cenozoic magmatism in kalimatan and its related geodynamic evolution

Upload: nabila-febitsukarizky-bunyamin

Post on 06-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    1/33

    PERGAMON Journal of Asian Earth Sciences 17 (1999) 2545

    Ceno zoic magmatism in Kalimantan and

    its related geodynamic evolution

    R. Soeria-Atmadja *, D.Noeradi, B. Priadi

    Teknik Geologi, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132, Indonesia

    Received 27 November 1997;accepted 29 April 1998

    Abstract

    The NESW Tertiary magmatic belt of central Kalimantan is related to two

    separate periods of subduction; during the Eocen eOligocene and Late

    Oligocen eMiocene. The younger magmatic belt is superimposed upon the

    earlier belt. This magmatic belt is characterized chie y by Late

    Oligocen eMiocene volcanic products, among which limited exposures of the

    Eocene volcanics have also been mapped by previous investigators. This calc-

    alkaline magmatic belt has become known as the

    gold belt' of Central West Kalimantan on account of a number of discoveries of

    Neogene epithermal gold mineralization. This mineralization is found in central to

    proximal volcanic settings and occurred at relatively shallow depths. The earliest

    known subduction-related magmatism took place in the Eocen eEarly

    Oligocene with the emplacement of calc-alkaline silicic pyroclastics, followed

    by a period of continental collision. Subsequent subduction-related

    magmatism continued from Late Oligocen ePleistocene, during which time the

    magma evolved from calc-alkaline to potassic calc-alkaline. Plio-Pleistocene

    magmatism resulted in the formation of basalt ows. The present available KAr

    ages of the Cenozoic volcanics range from 51

    to 1 Ma. # 1999 Elsevier Science Ltd.All rights reserved.

    1. Introduc tion

    The search for gold in central

    Kaliman tan during the early

    eigh ties has produced valuab le

    info rmation concerning the

    tecto nic setting and the geological

    en- viron ments of format ion of

    the mine ral deposits. A num ber

    of epithermal gold occurrences in

    the region are dis tributed along a

    SWNE trend ing belt within the

    Terti ary mag matic arc (van

    Leeuwen et al., 1990). This gold

    belt repre sents an epithermal

    environ ment, whe re mine ralizat ion

    occurred most commo nly in cen-

    tral to proxi mal volcanic settingsat shal low depth. The host rocks

    are typi cally eusives or

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    2/33

    pyrocl astics of inte rmediate to

    acidic calc-alka line rock series,

    and show feat ures suggesting

    derivation from near-n eutral pH

    geothe rmal uids. The character

    of the ore ui ds and the types of

    mine ralizat ion, as well as assoc iated

    alt eration indicate thatmineral ization occ urred in a

    * Correspon ding author. Tel.: +62-22-250-0970; fax: +62-22-250-

    2201; e-mail: rubini@ gc.itb.ac.id.

    low sulp hide environ ment. Most

    commo nly mine raliz- ation in the

    region occ urs in hydrothe rmal

    brecc ias, vein stru ctures and quartz

    stock works. These volcan ic- hosted

    gold deposits are, acc ording to

    White and Hede nquist (1990 ),

    typical ly epitherma l.

    Rock chemistry as well as KAr

    ages of the volcan ic host rocks

    indic ate that the calc-alka line

    mag matism was related to late

    Oligoce neEa rly Mioce ne SSE -dip-

    ping subduction from the osh ore

    region to the north of Kaliman tan

    (Ha milton, 1979; Ca rlile and

    Mitc hell,1994). Carlile and Mitchell

    (1994) identi ed the Te rtiary

    mag matic arc by remnan ts of

    Ea rly Tert iary andesitic volcanic

    centr es with wh ich the

    epithermal gold mineral izati on is

    assoc iated. Accor ding to their

    observations epith ermal gold

    mine ralizat ion in

    Indonesia is best developed above

    contin ental crus t, such as in the

    we stern Sunda-Ba nda and the

    central Kal imantan arcs,

    whe reas porphyry-t ype

    mine ral deposits are

    for med in island arc as well as in

    conti- nental setting s; e.g. the

    coppe rgold por phyry of Ba tu

    Hi jau, Sumba wa (Me ldrum etal., 1994) and the

    1367-9120 /99 - see front matter # 1999 ElsevierScience Ltd. All rights reserved. PII: S 0 7 4 3 - 9 5 4 7( 9 8 ) 0 0 0 6 2 -2

    mailto:[email protected]:[email protected]:[email protected]:[email protected]
  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    3/33

    2 R. Soeria-Atmadja et al. / Journal of Asian Earth Sciences 17 (1999) 2545

    molybde num por phyry of the

    Mala la dis trict, northe rn arm of

    Sula wesi (van Leeuwen, 1994). Th is

    pap er is an att empt to summarize

    the avai lable geological data,

    contributed by sever al work ers as

    the result of the inten sive search

    for gold in Cen tral Kaliman tan,

    high- lighting some of the feat ures

    of the related mag matism and its

    tecto nic set ting.

    2. Geology of the Tertiary magmatic belt

    2.1. Regional geologic setting

    Van Be mmelen (1949) noted

    the charac teristic fra mework of

    arcua te structures of Kaliman tan

    island with their convex sides

    towards the south and south-

    west. These stru ctures are mos tly

    EW trend ing in cen- tral

    Kaliman tan and are bound ed in

    the south by the Schwaner

    Mountain magmat ic arc, wh ich

    is paired with a Cretaceous

    mel ange comple x. The region al

    geo- logic set ting of the northe rn

    part of Kalima ntan, es- pecia lly

    Borneo (Ma laysi an and Bru nei

    ter ritories) has been described by

    Hutch ison (1996 a) based on pre-

    vious work s. He distingui shed

    three major tecto nic zones fromthe northwest to southea st, the

    Miri, Sib u- Ra jang and Kuc hing

    zones (Fig. 1).

    Acco rding to Hutch ison (1996 a)

    the Miri Zone rep- resen ts part of

    the Lucon ia continental block

    wh ich is limi ted to the northwest

    by the Pala wan Trench, the trace

    of a Miocene sub duction zone

    (Ha milton, 1979), whe reas thesouthea stern limit has been

    referred to as the Mersing Line.

    The oldest rock expos ures in this

    zone include roc ks of the Long

    Bawan and Kal alan for mations

    which consi st of stron gly folded

    uvio-d el- taic sedi ments of Late

    Cretaceou sEocene age. The

    overl ying Eo-O ligocene

    sedime nts of the

    Mulu Fo rmation consi st of

    limes tones which, accord ing to

    Hutch ison (1996 a), we re

    deposited on a relativ ely stab le

    contin ental shelf. You nger

    Miocen ePliocene sedi ments were

    deposited in a delt aic to braided

    str eam environ ment in syncl inal

    basins formed during a pre- vious

    period of fold ing.

    The Sibu-Rajang Zone consi sts

    of inten sely folded, weak ly

    metamorp hosed ysch sedi ments of

    the Rajang Group. The Rajang

    Group is composed of the Late

    Cretaceou sOlig ocene Balaga,

    Lurah and Crocker for- mati ons. The stron gly deformed Upper

    Cr etaceou s Eoc ene ysch

    seq uence of the Embaluh Group

    for ms the south wards exten sion of

    the Ra jang Group into

    Kaliman tan. These ysch

    sedi ments have been inte r- preted

    by Hutchis on (1996 a) as

    turbi dites wh ich were scraped

    into an accre tionary prismduring Late Oligoce ne time, as

    the result of convergence of the

    Lucon ia continental block with the

    northe rn margin of Sund aland.

    Neoge ne v olcanics, of basaltic to

    daci tic comp osition, overlie the

    Pale ogene sedime nts unco n-

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    4/33

    R. Soeria-Atmadja et al. / Journal of Asian Earth Sciences 17 (1999) 2545 2

    for mably. The Lupar Sut ure

    Line, along wh ich Cretaceous

    ophiol ites are exp osed, marks the

    bound- ary bet ween the Sib u-

    Rajang and the Kuching zones.

    Ophio lite mel anges also occur along

    the Bukit Mersi ng Li ne and in the

    Semitau Ridge. The oph iolites

    rep- resent the basem ent of the

    Rajang Gro up and indic ate the

    trace of a Late

    Cretaceou sOligocene subduction

    zone. The eastwa rd continuation

    of this suture line is not clea r,

    possibly it may be con nected

    with the no rth south trend ing

    Long Ara nWititi thrust fault or

    the Adio sutur e.

    Acco rding to Hutch ison (1996a)

    the Kuching Zone marks the

    northe rn margin of Sund aland.

    Along this zone Pale ozoic

    crystal line schi sts are overl ain by

    car- bon ates and siliciclas tic

    sedi ments of Pale ogene to

    Mesozoic age. The PaleogenePiyab ung Vo lcanics and Neog ene

    Sintang Intru sives (Her yanto et al.,

    199 3) are the mag matic rocks in

    this zone. The southern limit of the

    Kuching Zone is marked by an

    EW trend ing faul t, which

    acc ording to Tanean et al.

    (1996) con- tinues as far as the

    Ada ng Fault separa ting the Kutai

    Ba sin in the north from the Bari to

    Ba sin to the south. Th is zone can

    possib ly be fol lowed fur ther

    eastwa rds into the Up per Kutai

    Basin, whe re Neogene and

    Pale ogene volcan ics have also

    been document ed (Ke lian, Muara

    Wahau) and then swings

    north wards into the Upper

    Tar akan Basin.

    2.2. Tertiary volcanic rock association

    Carlile and Mitc hell (1994)

    tent atively projec ted the Te rtiary

    mag matic arc from northea st

    Kal imantan southwards through

    central and west Kal imant an to

    Sarawak, followi ng the southern

    bound ary of the Kuc hing High.

    Va luable geological informa tion on

    the volcanic rock-associa tion,

    geolog ic setting and rela ted

    mine ralizat ion have been

    document ed from sever al dis- tricts

    along the magm atic arc (among

    others Busang, Kel ian, Muyup, Mt.

    Muro, Mas uparia, Muara Wa hau

    and Sintan g; Fig. 2). The volcan ic

    rock series are pro- ducts of

    Early Tertiary calc-alka line

    mag matism. Th ree mag matic

    episodes have been ide ntied by

    pre- vious workers, Eoc ene acid ic

    volcan ism was fol lowed by Late

    Oligocen eMiocene

    andesiti c rhyolit ic volcan- ism

    (prec eding epithermal

    mine ralizat ion) and then by Plio -Plei stocene basalt volcan ism; the

    latter gave rise to basal tic lava

    ows and dykes of region al exten t.

    Felderh of et al. (1996) ident ieda maar diatrem e

    do me complex and assoc iated

    epith ermal gold mineral- iza tion in

    the Busa ng area northea st of

    Keli an. They described the local

    geolog ic setting as a NWSE trend-

    ing semi-circ ular gra ben stru cture

    of Early Tert iary age, intru ded by

    a Mid-Te rtiary maar diat reme

    and dacitic do me comple x; the

    dome hosts gold mine raliz- ation

    along northwest trendi ng frac ture

    zones in whi ch the mine ralizat ion

    style is due to hydrofr acturing.

    The

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    5/33

    Fig.1.Tectonicframework

    ofKalimantanandsurroundingislands

    (modiedfrom

    Taneanet

    al.,1996

    ).

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    6/33

    Fig. 2. Distribution of volcanic outcrops and KAr dated volcanic rocks in Kalimantan.

    Data from Kirk, 1968; van de Weerd et al., 1987; Pieters et al., 1987; Tate, 1991; Bellon

    and Rangin, 1991; Harahap, 1993; Heryanto et al., 1993; Thomps on et al., 1994; van

    Leeuwen, 1994; Carlile and Mitchell, 1994; Tanean et al., 1996. 1, Non-del ineated outcrops;

    2, delineated outcro ps; 3, Miocene and Plio-Pleisto cene; 4, Miocene;

    5, Oligo- Miocene; 6, Eo-Oligo cene and Miocene; 7, Eocene; 8,KAr ages in Ma; 9, folded belt.

    volcan ic membe rs of the maar

    deposi ts are acid ic tus, wh ich

    include rhyolit ic crystal tu,

    andesitic lapilli ash tu and

    rhyolit icdacitic pyrocl astic roc ks;

    the assoc i- ated sedi ments of

    ysch facies consist of met amor-

    pho sed muds tones and

    clay stones. Acco rding to

    Felderh of et al. (1996) the dome

    com plex is ma de up larg ely of early

    phase volcan ics showing a

    grada tional cha nge towards the

    periphe ry from mediu m- to coarse-

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    7/33

    grain ed quartz- hornblende dacite

    to porphyritic rhyo- daci te, and

    are charac terized by a very ne-

    grained grou ndmass; the late

    phase volcan ics are represented

    by ne-gr ained aphyric

    andesi tedacite plugs, as well as

    subparallel sheet ed dykes of

    porphyritic andesi te and dacite.

    The se v olcanic rocks are the

    products of a phase ofMid-Te rtiary calc-

    alkaline mag matism. Fel derhof et

    al. (1996) also document post -

    mine raliz- ation mag mati sm,

    represented by basalt and quart z

    rhy olite plugs and dy kes.

    In the Kel ian mini ng distric t,

    southwest of the Busang area, the

    oldest exposed volcanic rocks

    occur as a Late Eoce ne silic icpyr oclastic unit, 300 m thick,

    includ ing pyrocl astic, as well as

    epiclast ic-rocks of

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    8/33

    rhyol itic c omposition (epi clastic,

    air-fall as we ll as wel ded

    pyrocl astic ow deposits)

    contai ning pumice, crys tal and

    lithic fragment s.

    Acco rding to van Leeuwen et

    al. (1990) this unit is overl ain by a

    thick pile of Eoce neOlig ocene

    sedi ments with local tu ac- eous

    intercala tions, cut by rhyol itic

    dy kes and sma ll andesitic stocks

    and dykes. These int rusions were

    empl aced in the Early Mioce ne

    alo ng NS and NE SW trendi ng

    fractures and faul ted zones andwe re fol- lowed by four -stage

    sequence of hydrothe rmal activi ty

    and mineral izatio n. Intru sions of

    inte rmedi ate po r- ph yry cutting

    andesitic volcan ic cou ntry rock

    at Muyup, close top Kel ian, have

    also been report ed by van Leeuwen

    et al. (1990).

    In the Gu nung Mas area,

    south west of Mt. Muro, goldmine ralizati on occurs as gold-

    bearing ssure veins and

    stockw orks in the contact

    zone between a Cr etaceous

    granit oid and a djacent

    sedimentary roc ks (van Lee uwen,

    1994). Gold mine ralizat ion at

    Mirah, south west of Gunu ng

    Mas, occurs along zones of

    quartz stock works, hydrothe rmal

    bre ccias and veins foll owing NNW

    trend ing frac tures. The host

    roc ks consist of stron gly altered

    (argil lic) pyrocl astics, bound ed to

    the west by an andesi te plug

    (van Leeuwen, 1994), possibly of

    Eoc ene age.

    Van de Weerd et al. (1987)

    obtain ed a KAr age range of

    24.0 Ma14.4 Ma from nine

    samples of ande- site and basalt

    coll ected from an area between

    Kelian and Mt. Muro, whe reas

    van Leeuwen et al. (1990) record

    an age of 22.9 2 0.5 Ma from a

    rela tively fresh

    andesite. These volcan ic roc ksreprese nt a phase of lateOligoce neEarly Miocene calc -

    alka line mag matism. Post-

    mine ralizati on mag matism

    resu lted in the extru- sion of

    widespread plateau basalts.

    Volca nic rock outcrops forming

    the remna nts of a volcan ic crat er

    at Masuparia, south west of

    Kel ian, consist of calc-alka line

    intrusive bodies (Diorite, mon-

    zonite, gra nodiorite) and many

    dior ite plugs, lava

    ows, proxi mal pyr oclastic ow

    breccias and tus of

    andesiti cdacitic composition

    (Thom pson et al., 1994). Most of

    these volcan ic ows and tus are

    plag ioclas e- phyric, with minor

    pyr oxene and hornblende.Towards the periphe ry of this

    volcanic cente r, the volcanic sedi-

    ments are inte rbedded with

    sedi ments of the Barito Basin.

    Accor ding to Thom pson et al.

    (1994) this area repre sents a

    stratovo lcan o. Tho mpson et al.

    (1994) postu late a three-s tage

    magmat ichydrothe rmal sys- tem,

    in which the second- stage ui ds

    we re resp onsible for the

    mine ralizat ion. Miner alization is

    assoc iated with either NW

    trend ing stru ctural zones or a

    N9 08100 E8 trend ing line ament. A 24.620.4 Ma KAr agewas obtain ed from these volcan ics.

    The wholeasse m- blage is overl ain

    by oliv inebasalt ows representing

    a Plio -Pleistocene magmat ic event.

    A simil ar volcanic rock

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    9/33

    assoc iation is exposed in the

    Mt. Muro area, direc tly east ofMasupar ia, where

    there is an interbe dded sequence of

    subaerial calc-alka- line andesi te

    and basal tic andesite ows,

    breccias and tu s (Si mmons and

    Browne, 1990). These rocks are

    porphyritic, consisting

    pre dominan tly of plag ioclasephenocrys ts with minor pyroxene

    and amphibo le. Sim mons and

    Br owne (1990) noted that

    conjuga te pairs of NW- and NE-

    tre nding shears and faults gen-

    eral ly lack mine ralizat ion; ins tead

    mine ralizat ion took place along

    NNW -trend ing tens ional fracture s.

    In co nnection with a region al

    study project of the Kutai Ba sin

    und ertaken by VICO (Virginia

    Indonesia Company), Tan ean et al.

    (1996) samp led Tertiary vol-

    canics of the Muara Wahau area.

    The roc ks of the Muara Wahau

    Forma tion are ma de up chie y of

    clay with inter calations of

    sands tone and volcan ic ma-

    ter ials. The lat ter include

    hornblend eandesite ows and

    dacitic pyrocl astic tus with

    andesite dykes. The ir stron gly

    por phyritic text ures and rock

    chemistry suggest an island-a rc

    calc-alka line rock seri es. Tanean et

    al. (1996) obtain ed a KAr age

    range of 21.2 20.39Ma 16.9 2 0.3 Ma from veanaly sed samp les. Resu lt

    of stud ies on the volcan icfrag ments c ontained in the Ea rly

    Miocene (N4N7) and Mid dle

    Mioce ne (N8 A N10) sandst ones

    sugges ts two di erent

    source sthe Sintang and Muara

    Wa hau volcan ics.

    The earliest Tertiary mag mati sm,

    represe nted by the Piya bung

    volcan ics, is recorded from the

    Sintang area (Sem itau Rid ge),for ming the westward

    prolonga tion of the mag matic

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    10/33

    arc. Acco rding to Hery anto et

    al. (1993) these volcan ics are the

    products of subaer ial air -fall and

    ash- ow volcanism, composed

    chie y of crys tal-lithic tus,

    pumice-bearing crystal -lithic tus

    and agglo merates, partly welded.These tus have been dated at

    49.9 2 1.0 Ma, and are perhaps

    correlatab le

    with the silicic pyr oclastic unitof Kel ian dis trictrep orted by van Leeuwen (1994).

    The distribu tion of Late Eoce ne

    volcan ics is sporad ic. Besides

    Kel ian, Mirah and the Semitau

    Rid ge (Sin tang), Late Eoc ene

    volcanics (ac id to inte rmediatetu , agglomerate, igni mbrite and

    dacite) are also known from

    Ma hakam area of the West Kutai

    Basin (Ny aan Volca nics) which

    have given K/Ar ages of 48.6 Ma

    (Tate, 1991) and

    50 22.5 Ma (Pie ters et al., 1987).Eoc ene volcan ics

    near Singka wang (dacites of the

    Serant ak Volcanic s) gave a K/Arage of 51.3 Ma (Hutchison,

    1996b) and those of the Mandai

    Ba sin from the Muller Mountains

    were dated at 40.9 Ma (Pieters et

    al., 1987).

    Pro ducts of subseque nt

    mag matism in central west

    Kal imantan occur as iso lated

    outcrops of hig h-level stock s, sills,

    dykes and pl ugs, referred to as

    the Sintang Intru sives of the

    Ketun ggau Basin and the east ern

    part of the Mela wi Basin

    (Wi lliams and Harah ap, 1987;

    Harah ap, 1993; Hery anto et al.,

    1993). Petro graphic types vary

    from granitoid rocks, dacite,

    dacite porphyry, andesite, with

    minor rhyol ite, rhy oda- cite,

    dolerite, basalt and gabbro. Based

    on their geo-

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    11/33

    logi cal setting and the relative

    abundances of volcanic rock types,

    Harah ap (1993) dis tinguis hed

    three dier- ent province s. From

    the chem ical analy ses (Hara hap,

    1993), the southe rn p rovince

    (Ear ly Cretaceous base- ment)

    shows pred ominantly basalt and

    rhyol ite, the centr al province

    (Me lawi Basin) is charac terized

    mos tly by andesi tes and daci tes

    (without basalts ), whe reas the

    northe rn province (Ke tunggau

    Basin) has abund ant basal tic

    andesites but no rhyolites. Twe lveK/Ar dates on separated mine rals

    gave an age range of 30.4 Ma

    16.4 Ma, corre spondi ng toOligoce neMiddle Miocenemag matism (Wi lliams and

    Harah ap, 1987); the age range

    ass igned to the Muara Wahau

    volcan ics of Upper Kutai district

    also fal ls within the same age

    range (Tanean et al., 1996). Eight

    rock samples were coll ected from

    the Tertiary Sintang Intru sives and

    ana- lysed by Pro uteau et al.

    (1996). They include six grano-

    dior ites of adakitic type, yiel ding

    two K/ Ar ages 18.3

    Ma and 19.2 Ma, and t wo calc-

    alka line dacites of younger age

    (16.5 Ma and 16.7 Ma).

    Accor ding to Prouteau et al.

    (1996) the adakites are related to

    the incip ient subduction of the

    Proto-Sou th Ch ina Sea,

    whe reas the lat er calc-alka line

    dacit es represe nt a more advanced

    stage of the subduct ion proces s.

    The inte rior of Bor neo, along the

    border of Sara wak andKal imanta n, is occu pied by

    platea ux of Cenozo ic lavas and

    pyrocl astic cones. Acco rding to

    Hutch ison (1996 a), this volcan ic

    arc should be paired with the

    Nor thwe st Borneo trench,

    repre senting a NW- facing

    subduction system. The bulk of

    this volcan ic ser ies appears to be

    of Miocene age. These platea ux

    rise to altitu des of up to 2600 m

    and consi st main ly of calc-al-

    kaline to potassic calc-alka line

    volcani cs, includi ng rhy odacites,

    andesi tes and basal ts. Dac itic,

    igni mbrite- tu s, glassy lavas and

    brecc ias are impo rtant products of

    this phase of volcan ism. Ki rk

    (1968) reports K/Ar ages vary ing

    from 25 Ma to 4 Ma. This

    volcan ic arc can be trac ed furth er

    NE to the Dent Peninsula of

    Sabah, where the volcan ics

    occur within Late

    Miocene-E arly Plioce nerocks

    of the Tungku

    Fo rmation (Ha ile et al., 1965).

    A sum mary of Tertiarymagm atism in Kal imant an is given

    in Table 1.

    Table 1

    Summary of Cenozoic magmatism in Kalimantan

    Period Magmatism

    and related

    tectonic

    environm ent

    Distribu tion of volcanic products

    Plio-Pleis tocene Within-pla temagmatism

    (tholeiitic)

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    12/33

    Late Miocen ePleistoc ene Subduction-r elated

    (calc-alkali ne somehigh Mg)

    Middle Miocen ePliocene Subduction-r elated

    (high Kcalc-alkali ne)

    Late Oligocen eMiddle MioceneSubduction-r elated

    magmatism

    (calc-alkali ne)

    Eocen eEarly Oligocene Subduction-r elatedmagmatism

    (calc-alkali ne)

    Busang: basalt plugs and dykes;

    Kelian and Mt. Muro:

    plateau basalts;

    Masup aria: olivine-b asalt

    ows; Sintang: basalts;

    Usun Apau:

    basalt ows;

    Linau-B alui:

    basalts.

    Dent and Semporna

    Peninsula s: ows, tus

    and basalts;

    Upper Tarakan

    basin: andesites,

    basalts and tus;

    Sulu Ridge: a sequence of

    andesites, basaltic ows

    and pyroclastic rocks.

    Usun Apau: dacite andignimbrite tus;

    Nieuwe nhuis Mt:

    andesites and basalts;

    Kinabal u: granito ids

    intrusions;

    Hose Mt.: dacite

    tus and lavas;

    Linau-B alui Plateau;

    dacites, andesites and basalts;

    Cagayan ridge: basalts and

    porphyri tic andesites. Busang:

    acidic tus (andesites, dacite s,rhyolites ); Masup aria: granitoid

    intrusions,

    andesite- dacitic pyroclastic and ows;

    Mt. Muro: andesite and basaltic andesite

    ows breccia and tus; Kelian and

    Muyu p: andesite stocks, dykes;

    Muara Wahau: andesi te ows and

    pyroclastic tus (dacite), dacitic

    dykes;

    Sintang: basalts, andesites,

    dacites, rhyolites.

    Singkawa ng: dacites;

    Manda i: dacites;

    Piyabung: pyroclastic

    tus and breccia; Kelian:

    silicic pyroclastic

    (rhyolit e);

    Nyaan: agglomera tes, ignimbrites anddacites.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    13/33

    Fig. 3. Diagram showing major elements versus SiO 2 from the volcanic rocks

    of Kalim antan.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    14/33

    Fig. 4. Rock anity after Peccerillo and

    Taylor (1976). Symbols asin Fig. 3.

    3. Chemical characteristics of the volcanic rock

    For the purpose of this paper

    availa ble analytical data on the

    rock chemistry of the Tert iary

    volcan ics (Table 2 (a)(d)) from

    various districts in Kaliman tan has

    been used, among other s, the

    Oli go-Mio cene vol- canics of

    Masupar ia (Thompson et al.,1994); Mou nt Muro (Simmo ns and

    Browne, 1990); the Sintang area,

    Cen tral Kal imant an (He ryanto et

    al., 1993) and the Miocene to Plio -

    Pleistoce ne v olcanics of Sabah

    (Bellon and Rang in, 1991). Major,

    trace a nd rare earth el- ement

    data are available on ly for the

    Oligoce ne Miocene volcan ics,

    whe reas for the Miocene toPliocene -Plei stocene volcan ics only

    major eleme nt ana- lyses are

    avai lable. Eoc eneEarly Oligoce ne

    and Plio- Plei stocene mag matism

    are not supp orted by rock

    chem istry (Ta ble 1). Analysis with

    LOI values (loss on ignition) higher

    than 4 have been excluded, to

    av oid the eects of secondary

    alterat ion. In general, chem ical

    patt erns disp lay posi tive

    corre lations bet ween Al 2O3, K2O,

    Na2O, MnO and P2O5 with

    incre asing silica con- tent, wh ile

    TiO 2, Fe2O3, MgO and CaO

    conten ts decrea se (Fig. 3). In the

    K2OSi O2 diagr am (Peccer illo andTaylor, 1976) rock anities range

    from tholeii tic and calc -alkaline to

    high- K. Tho leiites are poorly rep-

    resen ted; calc-alka line roc ks

    being most common (Fig. 4).

    Gener ally the chem ical patterns

    of the Tert iary vol- canics in the

    region are characteriz ed by high

    alumina contents, varyi ng between

    12. 619.4 %, low conten ts of

    MgO, alka lies (Na2O + K2O less

    than 8%) and Ti O2

    (0. 05 1.28 %), enriched patt erns

    of Chrond rite-norm al- ized spider

    diagr ams, with negat ive

    anomalies in HF SE, some times

    acc ompani ed by enrich ment of

    Th and U. The above chemical

    feat ures are charac teristic ofsub duction-re lated mag matism on

    an act ive conti- nental margin,

    except that variations in the Zr

    and Y

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    15/33

    contents are more charac teristic ofwithin -plate basalts

    (Pearce and Norr y, 1979) (Tables2a1, 2a2, 2b, 2c1

    2c3,2d).

    3.1. OligoceneMiocene

    Rel atively fresh volcanics fromMount Muro (50 .0

    62.5% Si O2) and Masuparia

    (55 .361.3% Si O2) h ave high

    pot assium conten ts, a nd have

    potas sic calc-alka- line to

    shosho nitic a ni ties, wh ich may

    indic ate vary- ing degrees ofcrus tal conta mination. The se

    potas sic roc ks show enriched

    spider diagr ams, 815 times

    MORB and 10 times MO RB, in

    wh ich compa tible el- ement

    patt erns are rather steep. Tho se

    from Mount Muro are

    charac terized by negative

    anomalies in Sr, Nb, Ti, and V,

    while those from Masupar ia

    show negative anoma lies in Nb,

    with relativ ely enriched Sr, Pb,

    and U conten ts.

    The cogenetic nature of the

    volcan ic roc ks in the region is

    evident from overla pping patterns

    in the spi- der diagr am, as

    illustrated by basal ts, basaltic -

    ande- sites, andesi tes and dacites

    (Fig. 5) from the Sintang area.

    They show similar patt erns in their

    extended spi- der diagr ams. The ir

    modera tely steep patt erns show

    di erent (La/Yb)N ratios of

    618, 720 and 922, in roc ks

    from the centr al, northe rn and

    southe rn parts of Sintan g,

    respec tively. They sh ow enriched

    patterns, with negat ive anoma lies

    in Ti, rela ted to FeTi oxide

    frac tionatio n, and Nb rela ted to

    sub duction proces ses (Wi lson,

    1989). High conten ts of Th and U

    may indi- cate a contribution from

    contin ental mat erials.

    Ho wever, sever al basaltic roc kscollected from the

    Sintang area have higher MgO(higher than 6%) and Ti O2

    (1.5 62.26 %) contents. A high

    MgO content nor- mal ly corre lates

    with a pri mary mag ma

    comp osition, wh ile a high TiO 2

    indic ates possible crustal co ntami-

    nation; both charac teristi cs are

    compar able with those of

    continental basalts (Wi lson, 1989).

    These basalts have not been dated;

    perhaps they repre sent products of

    a younger mag mati sm episode,

    compared to the ma- jor ity of the

    volcanic rocks in the region.

    Fig. 5 demons trates that the

    rhyolite data from the Sintang

    area show a distinct pattern in

    that the (La/ Yb)N rati os range

    between 150 600, to give steep

    pat- terns cutti ng across the

    curves for other rock types types.

    Gener ally, they show low

    contents of HREE with

    fractiona tion eects on the Ti

    content. This volca- nic suite

    shows the c haracteri stics of

    subd uction-re- lat ed mag mati sm.

    Several rock sampl es show ada kitic

    characters (Defant andDru mmond, 1996) with Y < 10

    pp m, norma lized Yb < 5 and

    Sr>500 pp m. Their low HREE

    contents show the eects of

    met asomatism on the adakitic

    mag ma prior to melting, as

    sugges ted by Prouteau et al.

    (1996 ). Adak itic mag matism took

    place at 19.2 818.31 Ma,

    fol lowed by subd uction-re latedmag matism between 16.7 216.49

    Ma (K/Ar age).

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    16/33

    Table 2a1

    Chemical analyses of Tertiary volcanics from Kalim antan(a) Masuparia (Thompson et al.,1994), Oligo-Mi ocene

    924-25A 924-22A 924-23A 924-26A 924-27A 924-27BOND 1.142 OND1.141 OND1.165 OND1.264

    Si O2 55.53 57.97 61.26 53.37 52.50 52.82 53.96 52.29 54.02 50.59TiO 2 0.99 0.55 0.57 0.92 0.93 0.93 0.75 0.83 0.7 0.89Al 2O3 17.58 16.98 16.61 18.57 18.41 18.61 14.70 15.86 15.54 16.27Fe 2O3 9.03 7.00 5.53 10.16 10.40 10.37 6.46 4.88 7.6 8.96

    MnO 0.18 0.18 0.13 0.02 0.02 0.02 0.33 0.26 0.2 0.23MgO 4.05 3.92 2.39 3.98 4.02 4.07 4.46 3.04 3.8 5.06CaO 8.24 7.42 5.44 8.85 8.86 9.05 4.62 4.77 3.2 2.72Na 2O 2.60 3.06 3.62 3.13 3.11 3.07 2.00 0.10 2.9 0.70K2O 0.69 1.71 2.39 0.60 0.59 0.57 3.34 5.43 3.1 5.82P2O5 0.13 0.14 0.14 0.14 0.13 0.13 0.13 0.15 0.1 0.13SO 3 0.02 nd 0.01 0.01 0.01 0.01 0.25 2.95 2.4 0.47LOI 1.57 1.20 1.43 0.49 0.48 0.43 8.93 8.35 5.8 7.73

    Total 100.61

    100.13

    99.52 100.24

    99.46 100.08

    99.93 98.91 99.82 99.57

    Rb 12 5 7 9 1 9 108 17 106 183Ba 281 442 477 147 142 146 501 1023 405 623Sr 361 643 479 489 488 484 173 8 238 8La 12 2 2 9 6 7 1 1 1 1Ce 23 3 4 2 1 1 2 4 1 2

    PrNd 14 1 2 8 1 1 1 2 1 1Sm

    EuGd

    DyEr

    YbY 31 1 2 2 2 2 3 3 2 2Zr 108 8 156 6 6 6 122 12 128 9Nb 2.4 3.5 5.7 1.8 2.5 1.6 2. 3.1 2. 2Sc 28 1 1 2 2 2 2 2 2 2V 263 175 125 250 246 249 179 22 374 283Cr 128 2 1 7 7 5 1 1 2 2Ni 48 1 6 9 1 9 4 4 8 1

    Th 4 8.1 2.4 2.8 0.6 4. 2 4. 2.Pb 6 1 9 5 7 5 1 1 1 4Zn 89 6 4 6 6 6 9 5 8 8Cu 36 7 3 4 4 4 146 3 4 7U 1.4 1 2.9 1.5 1. 2.Ga 17 1

    614

    20

    19

    20

    15

    16

    15

    15

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    17/33

    Table 2a2

    924-25A 924-22A 924-23A 924-26A 924-27A 924-27BOND 1.142 OND1.141 OND1.165 OND1.264

    Si O2 55.53 57.97 61.26 53.37 52.50 52.82 53.96 52.29 54.02 50.59TiO 2 0.99 0.55 0.57 0.92 0.93 0.93 0.75 0.83 0.7 0.89Al 2O3 17.58 16.98 16.61 18.57 18.41 18.61 14.70 15.86 15.54 16.27Fe 2O3 9.03 7.00 5.53 10.16 10.40 10.37 6.46 4.88 7.6 8.96MnO 0.18 0.18 0.13 0.02 0.02 0.02 0.33 0.26 0.2 0.23MgO 4.05 3.92 2.39 3.98 4.02 4.07 4.46 3.04 3.8 5.06CaO 8.24 7.42 5.44 8.85 8.86 9.05 4.62 4.77 3.2 2.72Na 2O 2.60 3.06 3.62 3.13 3.11 3.07 2.00 0.10 2.9 0.70K2O 0.69 1.71 2.39 0.60 0.59 0.57 3.34 5.43 3.1 5.82P2O5 0.13 0.14 0.14 0.14 0.13 0.13 0.13 0.15 0.1 0.13SO 3 0.02 nd 0.01 0.01 0.01 0.01 0.25 2.95 2.4 0.47LOI 1.57 1.20 1.43 0.49 0.48 0.43 8.93 8.35 5.8 7.73

    Total 100.61

    100.13

    99.52 100.24

    99.46 100.08

    99.93 98.91 99.82 99.57

    Rb 12 5 7 9 1 9 108 17 106 183Ba 281 442 477 147 142 146 501 1023 405 623Sr 361 643 479 489 488 484 173 8 238 8La 12 2 2 9 6 7 1 1 1 1Ce 23 3 4 2 1 1 2 4 1 2PrNd 14 1 2 8 1 1 1 2 1 1Sm

    EuGd

    DyEr

    YbY 31 1 2 2 2 2 3 3 2 2Zr 108 8 156 6 6 6 122 12 128 9Nb 2.4 3.5 5.7 1.8 2.5 1.6 2. 3.1 2. 2Sc 28 1 1 2 2 2 2 2 2 2V 263 175 125 250 246 249 179 22 374 283Cr 128 2 1 7 7 5 1 1 2 2Ni 48 1 6 9 1 9 4 4 8 1Th 4 8.1 2.4 2.8 0.6 4. 2 4. 2.Pb 6 1 9 5 7 5 1 1 1 4Zn 89 6 4 6 6 6 9 5 8 8Cu 36 7 3 4 4 4 146 3 4 7

    U 1.4 1 2.9 1.5 1. 2.Ga 17 16

    14

    20

    19

    20

    15

    16

    15

    15

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    18/33

    Table 2b

    Mount Muro (Simmons and Browne, 1990), Oligo-Mioc ene

    45- 64-114 71- 80- 74-168 17- 17-107 74145 47-

    Si O2 50.54 55.86 56.45 55.84 56.96 54.21 57.66 61.56 65.0TiO 2 0.93 0.90 0.87 0.84 0.72 1.03 0.95 0.67 0.6Al 2O3 18.62 17.08 17.16 16.57 16.48 16.43 17.73 17.04 16.9Fe 2O3 8.99 7.95 7.49 7.12 8.70 8.55 8.74 3.94 3.7MnO 0.98 0.47 0.28 0.30 0.22 0.51 0.05 0.19 0.1MgO 4.91 3.37 3.12 2.93 2.72 5.24 1.39 3.30 1.0CaO 8.11 5.66 5.96 4.09 3.05 0.53 0.32 0.26 0.0Na 2O 2.94 3.73 3.39 2.84 3.64 2.63 0.47 1.66 0.0K2O 1.29 2.05 2.57 3.73 2.76 3.81 4.46 6.52 5.1

    P2O5 0.22 0.22 0.23 0.30 0.18 0.29 0.20 0.18 0.0LOI 2.17 1.75 1.83 3.65 2.78 5.28 7.72 3.61 5.9H2O 0.19 0.19 0.16 0.41 0.16 0.09 0.24 0.27 0.6

    Total 99.89 99.23 99.51 98.62 98.37 98.60 99.93 99.20 99.4Rb 3 4 5 8 7 106 136 154 13Ba 336 277 381 966 502 415 236 870 59Sr 671 525 518 761 392 113 5 177 6La 2 1 1 2 1 1 1 1 2CePrNd

    Sm

    EuGd

    Dy

    ErYbY 2 2 2 2 2 2 2 2 1Zr 131 156 162 174 174 138 147 168 12Nb

    ScV 270 189 198 126 158 208 170 139 17Cr 2 6 9 7 0 6 7 1 1Ni 1 7 8 9 8 0 0 2 1Th 9 0 1 1 6 0 0 0 6Pb 1 1 2 1 2 2 3 2 2Zn 9 102 9 124 162 115 3 168 6Cu 612 3 4 4 239 5 1 6 3UGa

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    19/33

    Table 2c1

    Sintang, Central West Kalimantan (Harahap, 1993; Heryanto et al., 1993), Oligo-Mioc ene

    69292 69293 69295 69294 69299 69303 69301 69355 69350 69375 69372 6936869365 69366 69379 69307 69343 69341 69347

    Southern area Central area

    Si O2 46. 48. 48. 49. 51. 51. 55. 61. 63. 69. 71. 72. 75. 75. 75. 60. 60. 61. 62.

    TiO 2 2. 0. 0.9 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.3Al 2O3 15. 16. 17. 19. 18. 17. 17. 16. 15. 16. 15. 16. 12. 13. 12. 17. 16. 17. 16.Fe 2O3 15. 9. 9.7 10. 9. 7. 7. 5. 3. 2. 1. 1. 1. 0. 1. 5. 4. 7. 3.9MnO 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.8MgO 5. 8. 7.5 4. 4. 3. 2. 0. 1. 0. 0. 0. 0. 0. 0. 3. 2. 1. 2.8CaO 8. 9. 9.7 10. 7. 6. 6. 4. 4. 3. 0. 1. 0. 0. 0. 6. 3. 1. 5.2Na 2O 3. 2. 2.3 3. 3. 4. 4. 3. 3. 3. 4. 4. 3. 3. 3. 3. 4. 5. 4.1K2O 0. 0. 0.5 0. 1. 1. 1. 2. 1. 1. 2. 2. 4. 4. 3. 0. 1. 0. 0.8P2O5 0. 0. 0.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1LOI 2. 0. 0. 1. 2. 1. 1. 4. 5. 1. 2. 2. 1. 1. 1. 2. 4. 2. 3.2

    Total 100. 97. 96.96 99. 95. 99. 99. 99. 99. 99.67 99. 99. 99.83 99.89 100.61Rb 13 8 12 24 58 20 12 40 39 41 82 60 137 120 112 27 59 20 42

    Ba 473 95 220 366 467 360 155 430 453 574 758 674 60 766 801 247 460 423 294Sr 508 329 603 818 798 1172 343 624 694 639 413 416 45 72 113 492 768 260 536La 28 9 10 9 21 29 15 25 28 16 22 18 117 43 28 10 30 27 11

    Ce 69 23 22 22 53 67 33 53 61 30 46 41 140 78 49 22 68 66 18Pr 8. 3. 7. 4. 2. 2.1Nd 40 14 15 16 28 32 18 23 25 13 16 19 99 29 14 11 28 33 9Sm 9. 3. 5. 3. 2. 1.7Eu 3. 1. 1. 1. 0. 0.6Gd 9. 3. 4. 4. 2. 1.7Dy 8. 4. 3. 4. 2. 1.5Er 5. 2. 1. 2. 1. 0.9

    Yb 4. 2. 1. 2. 1 0.7Y 46 25 19 20 21 21 27 18 17 9 13 6 89 28 16 13 15 38 10Zr 269 88 78 78 208 199 100 145 167 93 143 48 549 81 77 89 167 187 0Nb 8 2 3 3 12 12 6 13 10 4 6 8 34 12 11 3 16 8 3Sc 29 36 33 25 18 12 25 10 11 9 2 2 6 1 5 18 13V 316 187 272 243 174 147 186 84 71 49 10 3 3 8 15 119 99 64 80Cr 33 281 26 9 36 3 151 2 22 10 2 2 2 2 2 71 41 13 92

    Ni 58 194 35 23 20 7 133 4 15 6 1 1 2 1 1 24 20 9 35

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    20/33

    Y 1 11 19 6 9 6 8 1 7 2 4 19 42 18 4Zr 16 87 223 10 114 82 114 28 51 1 28 12 235 17 265Nb 1 3 9 3 4 2 5 4 6 1 1 5 9 14 1Sc 1 9 7 6 9 9 10 3 2 3 3 21 21 15 1V 9 66 21 50 57 52 62 3 4 327 23 15 185 98 5Cr 6 22 2 29 50 44 35 3 2 258 8 15 40 57 5Ni 4

    319 1 28 31 29 26 1 1 177 6 8 34 33 3

    Table 2c2

    69345 69344 69481 69340 69342 69338 69325 69336 69327 69337 69363 6936169362 69297 69308 69306 69310 69334 69328

    Central area Northern area

    Si O2 62. 62. 64. 64. 64. 64. 65. 65. 65. 65. 72. 72. 73. 49. 54. 56. 56. 63. 63.TiO 2 0.4 0. 0.3 0. 0. 0.4 0. 0. 0. 0. 0.0 0.0 0. 1.9 1.5 0.8 1. 0. 0.8Al 2O3 17. 15. 16. 16. 17. 16. 16. 15. 15. 16. 15. 15. 15. 15. 15. 18. 16. 15. 15.Fe 2O3 4.0 4. 3.4 3. 4. 2.5 2. 3. 2. 3. 0.9 0.9 0. 10. 10. 6.8 7. 4. 5.6MnO 0.1 0. 0.0 0. 0. 0.0 0. 0. 0. 0. 0.0 0.0 0. 0.1 0.2 0.1 0. 0. 0.1MgO 1.7 2. 2.9 2. 0. 1.9 1. 2. 1. 1. 0.3 0.2 0. 7.6 4.1 4.1 3. 2. 1.1CaO 6.2 5. 4.5 4. 3. 4.1 4. 4. 4. 4. 2.5 2.7 1. 9.7 6.6 7.2 6. 4. 3.4

    Na 2O 3.6 3. 4.4 5. 4. 4.6 4. 3. 3. 5. 4.2 4.2 4. 2.7 3.2 3.8 3. 3. 4.9K2O 1.3 3. 1.0 1. 1. 1.7 1. 1. 0. 1. 2.3 2.2 0. 0.1 1.3 1.1 1. 2. 1.8P2O5 0.1 0. 0.1 0. 0. 0.1 0. 0. 0. 0. 0.0 0.0 0. 0.4 0.4 0.2 0. 0. 0.2LOI 1.5 1. 2.0 1. 1. 1.5 2. 2. 4. 0. 0.8 1.0 1. 0.0 2.5 0.2 1. 0. 2.1

    Total 99.42 100.76 99.60 99.91 99.96 98.60 99.88

    Rb 63 2 29 3 55 28 48 90 32 1 4 39 41 108 73Ba 518 274 344 309 399 358 21 589 520 117 332 293 257 1078 387Sr 706 1060 714 1099 526 838 992 504 538 503 323 556 333 475 298La 28 1 28 1 5 12 18 2 15 8 26 16 19 22 25Ce 59 2 58 2 27 24 36 4 34 21 65 34 43 46 58Pr 6. 3 6. 0.3 3.0 4.1Nd 24 1 25 9. 11. 9 15 1.8 14 16 33 17 25 19 31Sm 4. 2 4. 0.4 3.7 3.Eu 1. 1 1. 0.2 1.5 1.Gd 3. 2 3. 0.4 4.1 3.

    Dy 2. 2 2. 0.1 3.8 3.Er 1. 1 1. 0.1 2.0 1.Yb 1. 1 1. 0.1 1.3 1.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    21/33

    Table 2c3

    PR068B BH200A AM076A PR077B DT053B PW108A DS071B PP001A

    SS108A DS079A CP206B PW110A CP274A Northern area

    Si O2 (%) 64.27 61.91 65.68 65.69 65.75 63.53 65.87 72.80 73.87 54.00 56.4656.76 63.47

    TiO 2 0.41 0.75 0.35 0.38 0.32 0.88 0.34 0.03 0.07 1.56 0.85 1.28

    0.66

    Al 2O3 16.88 17.70 16.47 15.75 15.48 15.80 16.68 15.77 15.52 15.32 18.78 16.75

    15.93Fe 2O3 3.77 7.48 2.74 3.45 2.67 5.62 3.13 0.93 0.93 10.84 6.86 7.95

    4.96

    MnO 0.05 0.16 0.04 0.07 0.05 0.13 0.05 0.04 0.05 0.28 0.11 0.120.09

    MgO 2.01 1.13 1.71 2.21 1.57 1.18 1.73 0.25 0.35 4.13 4.13 3.322.57

    CaO 4.31 1.65 4.30 4.33 4.47 3.44 4.50 2.72 1.98 6.69 7.27 6.894.68

    Na 2O 5.26 5.53 4.47 3.90 3.77 4.97 5.18 4.22 4.86 3.23 3.83 3.36

    3.78

    K2O 1.08 0.86 1.47 1.40 0.99 1.85 1.61 2.21 0.59 1.31 1.19 1.39

    2.48

    P2O5 0.19 0.50 0.15 0.13 0.11 0.26 0.19 0.04 0.10 0.47 0.21 0.29

    0.29LOI 1.68 2.94 2.50 2.58 4.65 2.16 0.49 1.07 1.49 2.51 0.27 1.30

    0.98

    Total 99.91 100.61 99.88 99.89 99.83 99.82 99.77 100.08 99.81 100.3499.96 99.41 99.89

    Rb (ppm) 22 20 38 55 28 73 48 90 32 4 39 41108

    Ba 274 423 309 399 358 387 21 589 520 332 293 2571078

    Sr 1060 260 1099 526 838 298 992 540 538 323 556 333475

    La 12 27 13 5 12 25 18 2 15 26 16 1922

    Ce 26 66 29 27 24 58 36 4 34 65 34 43

    46Pr 2.89 0.38 4.19

    Nd 12 33 9.4 11.3 9 31 15 1.88 14 33 17 2519

    Sm 2.06 0.46 3.7

    Eu 0.73 0.22

    1.19 Gd 1.89 0.48

    3.48 Dy 1.61

    0.19 3.36 Er 0.94

    0.17 1.81 Yb 0.73

    0.17 1.52

    Y 11 38 6 9 6 46 8 1 7 47 19 42

    18Zr 87 187 107 114 82 265 114 28 51 285 120 235

    170

    Nb 3 8 3 4 2 11 5 4 6 10 5 9

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    22/33

    14

    Sc 9 2 6 9 9 18 10 3 2 30 21 2115

    V 66 64 50 57 52 53 62 3 4 235 152 18598

    Cr 22 13 29 50 44 5 35 3 2 88 15 4057

    Ni 19 9 28 31 29 3 26 1 1 6 8 34

    33

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    23/33

    Table 2d

    Sabah, Dent and Semporna (Bellon and Rangin, 1991), Miocen ePleistocene

    13 S.8792 12 S.129 11 S.8411 10S8734 9S264.1 5 S 266 6 S 266 4S87.91 3S87.901S138.1

    Sabah/Kinabalu Dent Semporna

    Si O2 (%) 58.40 52.00 60.20 48.50 53.10 62.20 62.20 62.35 64.30 59.5TiO 2 1.06 2.27 0.64 0.69 0.98 0.57 0.64 0.50 0.54 0.7Al 2O3 16.19 14.12 16.65 18.92 17.58 15.85 16.69 15.98 15.53 16.0Fe 2O3 7.56 13.10 5.92 8.06 8.26 5.31 5.44 5.88 5.26 6.6MnO 0.15 0.15 0.14 0.17 0.14 0.10 0.08 0.11 0.10 0.1MgO 3.39 6.07 2.39 5.32 3.75 2.64 1.92 2.46 2.23 2.9CaO 4.47 6.60 5.51 10.03 8.92 5.13 6.51 6.00 4.84 6.0Na 2O 3.48 3.06 2.98 2.92 2.54 3.21 3.01 2.73 3.06 2.8K2O 1.58 0.25 2.85 0.48 1.52 2.30 2.11 2.31 2.53 1.6P2O5 0.25 0.15 0.20 0.05 0.30 0.20 0.25 0.12 0.10 0.1LOI 0.69 0.80 1.69 4.91 2.11 2.44 0.47 1.72 1.74 1.9

    Total 97.22 98.57 99.17 100.0 99.20 99.95 99.32 100.1 100.2 98.6Rb 55 9 1 6 6 100 8 8 9 5

    Ba 371 7 409 7 335 439 365 312 349 430Sr 350 162 466 326 457 482 423 270 245 210LaCePrNd

    Sm

    EuGd

    DyEr

    YbY

    Zr

    Nb

    ScV 80 167 153 280 271 121 167 140 120 182Cr 68 232 1 3 1 3 2 1 1 3Ni 40 150 8 1

    619

    19

    17

    8 8 9

    3.2. Middle to Late Miocene

    Middle to Late Miocene rocks

    are known from the Dent and

    Samp orna peninsulas. They are

    mostly inte r- medi ate in

    compos ition (dacites to

    andesi tes) with minor basaltic

    rocks. The low Ti O2 and MgO and

    the high alka li content are

    indic ative of potassic calc -alka-

    line anity and suggest a generic

    rela tionship to sub- duction.

    3.3. Late MiocenePliocene

    Late Mioce nePlioce ne mag matic

    act ivity gave rise to the for mation

    of the mag matic rocks of Sabah

    and Kinab alu. The dior ites of

    Mount Kinab alu exhibit a normal

    to potas sic calc-alka line ani ty,

    with the charac teristi cs of

    subd uction-re lated mag matism.The Pliocene volcanics consist of

    thole iitic basal ts, some of wh ich

    disp lay relativ ely high MgO

    (high er than 6%) and TiO 2

    (high er than 2.0% ); these

    major eleme nt

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    24/33

    characteri stics point to

    mag matism related to within-

    plate geody namics.

    Table 1 gives a sum mary ofCenozo ic mag matism

    and possib le cha nges in the

    respec tive tect onic environ- ment,

    as inte rpreted from the main

    chem ical signa tures revea led by

    geochemistry and rock suite

    ani ties.

    4. Geodynamic interpretat ion

    Based on the present data

    concerning Te rtiary mag- mat ism

    and the region al geology of

    Kal imantan (inc luding Borne o)

    four major periods of geodynam ic

    evolution have been disting uished as

    fol lows:

    Acco rding to Dain es (1985)

    rifting of the marg in of As ia to

    pr oduce the South Chi na Sea

    took place during

    Eoc eneOligoce ne time, resu lting in

    southeast- wa rd mo vement of the

    Lucon ia continental block and

    lead ing to the sub duction of part

    of the South Chi na Sea Plate

    beneath the northe rn marg in of

    Sund aland.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    25/33

    Fig. 5. Chondrite normalized extended spider-di agram of volcanic rocks (normaliza tionvalues after Sun and McDonou gh, 1989).

    The Eoc eneEarly Oligoce ne

    mag matic belt along this

    continental margin can be follow ed

    from Sintang (cen- tral West

    Kaliman tan), through Kel ian to

    the Up per Tara kan Basin. This

    mag mati sm is conside red to be re-

    lat ed to southea sterly

    subduct ion in the Rajang

    Tre nch. The proposed subduct ion

    mo del is comparable to an active

    contin ental margin of Chili an type

    (Fig. 6).

    Collision and doc king of the

    Luconia contin ental block with

    the northe rn margin of

    Sund aland must have taken place

    during the Middle Olig ocene, as

    the youngest sedi ments involved in

    the inten se foldi ng ofthe Rajang

    Trench are of Early Oligoce ne

    age (Hu tchison, 1996a).Defo rmation at this time is also

    recorded by the Early Olig ocene

    unco nformity in the Mela wi Basin

    (Pieters et al., 1987). The suture

    related to this collision, the Lupar

    Line, is marked by imb ri- cated

    ophi olites (Fig. 7).

    Late Oligocen eMiddle Miocene

    subduct ion-re lated mag matism is

    superimposed on the Eoc ene

    mag matic belt, and may be trac ed

    from Sintang (the western most

    part of the mag matic belt)

    eastwa rds through

    Masu paria and further

    north wards to Mou nt Muro,

    Kelia n, Muyup, Busang, Muara

    Wahau and along the northe rn

    ank of Mangkali hat and

    Sesayap, Middle Miocen ePlioce ne

    volcan ics are doc umented from

    the region of the fossil Ra jang

    Tre nch (Mo unt Hose,UsunApau and Niewenhu is), to

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    26/33

    Kinab alu and the Cag ayan Ridge,

    while Late Miocene to Pleistocene

    mag matism extends from the

    Upper Tar akan Basin,

    into the peninsulas of Dent

    and Samporna and throu gh the

    Sulu Arc to Mindanao.

    The Late Oligoce neMiddle

    Miocene mag matic ac- tivity is

    perhaps related to remna nts ofthe Eoce ne subducted slab,

    whe reas the Middle

    Miocen ePlioce ne mag matic

    activi ty along the Sibu-Rajang Zone

    and Cag ayan Ridge is rela ted to

    subduct ion in the Palaw an Trench

    (Fig. 8). Th is Mioce ne subduction

    could be the resu lt of

    countercl ockwise rotation of

    Bo rneo, as pro- posed by Hall(1996 ). Miocene subd uction-re lated

    mag matism is also recorded from

    Mo unt Kinab alu, the subma rine

    oceanic ridge of Cag ayan and

    Pan ay Isl and in the Phil ippines

    (Bellon and Rang in, 1991).

    In Cen tral Kalima ntan Miocene

    volcan ic rocks are repre sented by

    the Sintang Intrusives of potas sic

    calc- alka line ani ty (He ryanto et

    al., 1993) which are prob- ably

    related to crustal thicke ning as

    the resu lt of the collision with

    the Lucon ia Bloc k. Hutchis on

    (1996 a) sugges ts that Miocene

    mag matism along the Cagay an

    Rid ge does not continue into

    Saba h. Ho wever, Bellon and

    Rang in (1991) point out that theintrusive rocks of Mo unt Kinab alu

    are also of calc-alka line anity,

    wh ich may indicate that the

    mag matism of the Cag ayan belt

    does not extend west wards into

    Sabah. The Late

    Miocen ePlei stocene mag matic

    arc of the Sulu Sea continues into

    the Dent and Sampor na penin-

    sula s. This mag matism is regard ed

    as rela ted to sub- duction in the

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    27/33

    Sulu Tre nch (Hutchison, 1996a;

    Be llon and Rangi n, 1991; Rang in

    and Silv er, 1991). The wes- tern

    part of this sub duction sys tem is

    bound ed by a

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    28/33

    Fig. 6. A, The magmatic belt of Central Kalimantan during Eo-Oligo cene time. B, Schematicregional cross-secti on (modied from James, 1984).

    1, Magmatic belt; 2, accretionary prism belt. Numb ers are K/Ar dates from volcanic rocks.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    29/33

    Fig. 7. A, Collision belt of North Kalimantan during Middle Oligocene time. B, Schema tic

    cross-secti on. 1, Folded belt/collisi on zone; 2, mag- matic belt. Numbers are Ka/Ar ages from

    volcanic rocks.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    30/33

    Fig. 8. A, Magmatic belt of Kalimantan during Late Oligoce neMiddle Miocene and Late

    Miocen ePleistocene times. 1, Late Oligoce neMiddle Miocene magmatic belt related to the

    Eocene subducted slab; 2, Middle Miocen ePliocene magmatic belt related to subduction inthe Palawan Trench; 3, Late Miocen ePleistocene magma tic belt related to subduction in

    the Sulu Trench. B, Schematic cross-secti on. Numbers are K/Ar ages from volcanic rocks.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    31/33

    NN W SSE sinist ral strike- slip fault

    wh ich may be a north ward

    extension of the Palu Koro Fault

    (Fig. 8). Nor thward mov ement of

    Celebes Sea Plate, as a conse-

    quence of the collision of

    Ban ggai-Sula with eastern

    Sula wesi, may have ini tiated the

    subd uction which for med the Sulu

    Arc.

    Relat ively large outcrops of

    Plio -Pleistoce ne vol- canics have

    been mapped by Pieters et al.

    (1987) in the Niewen huis

    Mo untains and Maha kam region,howev er none of them have been

    described. Gener ally they are

    basal tic in composition and their

    rock chem istry shows continental

    basalt anity. Basaltic roc ks from

    Sintang and Sabah display

    relativ ely high magne sia conten ts,

    indic ating a more pri mitive

    compos ition, sugges ting the

    invol vement of oceanic basem entin their for- mati on.

    The val idity of the inte rpretation

    of the geo dynamic his tory of

    Kaliman tan and Bo rneo as

    presented above may be subject to

    revision when recent work by

    Fuller et al. (1999) is taken into

    account. Fuller et al. (1999) report

    two signi cant co untercloc kwise

    rotations of Borneo which are not

    incorpor ated in current synth- eses.

    A better und erstan ding of the

    geodynam ic hist ory of Kalima ntan

    and Bo rneo will resu lt from

    furth er geo physical work,

    espec ially in those

    areas of Kaliman tan whe re

    eld data is scarce or unavaila ble.

    Acknowledgements

    The present authors are grat eful

    to R.C. Maury and H. Bello n,

    Univ ersite de Bretagne

    Occide ntale, Brest (France ), for

    their commen ts on the

    geochem istry. We also thank J.P.

    Rampnou x, Univ ersite de Savoie,

    Le Bou rget du lac (France ), for his

    sugges tions concerning the

    geody namic inte rpretation.

    References

    Bellon, H., Rangin, C., 1991. Geoche mistry

    and isotopic dating of Cenozoic volcanic

    arc seque nces around the Celebes and

    Sulu seas. In: Silver, E.A., Rangin, C.,

    von Breymann, M.T., et al. (Eds.),

    Proceedings of Ocean Drilling Program

    124. pp. 5153.

    Carlile, J.C., Mitchell, A.H.G., 1994.

    Magmatic arcs and associated gold and

    copper minerali zation in Indonesia (special

    issue) In: van Leeuwen, T.M.,

    Hedenqu ist, J.W., James, L.P., Dow,

    J.A.S. (Eds.), Journal of Geoche mical

    Explorati on 50. pp. 91142.Daines, S.R., 1985. Structural history of the

    West Natu na Basin and the tectonic

    evolution of the Sunda Region.

    Proceedings 14th Annual Conventi on,

    Indonesian Petroleum Association, pp.

    3965. Defant, M.J., Drummond, M.S.,

    1996. Derivation of some modern arc

    magma by melting of young subduc ted

    lithos phere. Nature, London

    347,66266 5.

    Felderhof, J.B., de Guzman, M.T., Puspo s,C.M., Nassey, J.M., 1996.

    Mineralizati on in a maar diatrem edome

    complex: Busang gold deposit, East

    Kalim antan, Indonesia. Paper presented

    by Bre-X Minerals Ltd. at the

    Indonesian Mining Associa tion Meeting,

    Jakarta, pp. 19.

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    32/33

    Fuller, M., Ali, J., Moss, S., Frost, G.M.,Richte r, B., Mah, A., 1999.

    Paleomagnetism of Borneo. Journal ofAsian Earth Sciences, 17,

    324.

    Haile, N.S., Wong, N.P.Y., Nuttall, C.P.,

    1965. The geology and min- eral resources

    of the Dent Peninsula, Sabah. Geologi cal

    Survey of Malaysia, Borneo Region Memo ir

    16.

    Hall, R., 1996. Reconstr ucting CenozoicSE Asia. In: Hall, R.,

    Blundell, D.J. (Eds.), Tectonic Evolution of

    Southwest Asia, 106. Geological Society of

    London Special Publication, pp. 153184.

    Hamilton, W.B., 1979. Tectonics of theIndon esian Region. USGS

    Profession alPaper 1078.

    Harahap, B.H., 1993. Geoche mical

    investiga tion of Tertiary, magma- tism

    rocks from Central West Kalimanta n,

    Indon esia. Proceedings

    22nd Annual Convention, IndonesianAssociation of Geologi sts,

    1, pp.304326.

    Heryanto, R., Williams, P.R., Harahap,B.H., Pieters, P.E., 1993.

    Geology of the Sintang Sheet area,

    Kalimanta n, Explanat ory note and

    Geological Map. Geological Research

    and Developm ent Center, Indonesian

    Department of Mines and Energy.

    Hutchison, C.S., 1996a. GeologicalEvolution of Southe ast Asia.

    OxfordUniversityPress.

    Hutchison, C.S., 1996b. The Rajang

    accretio nary prism and Lupar Line

    problem of Borneo. In: Hall, R.,

    Blundell, D.J. (Eds.), Tectonic Evolution

    of Southeast Asia, 106. Geological

    Society Special Publicatio n, pp. 247261.

    James, D.M.D., 1984. The Geology andHydrocarbon Resources of Negara Brunei

    Darussala m. Brunei Museum and Brunei

    Shell Petroleum Compan y.

    Kirk, H.J.C., 1968. The igneous rocks ofSarawak and Sabah.

    Geological Survey of Malaysia, Borneo

    Region Bulletin 5. Meldrum, S.J., Aquino,

    R.S., Gonzal es, R.I., Burke, R.J., Suyadi, A.,

    Irianto, B., Clarke, D.S., 1994. The BatuHijau porphyry copper-gold deposit, Sumbawa Island, Indonesia

    (special issue) In: van Leeuwen, T.M.,

    Hedenquis t, J.W., James, L.P., Dow,

    J.A.S. (Eds.), Journal of Geochemic al

    Explorati on 50. pp. 203220.

    Peccerillo, A., Taylor, S.R., 1976.

    Geoche mistry of Eocene calc-alka- line

    volcanic rocks from Kastamanu area,

    Northern Turkey. Contributi ons to

    Mineralogy and Petrology 58, 6381.

    Pearce, J.A., Norry, M.J., 1979. Petrogeneticimplication of Ti, Zr, Y

    and Nb variatio ns

    in volcanic rocks.Contributi ons to Mineralogy and Petrolo gy

    69, 3347.

    Pieters, P.E., Trail, D.S., Supriatn a, S.,1987. Correlation of Early

    Tertiary rocks across Kalimantan.Proceedings 16th Annual

    Convention, Indonesia Petroleum

    Association, 1, pp. 291306. Prouteau, G.,

    Maury, R.C., Rangin, C., Emmy, S., Bellon,

    H., 1996.

    Les adakites miocenes du NW de Borneo,

    temoins de la fermeture de la proto-mer

    de Chine, Comptes Rendus. Academ iedes Sciences, Paris 323 (II), 925932.

    Rangin, C., Silver, E.A., 1991. Neogene

    tectonic evolut ion of the Celebe sSulu

    basins: New insights from Leg 124

    drillin g. In: Silver, E.A., Rangin, C., von

    Breyman, M.T. (Eds), Proceedings of the

    Ocean Drilling Program, 124. pp. 321338.

    Simmons, S.F., Browne, P.R.L., 1990.Mineralogi c, alteration and

    uid-inclusion studies of epithermal gold-

    bea ring veins at the Mt. Muro prospect,

    Central Kalimantan (Borne o),Indonesia. In: Hedenquist, J.W., White,

    N.C., Siddely, G. (Eds.), Epithermal

    Gold Mineralizati on of the Circu m-

    Pacic I; Geology, Geochemistry,

    Origin and Exploration, 16a.

    Associa tion of Exploration Geoche mists

    Special Publicatio n, pp. 63103.

    Sun, S.S., McDon ough, W.F., 1989. Chemical

    and isotop ic systematics of oceanic

    basalts: Implication for mantle

    composi tion and pro- cesses. In: Saunders,

    A.D., Norry, M.J. (Eds.), Magmatism in

    the Ocean Basins, 42. Geologi cal Society

    Special Publicatio n, pp. 313

    345.

    Tanean, H., Paterso n, D.W., Mac Endharto,

    1996. Source provenance interpretati on of

    Kutei Basin sandstones and the implications

    for the tectonic-strati graphic evolution of

    Kalimantan. In: Proceeding s,

  • 8/3/2019 Cenozoic Magmatism in Kalimatan and Its Related Geodynamic Evolution

    33/33

    Indonesian Petroleum Association,25th Silver Annivers ary

    Conventi on, pp.333345.

    Tate, R.B., 1991. Cross-bor der correlation ofgeologic al formati ons in

    Sarawak and Kalimanta n. Geological

    Society of Malaysia Bulletin28,6395.

    Thomps on, J.F.H., Abidin, H.Z., Both,

    R.A., Martosu royo, S., Raerty, W.J.,

    Thomps on, A.J.B., 1994. Alteration and

    epither mal minerali zation in the

    Masup aria volcanic center, Central

    Kalimanta n, Indonesian (special issue) In:

    van Leeuwen, T.M., Hedenquis t, J.W.,

    James, L.P., Dow, J.A.S. (Eds.), Journal

    of Geochemic al Exploration 50. pp.

    429456.

    Van Bemmelen, R.W., 1949. The Geologyof Indonesia, Vol. 1A.

    Martinus Nijho. The Hague.

    Van de Weerd, A., Armin, R.A., Mahadi,S., Ware, P.L.B., 1987.

    Geologic setting of the Kerendan gas and

    condensate discover y, Tertiary sedimentary

    geology and paleogeogr aphy of the

    northwes- tern part of the Kutei Basin,

    Kalimantan, Indon esia. Proceedi ngs

    16th Annual Convention, IndonesianPetroleum Association, pp.

    317338.

    Van Leeuwen, T.M., 1994. 25 years of

    mineral exploration and discov- ery in

    Indonesia (Special issue) In: van Leeuwen,

    T.M., Hedenquist,

    J.W., James, L.P., Dow, J.A.S. (Eds.), Journal of Geoche mical

    Exploration 50.pp. 190.

    Van Leeuwen, T.M., Leach, T., Hawke,A.A., Hawke, M.M., 1990.

    The Kelian disseminated gold

    deposit, East Kalimantan, Indonesia. In:

    Hedenq uist, J.W., White, N.C., Siddeley,

    G. (Eds.), Epithermal Gold Minerali zation

    of the Circu m-Pacic I; Geology,

    Geochemistry, Origin and

    Exploration, 16a. Associa tion of

    Exploration Geoche mists Special

    Publicatio n, pp. 161.

    White, N.C., Hedenquist, J.W., 1990.

    Epither mal environm ents and styles of

    minerali zation: variations and their causes,and guidelines for exploration. In:

    Hedenquist, J.W., White, N.C., Siddel ey,

    G. (Eds.), Epithermal Gold Mineralizati on

    of the Circum-P acic I; Geology,

    Geoche mistry, Origin and Explorati on,

    16a. Association of Explorati on

    Geochemis ts Special Public ation, pp.

    445474.

    Williams, P.R., Harahap, B.H., 1987.

    Prelimi nary geochemical and age data from

    post-sub duction intrusive rocks, northwest

    Borneo. Australian Journal of Earth

    Science 34, 405415.

    Wilson, M., 1989. Igneous Petrogen esis, AGlobal Tectonic Approach.

    Harper CollinsAcadem ic Press.