category-level product environmental footprints of foods · 2020-02-16 · climate change include...

16
Category-Level Product Environmental Footprints of Foods Food Life Cycle Assessment Literature Review Report No. CSS16-02 February 25, 2016 Martin Heller, Tara Narayanan, Robert Meyer, and Gregory Keoleian

Upload: others

Post on 09-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

Category-Level Product Environmental Footprints of FoodsFood Life Cycle Assessment Literature Review

Report No. CSS16-02February 25, 2016

Martin Heller, Tara Narayanan, Robert Meyer, and Gregory Keoleian

Page 2: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

1FoodLifeCycleAssessmentLiteratureReview

1. IntroductiontoLifeCycleAssessmentandRelevantEnvironmentalImpactCategories

LifeCycleAssessment(LCA)isanaccounting,evaluationandinterpretationmethodologicaltoolusedtoassessthepotentialenvironmentalimpactsofproductsystemsandservices,accountingfortheemissionsandresourceusethroughoutaproduct’slifecycle.“Productlifecycle”referstothestagesfromrawmaterialacquisitionthroughproduction,distribution,use,anddisposal(seeFigure1).LCAisdefinedandstandardizedthroughinternationalguidelines(ISO-14040-2006,ISO-14044-2006)butremainsaflexiblemethodologicalframeworkpermittingapplicationtoawiderangeofquestionsandproductsystems.ThebasicLCAframeworkisaniterativeprocedureinvolvingfourmainsteps:1)definitionofthegoalandscopeofthestudy–whatarewestudying,howarewestudyingit,why,andforwhom?;2)lifecycleinventoryanalysis–datacollectionandcalculationprocedurestoquantifyrelevantinputsandoutputs(energy,rawmaterials,co-products,waste,emissionstoair,water,andsoil)acrosseachunitprocesswithinthesystemboundary;3)lifecycleimpactassessment–associatinginventorydatawithspecificenvironmentalimpactcategoriesandmodelingtherelevanceofthoseimpacts;and4)interpretationofoutcomes.LCAcanbeveryusefulinprovidingabroadsystemsperspectiveinidentifyingopportunitiesforimprovedenvironmentalefficiency.Itsapplicationsincludeidentifyingenvironmentalhotspots,evaluatingalternativescenarios,andidentifyingandavoidingburdenshifting–betweenlifecyclestagesorbetweenenvironmentalimpactcategories.

STATEMENTOFWORK:Initialliteraturescan:Contractorwillidentifyandreviewinsummaryfashionexistingliteratureevaluatingthelifecycleenvironmentalimpactsoffoods.ContractorwillprovidetoDEQanannotatedsummaryofallrelevantdocuments,notingforeachdocument,ataminimum:theauthorsandtheiraffiliations,yearofpublication,typesoffoods,geographicrepresentation,typesofenvironmentalimpactcategoriesincluded,andlifecyclestages(e.g.,cradle-to-farmgate,cradle-to-factorygate,orcradle-to-grave).

Figure1.Genericproductlifecyclediagramshowing“cradletograve”lifecyclestages.

Page 3: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

2FoodLifeCycleAssessmentLiteratureReview

WhiletheLCAidealiscertainlytoincludefull“cradletograve”lifecyclestagesandevaluateadiversesetofenvironmentalimpactcategories,oftenaparticularresearchgoalorlimitedavailabilityofdatawarrantsareducedscope(e.g.,cradletofarmgate,orafocusonlyongreenhousegasemissions).Muchcanbegainedfromsuchstudies,butinterpretationrequirescaveats.EnvironmentalimpactcategoriesthatmaybeevaluatedinfoodandagriculturalLCAsinclude:cumulativeenergydemand,globalwarmingpotential,eutrophicationpotential,acidificationpotential,ozonedepletionpotential,landuse,wateruse,andhumanandeco-toxicitypotentials.Briefdescriptionsoftheseareprovidedbelow.Cumulativeenergydemand(E):Virtuallyallproductsrequireenergyaspartoftheirlifecycle,eitherdirectly–asintheusephaseofanautomobile–orindirectly–asintheembodiedenergycontainedinplastics.What’smore,differentenergycarriers–coal,oil,electricity–requiredifferentamountsofprimaryenergyfortheirproduction(extraction,processing,generation)anddelivery(transport,transmissionanddistribution).Cumulativeenergydemand,alsocalledprimaryenergyconsumption,isameasureoftheenergyneedsthroughoutaproduct’slifecycle,andiscommonlyexpressedinmegajoules(MJ).Globalwarmingpotential(GHGE):IncomingsolarradiationisabsorbedandreemittedbackfromtheEarth’ssurfaceasinfraredenergy.Greenhousegases(GHGs)intheatmospherepreventsomeofthisheatfromescapingintospaceandinsteadreflecttheenergybacktofurtherwarmthesurface.HumanactivitiesthatproduceGHGsamplifythisgreenhouseeffectbymodifyingtheEarth’senergybalancebetweenincomingsolarradiationandtheheatreleasedbackintospace,resultinginclimatechange.Anthropogenicemissionsthatcontributesignificantlytoclimatechangeincludecarbondioxide,methaneandnitrousoxide.Therelativecontributionsofdifferentchemicalemissionstothegreenhouseeffectarecommonlycalculatedrelativeto1massunitofcarbondioxide(e.g.,kgCO2equivalents).TheIntergovernmentalPanelforClimateChange(IPCC)providestheserelativefactors,typicallybasedoneffectsoveratimehorizonof100years.Forexample,1kgofmethaneiscurrentlyunderstoodtohavetheequivalentglobalwarmingpotentialas28kgofCO2.Nitrousoxideis265timesaspowerfulasCO2.Eutrophicationpotential(EP):Eutrophicationoriginatesmainlyfromnitrogenandphosphorusinsewageoutlets,manuresandfertilizers.Nutrientsthatrunoff,leachorotherwiseenterwaterwaysacceleratethegrowthofalgaeandothervegetationinwater.Degradationofthisexcessorganicmaterialconsumesoxygen,resultinginoxygendeficiencyandfishkills(deadzones).Eutrophicationpotentialquantifiesnutrientenrichmentbythereleaseofsubstancesinwaterorintothesoil,andiscommonlyexpressedinPO4equivalents.

Page 4: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

3FoodLifeCycleAssessmentLiteratureReview

Acidificationpotential(AP):Acidificationoriginatesfromtheemissionsofsulfurdioxideandoxidesofnitrogen,whichreactwithwatervaporintheatmosphereandformacidsthatprecipitatetotheearth’ssurface(acidrain).Acidificationpotentialmeasuresthecontributionofanemissionsubstancetoacidification,typicallyexpressedinSO2equivalents.Ozonedepletionpotential(ODP):TheozonelayerintheatmosphereprotectsplantsandanimalsfromharmfulUV-radiationfromthesun.Somesubstancesintheatmospheremaketheozonelayerdecline,resultinginincreasedUV-radiationatgroundlevel.Theozonedepletionpotentialisthecontributionofasubstancetothedepletionoftheozonelayer,andistypicallyexpressedinCFC-11equivalents.LandUse(LU):Landresourcesareobviouslyveryimportantforagriculturalproduction,butimpactassessmentmethodscapableofdifferentiatinglandusepracticesintermsofecosystemservicesprovidedareatearlystagesofdevelopmentandnotyetroutinelyappliedinLCAstudies.IflanduseisreportedinafoodLCA,itoftenismerelyaninventoryoflanduse(e.g.,hectaresperyearperkgofproduct).Forannualcrops,thisisadirectreflectionofyield,butitcanalsobeausefulindicatorforanimalbasedfoodswherelandisusedinproducingfeeds.Landuseisalsohighlydependentonlocation,asyieldsvarywithsoilsandclimate,sogeneralizationsacrossregionsaredifficult.Wateruse(WU):Waterresourcesarealsoessentialforagriculturalproduction,andirrigationwithsurfaceandgroundwater(termed“bluewater”inwaterusejargon)makesagriculturepossibleinmorearidregions.Again,geographicallocationinfluencestheamountofbluewaterrequiredtoproduceagivencrop.Theimpactofthatwateruseonthelocalenvironmentandotherpotentialusers,however,alsovarieswithlocation:usingwaterinwaterstressedregionsismoreimpactfulthanusingwaterinregionswithamplesupply.Generalizationofwaterusefromoneproductionregiontoanotherisdifficultandunadvisable.WateruseinLCAisoftenreportedsimplyasaninventory(liters),butconsensusisbuildingastohowbesttoincorporatetheimpactofwateruseinanLCAframework.Humantoxicitypotential(HTP),eco-toxicitypotential(ETP)Atoxicologicaleffectisanadversechangeinthestructureorfunctionofaspeciesasaresultofexposuretoachemical.Characterizationfactorsforvariouschemicalsaredevelopedbasedonmultimediachemicalfatemodels,exposurecorrelations,andchemicalriskscreenings.HTPcanbeexpressedintermsofdisabilityadjustedlifeyears(DALYs)toallowcomparisonswithotherhumanhealtheffects.ETPareoftendisaggregatedintoterrestrialeco-toxicitypotential(TETP)andaquaticormarineeco-toxicitypotential(AETP)andcanbeexpressedintermsofpotentiallyaffectedfractionofspeciesorpotentiallydisappearedfractionofspecies.Toxicitypotentialsarecharacterizedbyhighuncertaintiesduetothecomplexfate,exposureandtoxicologicalmodelingrequired.

Page 5: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

4FoodLifeCycleAssessmentLiteratureReview

2. LiteraturereviewoffoodLCAsAgriculturalandfoodproductsystemshaveofferedbothanidealandchallengingapplicationofLCAmethodsduetotheircomplexityandtheircloseinterlinkbetweennatureandhumanbuiltandmanagedsystems.GrowinginterestintheenvironmentalimpactoffoodproductionsystemshasresultedinanaccumulatingnumberofLCAsconductedonawidevarietyoffoodsproducedindiverseregionsacrosstheglobe.Here,weofferabroadoverviewofavailablefoodLCAresearch.LiteraturereviewapproachAsacomplementtoliteraturegatheredinpreviousresearchefforts,weconductedasystematicsearchinWebofScienceandGoogleScholardatabases.Searchtermsincludedcombinationsof“LCA”and“lifecycle”with“food”aswellasspecificfoodtypesimportanttothePacificNorthwest.Articlesandreportspublishedinthepasttenyears(after2005)thatappliedLCAmethodstooneormorefoodproductswerereviewedandinventoried.Peerreviewedjournalarticlesaswellasthoroughlydocumentedreportsfromgovernmentalandnon-governmentalorganizationswereconsidered.Theliteraturereviewwaslimitedtoreportsavailableinthepublicdomain,andthusdidnotincludeprivately-fundedstudiesintendedforinternaluse.Agriculturalcropsnotexpresslygrownashumanfood(e.g.,biofuels,timber,fibers)wereexcluded.SummaryofliteraturereviewresultsTheliteraturereviewresultedin184uniquepublicationsand771entries,wherean“entry”representsafoodtype–productionscenariocombination(e.g.,anarticlecomparingorganicandconventionalproductionofappleswouldresultintwoormoreentries).Thefulllistofentriesiscatalogedinthespreadsheet,“FoodLCALitReviewDB020216.xlsx”;fieldscontainedwithinthiscatalogaredescribedinAppendixA.ThisdatabaserepresentsabroadbutinitialscanoftheLCAliterature,andoncefoodsareselectedforfurtherresearch,moredirectedsearchingmayidentifyadditionalstudies.ThefollowingfiguressummarizeandcharacterizethiscollectionoffoodLCAs.Figure2showsthedistributionofentriesbyfoodtype.Arelativelyevendistributionacrossmeat,vegetables,fruitanddairywasfound.Table1furtherdescribesthefrequencyofoccurrenceofspecificfoodswithintheliteraturereviewcatalog.

Page 6: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

5FoodLifeCycleAssessmentLiteratureReview

Meat16.6%

Vegetables16.5%

Fruit14.9%

Dairy13.7%

FishandSeafood9.7%

CerealsandGrains6.3%

LegumesandNuts5.7%

Beverages5.4%

Eggs3.9%

Other2.7%

OilsandFats2.6%

MeatSubstitutes1.6%

Sweeteners0.4%

Figure2.BreakdownofentriescontainedinFoodLCALiteratureReviewdatabasebyfoodtype.

Page 7: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

6FoodLifeCycleAssessmentLiteratureReview

Table1.ListingofthenumberofentriescontainedinFoodLCALiteratureReviewdatabaseforspecificfoodsinmajorfoodcategories.

Meat 127 Vegetables 126 Fruit 111Beef 48 Tomatoes 48 Apples 27Pork 39 Lettuce 20 Strawberries 11

Chicken 18 Potatoes 16 Bananas 9Sheep 10 Broccoli 6 Pears 8

Rabbit,Hare 3 Mushrooms 5 Peaches 7Turkey 3 Carrots 4 Oranges&othercitrus 7Veal 3 Escarole 4 Pineapple 6Duck 1 GreenBeans 4 Avocado 5Goat 1 Cucumber 3 Kiwi 5Snail 1 Garlic 3 Raspberries 5

Dairy 100 Peas 3 othertropicalfruits 5FluidMilk 46 Asparagus 2 Blueberries 4

Cheese,Assorted 25 BellPeppers 1 Olives 4Yogurt 11 Cauliflower 1 Cherries 3Butter 5 Eggplant 1 Grapes 3

Buttermilk 4 Fennel 1 Mango 1Cream 2 Leek 1 Melon 1

SheepMilk 2 Onions 1 Wildcaughtfish&seafood 39Buffalomilk 1 Spinach 1 AtlanticCod 13

DairyPowders 1 Zucchini 1 Mackerel 5FrozenDairyProducts 1 CerealsandGrains 45 Lobster 4

Sourcream 1 Wheat 15 Herring 3ConcentratedMilk 1 Bread 11 Sardines 3

Nuts&Legumes 42 Rice 9 Haddock 2Cashews 14 Corn 4 Hake 2Hazelnuts 9 BreakfastCereal 2 AlaskanPollock 2Almonds 7 Wheatflour 2 AlaskanSalmon 2Peanuts 7 Barley 1 Octopus 1

Soybeans 2 Oatmeal 1 Saithe 1Walnuts 2 Tuna 1Pistachio 1 Farmedfish&seafood 36

Salmon 17 Trout 6 Mussels 4 SeaBass 3 Shrimp 2 Tilapia 2 ArticChar 1 Turbot 1

LCAstudiescanvaryintheirscope,includingthelifecyclestagesincluded,dependingontheparticulargoalofthestudy.Ourliteraturereviewcatalogsspecificallywhichlifecyclestagesareconsideredinagivenentry.Figure3summarizesthisinformation:whileall

Page 8: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

7FoodLifeCycleAssessmentLiteratureReview

entriesconsideredsomeformofagriculturalproductioninordertobeincludedinthecatalog,only60%oftheentriesaccountedforprocessingoffarmgatecommodities,27%followedthoseproductsthroughtoretailstages,and7%includeduse(consumption)stagesofhouseholdstorageand/orpreparation&cooking.Typically,ifasuccessivestageisincluded,transportationtothatstageisaccountedforintheLCA.

LCAstudiesalsovaryintheenvironmentalimpactcategoriesevaluated,dependingonthegoalofthestudy,butalsooftenontheavailabilityofdata.AscanbeseeninTable2,globalwarmingpotential(greenhousegasemissions)isthemostcommonenvironmentalindicatorevaluatedinfoodLCAstudies.InLCAstudiesoftypicalindustrialprocesses,combustionoffossilfuelsdrivesnotonlycumulativeenergydemand,butalsoglobalwarmingpotentialandacidificationpotential;theseindicatorsthereforetendtotrackoneanother.Sinceagriculturalproductioncaninvolvesignificantgreenhousegasemissionsfromnon-fossilfuelsources,suchasmethanefromentericfermentationandmanurehandlingornitrousoxideemissionsfromfertilizedsoils,performanceinoneimpactcategoryisnotalwaysagoodpredictorofothercategories.Table2.PopularityofenvironmentalimpactcategoriesamongentriescontainedintheFoodLCALiteratureReviewdatabase.

CumulativeEnergyDemand 37%GlobalWarmingPotential 97%EutrophicationPotential 34%AcidificationPotential 32%WaterUse 18%LandUse 29%OzoneDepletionPotential 8%HumanToxicityPotential 8%AquaticToxicityPotential 5%TerrestrialToxicityPotential 4%

100%

60%

27%

7%

0% 20% 40% 60% 80% 100%

AgriculturalProduction

Processing

Retail

use

Figure3.DemonstrationofthelifecyclestagesconsideredinentriescontainedinFoodLCALiteratureReviewdatabase.

Page 9: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

8FoodLifeCycleAssessmentLiteratureReview

Figure4.CountryofagriculturalproductionforentriescontainedintheFoodLCALiteratureReviewdatabase.

978484

6347

3827

232120

151413131212111111

9988888776666544444333322222211111

0 10 20 30 40 50 60 70 80 90 100 110

NetherlandsUSAUKItalySpain

SwitzerlandNorwayCanada

AustraliaSwedenDenmark

NewZealandGlobalIran

BrazilWestAfrica

ChinaEU

FinlandTurkeyAustria

ColumbiaCzechRepublic

FranceIndonesia

PeruIndia

PortugalBelgium

CostaRicaJapanSerbia

NAmericaEcuadorGermanyGhanaPoland

ThailandArgentina

ChileGreeceKenya

HondurasIcelandMexicoTunisiaUgandaUkraineCyprus

MauritaniaSouthAfrica

SouthernHemisphereTasmania

No.ofentries

Page 10: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

9FoodLifeCycleAssessmentLiteratureReview

Figure4demonstratesthediversityofcountriesforwhichfoodproductionhasbeenevaluatedviaLCA.NorthernEuropehasdominatedmuchofthefoodLCAresearchoverthepasttwodecades,butanumberofU.S.basedstudieshaveariseninrecentyears.TheextenttowhichtheseU.S.studiesfocusonparticularregionsintheU.S.isshowninFigure5.WewereunabletoidentifyLCAstudiesfocusedonfoodproductionwithinthePacificNorthwest.FurthercharacterizationofthedocumentscatalogedrevealsanincreasingnumberoffoodLCAstudiesoverthepastdecade(Figure6)andadominanceofpeerreviewedjournalarticles(Figure7).Whileotherimportantreporttypesfromgovernmentalentities,industry,andNGOswereincluded,thelargemajorityofpeerreviewedjournalarticlesaddsacertainlevelofqualityassurance.

Figure5.RegionaldistributionofU.S.basedfoodLCAentriesidentifiedintheFoodLCALiteratureReviewdatabase.

Wefoundthat43%ofthedocumentscatalogedmakecomparisonsbetweenproduction(orotherlifecycle)strategiesormethods.Thesecomparisons,forexample,maybebetweenconventionalandorganicproductionmethods,betweenflow-throughandrecirculationaquaculturesystems,ormayconsiderlocalproductionrelativetoimportfromadistantproductionregion.

5787

43221

0 10 20 30 40 50 60

USA(National)California

UpperMidwestNorthernGreatPlains

AlaskaMidwestFloridaMaine

No.ofentriesrecorded

Page 11: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

10FoodLifeCycleAssessmentLiteratureReview

Figure7.DistributionofthetypeofdocumentscatalogedintheFoodLCALiteratureReviewdatabase.

3. ConclusionsThepastdecadehasseenagreatupsurgeintheenvironmentalfootprintingoffoodsusinglifecycleassessmentmethods.WhentheCenterforSustainableSystemsbeganworkinthisareaintheearly2000s,examplesofLCAstudiesoffoodwereextremelylimited.Today,thequantityandqualityofcompletedassessmentsaresuchthattheyarebeingusedinawiderangeofapplicationsfromimprovingproductionpracticestoon-packageProduct

5 64 4

14

2118 19

28

22

34

6

0

5

10

15

20

25

30

35

40

200520062007200820092010201120122013201420152016Num

berofDocum

entscataloged

YearofPublication

Figure6.DistributionoftheyearofpublicationfordocumentscatalogedintheFoodLCALiteratureReviewdatabase.

PeerReviewedJournal,79.9%

IndustryBased

Report,4.5%

ConferenceProceedings,

3.9%

GovernmentReport,2.8%

NGOReport,2.8%

Consulting,2.8%

Other,1.7%

Master'sthesis,1.7%

DocumentType

Page 12: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

11FoodLifeCycleAssessmentLiteratureReview

EnvironmentalFootprintdeclarations(predominantlyinEurope).Still,asthisliteraturereviewdemonstrates,therearelimitations.First,muchoftheworktodatehasfocusedonalimitednumberofcropsand/orfoodtypes.Forexample,thegreatvarietyoffruitsandvegetablesgrownaroundtheworldarenotwellrepresentedinthecurrentliterature.Evensomeverycommonfoods,suchasonions,forexample,havelimitedLCAdataavailable.Second,muchoftheresearchtodatehasbeenconductedinaEuropeancontext.WhilethenumberofU.S.studiesisincreasing,representationisstilllimitedtoahandfuloffoods,andthediversegeographiesoftheNorthAmericancontinentarepoorlyrepresented.Third,manyofthestudiesidentifiedinthisliteraturerevieware“cradletofarmgate”assessments,meaningtheyonlyaccountforagriculturalproduction.Whilethismaybeanecdotallyjustifiedasagriculturalproductionoftendominatestheimpactsoffulllifecyclestudies,itnonethelessrepresentsalimitationinconsideringtheimpactsofthefoodsystemasawhole.Fourth,manystudiesfocussolelyongreenhousegasemissions,withotherimportantenvironmentalimpactindicatorssuchaseutrophication,wateruse,andlandusebeingfarlesscommon.Thisislikelyduetothefactthateutrophication,wateruseandlanduseimpactsinparticulararefeltlocallyandrequiremorespecificdatatobemeaningful,whereasgreenhousegasemissionsareaglobalimpactthatcanbemoreeasilygeneralized.DespitelesserpopularityinLCAstudies,theseotherimpactcategoriesareveryimportantforfoodandagriculturalsustainability,andthereisrealpotentialtoshiftimpactstoothercategoriesbyfocusingonasingleimpact.Despitethesecaveats,therearemanyconclusionsfromthecurrentliteratureinLCAthatcaninformfoodsystemstakeholders,includingproducers,consumersandpolicymakers,inimplementingimprovementstrategies.Applicationofthesefindingsinfuturetasksofthisprojectwillrequirecarefulandbalancedconsiderationofastudy’sresultsalongsideitsresearchgoalandscope.

Page 13: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

12FoodLifeCycleAssessmentLiteratureReview

AppendixA.DescriptionofFieldsinFoodLCACatalogTheaccompaniedExcelspreadsheet(“FoodLCALitReviewDB020216.xlsx”)containssummaryinformationoftheFoodLCAstudiescatalogedaspartofthisliteraturereview.Rowswithinthespreadsheetrepresentindividual“entries”whichmaybedifferentfoodsorthesamefoodindifferinglifecyclescenarios(e.g.,differentproductionpractices,countriesoforigin,ordistributionmethods).Thefollowingdescriptionsofcolumncategoriesareintendedtoaidininterpretationofinformationloggedinthecatalog.Columnname descriptionFoodentryFoodtype Groupingfoodsintothefollowing:beverages,cerealsandgrains,dairy,eggs,fishand

seafood,fruit,legumesandnuts,meat,meatsubstitutes,mixeddishes,oilsandfats,sweeteners,vegetables,other.

Specificfood FoodstudiedFoodform Whereappropriate,offersadescriptionofthefinalfoodform:fresh,canned,frozen,

dried,curedorpickled,andotherProductorproductionspecifics

Textfieldofferingadditionaldescriptiveinformationaboutthespecificentry

Comparesproductionstrategies/methods?

Yes/nofieldidentifyingwhethertheentrywascomparedagainstotherproduction/distributionscenarioswithinthegivenLCAstudy

Countryoforigin IndicatesthecountryofproductionoftheFOODinquestion,NOTthedocumentCitationyear Indicatesyearofdocumentpublicationauthors Fulllistingofauthornames,typicallywithsymbolicreferencetoaffiliationcolumnAuthoraffiliations ListingofauthoraffiliationsasindicatedindocumentSourcetype Peerreviewedjournal,conferenceproceedings,governmentreport,industrybased

report,NGOreport,database,other.Bibliographiccitation

Completecitationfordocumentretrieval

DOIorURL DOI=”digitalobjectidentifier”,andisauniqueserialcodetoidentifyaspecificjournalarticleonline.TheDOIcansimplybecopiedintoGoogleScholarorotherliteraturedatabasetolinkwiththearticleonline.Forotherdocumenttypes,aURLisincluded.

Lifecyclestagesincluded(allyes/nofields)Agriculturalproduction

DoestheLCAboundaryincludeagriculturalproduction?Notethatdifferentaspectsofagriculturalproductionthatcouldorcouldnotbeincludesarenotfurtherspecifiedhere.Inthecaseofwildcaughtseafood,thisreferstothefishingstage.

LU/LUC Doesthestudyincludelanduseand/orlandusechangeaspartofitsgreenhousegasemissions(GHGE)inventory?Whiletechnicallynotalifecyclestage,thiscontroversialtopicisimportanttonoteinLCAstudiesoffood/agriculture.SomestudiesconsidertheGHGEimpactofchangesinlanduse(e.g.,deforestationforagriculturalpurposes),especiallywhenfood/feedcropsaresourcedfromSouthAmericawheremarketforcesareturningrainforestintocropland.Whilecertainlyrelevant,thiscanhaveasignificantinfluenceonresultsandshouldbeconsideredwhenmakingbroadergeneralizations.

Transport:farmtoprocessing

Doesthestudyaccountfortransportfromfarmgatetoprocessingfacility?

Processing IssomeaspectofprocessingbeyondfarmgatecommodityaccountedforinLCA?Packaging DoestheLCAstudyaccountforpackagingmaterials?Transport:processingto

Isatransportstagefromtheprocessortoretailordistributionhubincluded?

Page 14: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

13FoodLifeCycleAssessmentLiteratureReview

retailerordistributionhubretail Areenergyuseandemissionsassociatedwithretailingthefoodproductincluded?Transport:retailtoconsumer

Doesthestudyaccountfortransportbytheconsumerfromthepointofpurchasetothehomeorpointofconsumption?

Householdstorage Isrefrigerationorotherstorageinthehomeaccountedfor?Prepandcooking Doesthestudyincludeimpactsduetopreparationorcookingofthefoodfor

consumptionpurposes?dishwashing Doesthestudyincludetheimpactsofdishwashingassociatedwithconsumingthe

foodinquestion?Capitalgoods Often,theproductionofcapitalgoods(e.g.,tractors,barns,processingmachineryor

facilities)areexcludedfromfoodLCAstudiesbecausetheyhaveproventobenegligiblecontributors.Somestudies,however,choosetoincludethemanufactureofthesecapitalgoods.Thisfieldischecked“yes”ifproductionofmajorcapitalgoodshavebeenincludedatsomelifecyclestage

other Acatch-allfieldforotherrelevantlifecyclestagesnotcapturedinpreviousfieldsLifecyclestages:notes

Atextfieldofferingadditionalrelevantinformationaboutthelifecyclestagescoveredorcaveatsofthestudyinquestion.

Foodwasteincluded?

FoodLCAsthatcovercradletograveimpactsmayaccountforwastageofthefoodproductinquestionalongtheproductchain(e.g.,atretailorconsumerstages).Suchwastageincreasestheimpactperunitoffoodconsumed.Thisisayes/nofieldindicatingwhethersuchfoodwasteisaccounted.

Resultsatintermediarystages?

Somestudiespresentresultssuchthattheimpactsofintermediarylifecyclestagescanbeascertained,whereasothersmaypresentonlyoverallresults.Thisyes/nofieldindicateswhetherresultsatintermediarystagesareavailable.

Reportedfunctionalunit

ThefunctionalunitofanLCAstudyistherelativebasisonwhichtheresultsarepresented.Choiceoffunctionalunitisparticularlyimportantwhencomparingimpactsofdifferentsystems.Ideally,thechoiceoffunctionalunitreflectstheultimate“function”ofthesysteminquestion.Giventhecomplexityoffood“function”,amassorvolumebasedfunctionalunitisoftenused.

EnvironmentalimpactcategoriesCumulativeenergydemand

Yes/nowhetherstudyreportsonthisimpactcategory.

Greenhousegasemissions

Yes/nowhetherstudyreportsonthisimpactcategory.

Wateruse Yes/nowhetherstudyreportsonthisimpactcategory.Landuse Yes/nowhetherstudyreportsonthisimpactcategory.Freshwatereutrophicationpotential

Yes/nowhetherstudyreportsonthisimpactcategory.

Marineeutrophicationpotential

Yes/nowhetherstudyreportsonthisimpactcategory.

Acidificationpotential

Yes/nowhetherstudyreportsonthisimpactcategory.

Ozonedepletionpotential

Yes/nowhetherstudyreportsonthisimpactcategory.

Abioticdepletionpotential

Yes/nowhetherstudyreportsonthisimpactcategory.

Humantoxicity Yes/nowhetherstudyreportsonthisimpactcategory.Freshwatereco-toxicity

Yes/nowhetherstudyreportsonthisimpactcategory.

Photochemicaloxidationpotential

Yes/nowhetherstudyreportsonthisimpactcategory.

Page 15: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

14FoodLifeCycleAssessmentLiteratureReview

Marineeco-toxicity Yes/nowhetherstudyreportsonthisimpactcategory.Terrestrialeco-toxicity

Yes/nowhetherstudyreportsonthisimpactcategory.

Page 16: Category-Level Product Environmental Footprints of Foods · 2020-02-16 · climate change include carbon dioxide, methane and nitrous oxide. The relative contributions of different

School of Natural Resources & Environment, 440 Church Street, 3012 Dana Building, Ann Arbor, MI 48109-1041 734-764-1412 | css.snre.umich.edu