cc og ivm - ferris-pages.orgnystroj/cc_og_ivm.pdf · ivm basis vecto rs e 1-e 6 within the basic ve...

40
computational cosmography & the isotropic vector field decomposition methodology dr. J.F. (jim) Nystrom Faculty of Information Technology University of Akureyri 600 Akureyri, Iceland 4. mars 2005

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • computationalcosmography

    &

    theisotropicvectorfielddecompositionmethodology

    dr.J.F.(jim)Nystrom

    FacultyofInformationTechnology

    UniversityofAkureyri

    600Akureyri,Iceland

    4.mars2005

  • cosmographydefined∗

    Cosmography:(1)ageneraldescriptionoftheworldorofthe

    universe.(2)thesciencethatdealswiththeconstitutionofthe

    wholeorderofnature.

    ∗Webster’sNewCollegiateDictionary.

  • Onthegeometryofspace†

    Thegeometryofphysicalspacehadtoberecognizedas

    anempiricalproblem;itisthetaskofphysicstosingle

    outtheactualspace,i.e.,physicalspace,amongthe

    possibletypesofspace.Itcandecidethisquestiononly

    byempiricalmeans:buthowshoulditproceed?

    †H.Reichenbach,ThePhilosophyofSpace&Time,Dover(1957).

  • omni-directionalclosestpacking

    TheVEisatwelve-around-onearrangement

    whichconsistsoffourhexagonalplanes;

    eachplanebeingasix-around-onearrangement.

  • Anisotropicvectormatrixgrid

    Vectorequilibrium(VE)cell.IVMgrid.

  • Contents

    ¤Introduction

    ¤computationalcosmographyandemergentcomputation

    ¤TheIVMCEMtime-domainsolverandtheisotropicvector

    fielddecompositionmethodology

    ¤Questions

  • computationalcosmographyandemergentcomputation

    ¤Emergentcomputation

    ¤Universeasemergentcomputation

    ¤Onthequestionofinformationinphysicallaw

    ¤computationalcosmographydefined

  • ¤J.F.Nystrom,“TensionalComputation:FurtherMusingsonthe

    ComputationalCosmography,”AppliedMathematicsandComputation120,

    211-225(2001).

    ¤J.F.Nystrom,”OntheOmni-directionalEmergenceofFormin

    Computation,”LectureNotesinComputerScience,3305,632-641(2004).

    ¤J.F.Nystrom,“Statics,dynamics,andpointparticles:Onwardtowards

    acomputationalcosmography,”acceptedasaposteratArtificialLifeVII,

    Portland,Oregon,USA(2000),butnotpresented.

    ¤J.F.Nystrom,“MechanismfortheSimulationArgument:Gravityand

    MindasTeleologicalPrimeMovers,”tobesubmittedtothePhilosophical

    Quarterly.

  • emergentcomputation‡

    “Researchersinseveralfieldshavebeguntoexplorecomputationalmodelsinwhichthebehavioroftheentiresystemisinsomesensemorethanthesumofitsparts.

    ...Inthesesystemsinterestingglobalbehavioremergefrommanylocalinteractions....

    Thepremiseofemergentcomputationisthatinterestingandusefulcomputationalsystemscanbeconstructedbyexploitinginteractionsamongprimitivecomponents,andfurther,thatforsomekindsofproblems(e.g.modelingintelligentbehavior)itmaybetheonlyfeasiblemethod.”

    ‡S.Forrest,“EmergentComputation:Self-organizing,collective,andco-operativephenomenainnaturalandartificialcomputingnetworks,”inS.Forrest,Ed.,EmergentComputation,MIT/North-Holland,1991.

  • Universeas

    emergentcomputation

    Atminimumthefollowinglevelsofemergentbehaviorsare

    assumedbythescientificcommunitytoexist:

    •Fundamentalparticlesandforcesareassumedtocombinetoformcertainprimitivestableaggregatesystems,which

    werefertoasthechemicalelements,H−U.

    •Theseaggregatesystemsthencombineincertainwaystoformmoleculesandcompounds,whichisafieldof

    emergentbehaviorofconcerntochemists.

  • •Anotherimportantlevelofemergentbehavioristhecoordinatedinteractionofaggregatesystemsandforces

    thatproducethethingsinvolvedinbiology.

    •Itcannotbedeniedthattheubiquitouscarbonatomisaveryimportantemergentbehavior,asisthehydrogenbond,

    bothkeyparticipantsinthehighestleveloflocalized

    emergentbehavioryetfound,thephenomenaoflife.

  • OnthequestionofinformationinphysicallawI

    “Theoriesofthephysicalworld,whetherornotthey

    incorporatethenotionofinformation,dependon

    numerically-valuedquantitiesinordertobeabletodescribea

    widevarietyofphenomenaaccordingtouniversalphysicallaws

    whichassociatesuchquantities:measurablequantitiessuchas

    energyandmomentum§”

    §C.F.Boyle,PhysicalLawsandInformationContent,inPhysComp’92:Pro-ceedingsoftheWorkshoponPhysicsandComputation,IEEEPress,1992.

  • OnthequestionofinformationinphysicallawII

    “...allinformationisfirstaform,andthemeaningofa

    messageisatopologicalrelationbetweentheformofa

    messageandtheeigenformsofthereceptor(theformsthat

    canprovokeanexcitationofthereceptor)¶.”

    ¶R.Thom,StructuralStabilityandMorphogenesis:AnOutlineofaGeneralTheoryofModels,W.A.Benjamin,1975.

  • computationalcosmographydefined

    Thenamecomputationalcosmography‖isusedtodescribeacomputationalsystemwhereinphysicalsystembehaviors(and

    properties)emergeasby-productsofcomputationsbasedon-

    forlackofabetterdescription-theinteractionofvirtual

    deformablepolyhedrawhichconformtothegeometry

    mechanismsasdescribedinR.B.Fuller’sSynergetics.

    ‖J.F.Nystrom,“Tensionalcomputation:Furthermusingsonthecomputa-tionalcosmography,”AppliedMathematicsandComputation120,211-225(2001).

  • InessenceCCisanarchetypeforanewlevelofcellular

    automata.

    CCisacomputationalmodelthat:∗∗

    •AdoptstheviewpointthatUniverseisdiscretelyordered,and

    •IsbasedonthepremisethatemergentbehaviorsinUniversearecomputablefrombasic,geometricallygrounded,

    fundamentalprinciples.

    ∗∗J.F.Nystrom,“Statics,dynamics,andpointparticles:Onwardtowardsacomputationalcosmography,”acceptedasaposteratArtificialLifeVII,Portland,Oregon,USA(2000),butnotpresented.

  • Findingthevectorequilibriuminsidethetetrahedron††

    ††ImagecourtesyofR.W.Gray.

  • TheA-module,B-module,andMite(ohmy!)‡‡.

    ‡‡ThepictureontheleftisfromRichardHawkins’DigitalArchive.ThepictureontherightispartofColorPlate17inR.B.Fuller,Synergetics:ExplorationsintheGeometryofThinking,Macmillan,1975.

  • TheIVMCEMtime-domainsolver

    andthe

    isotropicvectorfielddecompositionmethodology

    ¤IVMgrid(again)andanIVMvectorbasis

    ¤Afullydiscretesystem

    ¤Fourhexagonalplanesandanomni-directionalcurloperator

    ¤Free-spacepropagationofanelectromagneticsolution

  • ¤J.F.NystromandCarrynBellomo,“IsotropicVectorMatrixGridandFace-CenteredCubicLatticeDataStructures,”toappearinLectureNotesinComputerScience.

    ¤J.F.Nystrom,“High-OrderTime-StableNumericalBoundarySchemefortheTemporallyDependantMaxwellEquationsinTwoDimensions,”JournalofComputationalPhysics178,290-306(2002).

    ¤J.F.Nystrom,“TheIsotropicVectorFieldDecompositionMethodology,”ACES2002,Monterey,CA,March2002.

    ¤J.F.Nystrom,“GridConstructionandBoundaryConditionImplementationfortheIsotropicVectorFieldDecompositionMethodology,”ACES2003,Monterey,CA,March2003.

    ¤J.F.Nystrom,“InSearchofaGeometricalBasisfortheUbiquitousElectromagneticEnergy,”PIERS2002,Boston,MA,July2002.

    ¤J.F.Nystrom,“Moore’sLawandtheVisualizationofElectromagnetic

    Quanta,”PIERS2003,Honolulu,HI,October2003.

  • Theisotropicvectormatrixgrid(again)

    Vectorequilibrium(VE)cell.IVMgrid.

  • IVMvectorbasis

    e1

    e2

    e3

    e4

    e5

    e6

    IVMbasisvectorse1-e6withinthebasicVEcell.

    e1=ax(√32)−ay(

    12),

    e2=−ax(√32)−ay(

    12),

    e3=−ax(1

    2√3)−ay(

    12)+az(

    √2√3),

    e4=ax(1√3)+az(

    √2√3),

    e5=−ax(1

    2√3)+ay(

    12)+az(

    √2√3),

    e6=ay.

    BasisvectorswithinchosenCartesianbasis.

  • Afullydiscretesystem

    ¤Forourpresentpurposes,IusetheMaxwellequations

    writtenintermsoftheelectricfieldEandthemagneticflux

    densityB(shownhereinSIunitsforfreespacepropagation):

    ∂E

    ∂t=c

    2∇×B,

    ∂B

    ∂t=−∇×E,

    wherecisthespeedofelectromagneticpropagation.

    Furthermore,c2=1/(µ0²0),whereµ0isthepermeabilityof

    freespaceand²0isthepermittivityoffreespace.

  • ¤NowemployaRunge-Kuttamethodoforderfour,andthus

    evolveallthefieldcomponents(intime)simultaneously.

    ¤Forexample,letthevalueofE[0]afterntimestepsbewrittenas

    En[0]=E

    n1[0]e1+E

    n2[0]e2+E

    n3[0]e3+E

    n4[0]e4+E

    n5[0]e5+E

    n6[0]e6.

    ¤IdenotethethefirststagevaluefortheRunge-Kutta

    methodoforderfour(tobeusedinthecalculationofEn+11[0])

    asEk11;thevalueforthesecondstageasE

    k21;thevalueforthe

    thirdstageasEk31;andthevalueofthefourthstageasE

    k41.If

    weletδtdenotethetimestepofthesimulation,then,for

    example,En+11[0]iscalculatedthus:

    En+11[0]=E

    n1[0]+

    δt

    6

    (

    Ek11[0]+2E

    k21[0]+2E

    k31[0]+E

    k41[0]

    )

    .

  • ThefourhexagonalplanesoftheVE

    e1

    e2

    e3

    e4

    e5

    e6

    (Herethea-planeisshowninmagenta,theb-planeisshowninred,the

    c-planeisshowningreen,andthed-planeiscoloredaqua.)

    a-plane:[+1][-2][+6][-1][+2][-6],b-plane:[+1][+4][+5][-1][-4][-5],c-plane:[-2][+4][+3][+2][-4][-3],d-plane:[-5][-3][+6][+5][+3][-6].

  • CalculationoftheVE-basedcurl

    ¤GivenT,wewanttosolvetheequation

    S=∇×T.

    ¤BothSandTarewrittenintheIVMbasis:

    S=S1e1+S2e2+S3e3+S4e4+S5e5+S6e6,

    T=T1e1+T2e2+T3e3+T4e4+T5e5+T6e6.

    ¤Startwiththedefinitionofthecurl,

    S=limdA→0

    (1/dA)[n∮

    T·dl],

    whichistobeevaluatedoneachofthefourhexagonalplanes

    oftheVE.

  • ¤Forexample,aroundthea-plane,Itakethedotproductof

    theresultingcontourwiththeunitvectornormaltothe

    a-plane,aa(=azinthiscase);thus

    (S3e3+S4e4+S5e5)·aa=1

    dA[∮

    T·dl]a.

    ¤Aroundtheb-plane;

    (S2e2+S3e3−S6e6)·ab=1

    dA[∮

    T·dl]b.

    ¤Notethat:

    e3·aa=e4·aa=e5·aa=√2

    √3

    ,

    e2·ab=e3·ab=e6·ab=√2

    √3

    .

  • ¤Integratingaroundallfourofthehexagonalplanesbegetsfourequations(oneforeachoftheplanesvariables:a′,b′,c′andd′):

    (S3+S4+S5)=a′,wherea′=√3

    √2dA

    [∮

    T·dl]a,

    (S2+S3−S6)=b′,whereb′=√3

    √2dA

    [∮

    T·dl]b,

    (S1−S5−S6)=c′,wherec′=√3

    √2dA

    [∮

    T·dl]c,

    (S1−S2+S4)=d′,whered′=√3

    √2dA

    [∮

    T·dl]d.

    ¤Evidently

    a′−b′+c′−d′=0.

  • Solution

    ¤AsolutionshowinghowtocalculateS[0]cannowbewritten:

    S1=(c′+d′)/4,S2=(b′−d′)/4,S3=(a′+b′)/4,S4=(a′+d′)/4,S5=(a′−c′)/4,S6=(−b′−c′)/4,

    whichshowsthateachvectorcomponentofSisdependentonthecontoursaroundtwoseparatehexagonalplanes.Theminussignsensurearight-handedsensetoeachcontour-asitrelatestoeachparticularcomponentofS.

  • Now,usingthesolutionforS1,wegetbacktothestagesoftheRK4integratorandlookatthesolutionforE1:

    Ek11[0]=

    c′(Bn)+d′(Bn)

    4µ0²0,

    Ek21[0]=

    c′(Bn+δt2Bk1)+d′(Bn+δt

    2Bk1)

    4µ0²0,

    Ek31[0]=

    c′(Bn+δt2Bk2)+d′(Bn+δt

    2Bk2)

    4µ0²0,

    Ek41[0]=

    c′(Bn+δtBk3)+d′(Bn+δtBk3)

    4µ0²0.

    Thisnowcompletelyshowshowtheintegratorstagesforthe

    timeevolutionofE1[0]arecalculated.

  • Visualizingthevectorcurl

    e3

    Theaandbplanes

    interactandbegetthe

    e3componentofacurl.

    e5

    Theaandcplanes

    interactandbegetthe

    e5componentofacurl.

  • e1

    e2

    e4

    e6

  • Contourintegralevaluation

    ¤TheareaenclosedbyeachcircularcontourisdA=πh2

    (wherehisthegridspacing).

    ¤Eachintegralisimplementeddiscretelybyevaluatingthe

    integralatsixlocationsonthehexagonalplane.Forexample,

    onthea-plane:

    [∮

    T·dl]a=hπ

    3T·dla[+1]+h

    π

    3T·dla[−2]+h

    π

    3T·dla[+6]+

    3T·dla[−1]+h

    π

    3T·dla[+2]+h

    π

    3T·dla[−6],

  • where,forexample,

    dla[+1]=−e1×aa

    isthevectortangenttothecontourat[+1],and

    aa=

    (

    e2×e1|e2×e1|

    )

    istheunitnormaltothea-plane.

  • ¤Thus,thespatiallydiscreteequationfortheplanevariablea′

    isgivenintermsofcomponentsofTatthevertices[+1],[-1],

    [-2],[+2],[+6],and[-6]as

    a′=1

    h√6

    {[√3

    2(T6−T2)+

    1

    2√3(T4+T5)−

    1√3

    T3

    ]

    [+1]

    +

    [√3

    2(T2−T6)−

    1

    2√3(T4+T5)+

    1√3

    T3

    ]

    [−1]

    +

    [√3

    2(T6−T1)−

    1

    2√3(T3+T4)+

    1√3

    T5

    ]

    [−2]

    +

    [√3

    2(T1−T6)+

    1

    2√3(T3+T4)−

    1√3

    T5

    ]

    [+2]

    +

    [√3

    2(T2−T1)+

    1

    2√3(T3+T5)−

    1√3

    T4

    ]

    [+6]

    +

    [√3

    2(T1−T2)−

    1

    2√3(T3+T5)+

    1√3

    T4

    ]

    [−6]}

    .

  • Free-spacepropagation

    ¤HereImodelthepropagationofatransverse

    electromagneticsolutioninthetime-domain.Iseeda

    100-frequencyIVMgridwiththefollowingsolution:

    E=azsin(ky),andB=axsin(ky)

    c,

    wherek=2πf/cisthewavenumber,f=3GHzisthe

    frequency,andcisthespeedofelectromagneticpropagation.

  • Examplepropagation

    −10−8−6−4−20246810

    −1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Grid points near the origin. (In [−6] and [+6] directions.)

    Ez value

    n=0n=44n=88

    CFL=1andPPW=11.

  • Electricfieldastravelingtetrahedron

  • Somefutureresearchdirections

    ¤IVMCEMjournalpublicationandwaveguidesimulation

    ¤DataminingofIVMCEMtime-domainsimulationdata

    ¤ClusterandGridimplementationofIVMCEMcodes

    ¤IVMcellularautomataandlatticeBoltzmann

    ¤IVMcellpopulationdynamicsandwoundhealing(Carryn)

    ¤Graphics,visualizationandVRimplementations

    ¤CC!

  • ABIGSimulation

    Bladesofgrassliterallyeatelectromagneticenergy.AsimulationinvolvingthecompletephotosynthesisprocessofabladeofgrasswouldbeaBIGsimulationindeed.(Andinvolvemorethanjustacomputationalelectromagneticsolver.)