(2nn). Note that:

x2d

dxxdx

xy =

n≥1

xn+1

(

2nn

)

Catalan Numbers – p. 48

Page 109: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Recall y =∑

n≥1xn

n2(2nn). Note that:

d

dxx2

d

dxxdx

xy =

n≥1

(n+ 1)xn(

2nn

)

Catalan Numbers – p. 48

Page 110: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

Completion of proof

Recall y =∑

n≥1xn

n2(2nn). Note that:

d

dxx2

d

dxxdx

xy =

n≥1

(n+ 1)xn(

2nn

)

= −1 +∑

n≥0

xn

Cn,

etc.

Catalan Numbers – p. 48

Page 111: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The last slide

Catalan Numbers – p. 49

Page 112: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The last slide

Catalan Numbers – p. 50

Page 113: Catalan Numbers - MIT Mathematicsrstan/transparencies/china.pdf · An OEIS entry OEIS: Online Encylopedia of Integer Sequences (Neil Sloane).See database of over 270,000 sequences

The last slide

Catalan Numbers – p. 50