cepc mdi beam backgrounds study - indico.cern.ch · •beam gas scattering •beam thermal photon...

46
CEPC MDI Beam Backgrounds Study Haoyu SHI, Wei XU, Hongbo ZHU, Ke LI IHEP, CAS On behalf of the CEPC MDI BG Study Group, ICHEP 2020, Accelerator: Physics, Performance, and R&D for Future Facilities, Virtual Conference, 2020

Upload: others

Post on 25-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

CEPC MDI Beam

Backgrounds StudyHaoyu SHI, Wei XU, Hongbo ZHU, Ke LI

IHEP, CASOn behalf of the CEPC MDI BG Study Group,

ICHEP 2020, Accelerator: Physics, Performance, and R&D for Future Facilities,

Virtual Conference, 2020

Page 2: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Outline

ØMotivation & WorkflowØBackground Study Status in detailØSummary & Outlook

27/29/20 ICHEP 2020, H. Shi

Page 3: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Introduction

• Circular Electron-Positron Collider(CEPC) is a future leptoncollider on design phase• The Conceptual Design Report(CDR) was published in Nov. 2018

7/29/20 ICHEP 2020, H. Shi 3

J. GAO

X.C. LOU

Page 4: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Motivation & Workflow

ØBackgrounds may impact IR components, especially detectors in several ways, so that they are important inputs to the detector(also accelerator) design, such as radiation tolerance, detector occupancy…

47/29/20 ICHEP 2020, H. Shi

Simulation

Benchmark

Design

Page 5: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

7/29/20 ICHEP 2020, H. Shi 5

Simulation

Benchmark

Design

Page 6: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Interaction Region Layout

• Based on CDR Design and Parameters for both Detector & Accelerator• Higgs Mode, One IP, One Beam• Impact on Vertex Detector

7/29/20 ICHEP 2020, H. Shi 6

Page 7: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Workflow

7/29/20 ICHEP 2020, H. Shi 7

Simulation

Benchmark

Design

Page 8: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Source Analysis

•Effects•Single Beam• Touschek Scattering• Beam Gas Scattering• Beam Thermal Photon Scattering• Synchrotron Radiation

• Luminosity Related• Beamstrahlung• Radiative Bhabha Scattering

• Injection

7/29/20 ICHEP 2020, H. Shi 8

Page 9: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Source Analysis

•Effects•Single Beam• Touschek Scattering• Beam Gas Scattering• Beam Thermal Photon Scattering• Synchrotron Radiation

• Luminosity Related• Beamstrahlung• Radiative Bhabha Scattering

7/29/20 ICHEP 2020, H. Shi 9

Off Energy Beam

Particles

Photons

Page 10: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Workflow

• Simulation workflow:

7/29/20 ICHEP 2020, H. Shi 10

Generation

• Using the existing generators• Building our own generators

Tracking

• Let the particles move alongside the pipe• Record the lost particles within the IR

DetectorSimulation

• Quantify Impacts using hit density, TID, and NIEL• Adopted the method ATLAS used(ATL-GEN-2005-001) for background estimation

Cross Check

Page 11: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Basic SimulationFor Photon BGs and Beam BGsUsing its own Generator.Using SAD or BDSim as tracking tool.Using Geant4 to perform full detector simulation

7/29/20 ICHEP 2020, H. Shi 11

Page 12: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Source Selection

•Effects•Single Beam• Touschek Scattering• Beam Gas Scattering• Beam Thermal Photon Scattering• Synchrotron Radiation

• Luminosity Related• Beamstrahlung(Pair Production)• Radiative Bhabha Scattering

7/29/20 ICHEP 2020, H. Shi 12

Off Energy Beam

Particles

Photons

Page 13: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Synchrotron Radiation• Synchrotron radiation were emitted by magnets when bending

beams, sometimes would be critical at circular machines• Using BDsim&Geant4 as the tool to transport beam particles

from the last dipole to the interaction region and record the photons hitting the central beryllium pipe.

137/29/20 ICHEP 2020, H. Shi

Background Type Hit Density(𝒄𝒎!𝟐 ⋅ 𝑩𝑿!𝟏) TID(𝒌𝒓𝒂𝒅 ⋅ 𝒚𝒓!𝟏)Synchrotron Radiation ~18.2 ~584.0

Page 14: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Pair Production

• Charged Particles attract by the opposite beam emit photons(beamstrahlung), followed by an electron-positron pair production.• Using Gienea-pig++ as the generator and implementing the

external magnetic field by code updating.

147/29/20 ICHEP 2020, H. Shi

Page 15: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Source Selection

•Effects•Single Beam• Touschek Scattering• Beam Gas Scattering• Beam Thermal Photon Scattering• Synchrotron Radiation

• Luminosity Related• Beamstrahlung• Radiative Bhabha Scattering

7/29/20 ICHEP 2020, H. Shi 15

Off Energy Beam

Particles

Photons

Page 16: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

CEPC Beam Lifetime

167/29/20 ICHEP 2020, H. Shi

Beam Lifetime Others

Touschek effect >1000 h

Beam Gas Coulomb >400 hCO, 10!" Pa

Beam Gas Bremsstrahlung 63.8 h

Beam Thermal Photon Scattering 50.7 h

Radiative bhabhaScattering 74 min

Beamstrahlung 80 min

S. BAI

Page 17: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Beamstrahlung

• Beamstrahlung is the radiation background from one beam of charged particles in storage rings or linear colliders caused by its interaction with the electromagnetic field of the other beam• Generated by formula(PyBS)• Code Written by Dr. Yue

• Checked with Guinea-Pig++

177/29/20 ICHEP 2020, H. Shi

Hist1Entries 4e+08Mean 117.6Std Dev 0.4002

0 20 40 60 80 100 1200

2

4

6

8

10

12

14

16

610× Hist1Entries 4e+08Mean 117.6Std Dev 0.4002

The Energy Spectrum of BTH inputBS

Page 18: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Radiative Bhabha

• Radiative bhabha scatteringrepresents the progress thatone electron/position interactwith the other and emitphotons. The electron/positioncould loss energy, and mightbecome background.• Generated by bbbrem• Could also generated by

formula(Py_RBB)• Code Written by Dr. Yue

187/29/20 ICHEP 2020, H. Shi

Page 19: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Beam Thermal Photon

• Beam Particle interact with the photon emitted by beam pipe• Important on high energy

machine• Generated by PyBTH:• Written by Dr. Yue• The scattering was generated

with 200 meters upstream ofthe IP• Tracking whole ring for many

turns

197/29/20 ICHEP 2020, H. Shi

Page 20: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Beam Gas• Beam Particle interact with

residual gas• Beam-Gas Inelastic Scattering:• With nuclei• With electron• 𝜎 doesn’t relevant with energy,

has strong impact on both high and low energy machine

• Generated by PyBGS2• Written by Dr. Yue• Residual Gas CO, with 10!"𝑃𝑎• The scattering was generated

with 200 meters upstream ofthe IP• Tracking whole ring for many

turns

207/29/20 ICHEP 2020, H. Shi

Page 21: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Lost Distribution without Collimators

• 4 types of Backgrounds

• Normalized to loss rate in MHz(one beam)

• BS contributes the most

217/29/20 ICHEP 2020, H. Shi

Page 22: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Ways to MitigateUsing Shielding/Mask/CollimatorGenerated whole ring scattering for BGS/BTH

7/29/20 ICHEP 2020, H. Shi 22

Page 23: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

SR Mask

237/29/20 ICHEP 2020, H. Shi

±20 cm from IP

Page 24: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

SR Mask Effects

• With masks located at -4.2, -1.93 and -1.51m along the beam pipe to shield the central beam pipe.• Detector hit numbers could

be decreased from 7.73×10#down to 111 per bunch.

247/29/20 ICHEP 2020, H. Shi

Page 25: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Collimator• Now we put 2 sets of horizontal collimators, but sure to need

more in future.(Trying 5th Horizontal one upstream of IR)• We assume the collimator were “ideal”.

257/29/20 ICHEP 2020, H. Shi

Name Location Distance to IP

APTX1 D1I.1897 2139.06

APTX2 D1I.1894 2207.63

APTX3 D1O.10 1832.52

APTX4 D1O.14 1901.09

S. BAI

Page 26: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Collimator Effects

267/29/20 ICHEP 2020, H. Shi

Page 27: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Lost Distribution with Collimators

• Including Radiative Bhabha, Beam-Gas, Beam Thermal Photon. Almost No Beamstrahlung.

• Normalized to loss power in mW/10cm(one beam)

277/29/20 ICHEP 2020, H. Shi

Page 28: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Combine Results

287/29/20 ICHEP 2020, H. Shi

Background TypeHit

Density(𝒄𝒎!𝟐 ⋅𝑩𝑿!𝟏)

TID(𝒌𝒓𝒂𝒅 ⋅𝒚𝒓!𝟏)

1 MeV equivalentneutron fluence

(𝒏𝒆𝒒 ⋅ 𝒄𝒎!𝟐 ⋅ 𝒚𝒓!𝟏)

Pair production 2.26 591.14 1.11×10'(

Synchrotron Radiation 0.026 15.65

Radiative Bhabha 0.34 592.66 1.44×10'(

Beam Gas 9.025 9775.78 23.6×10'(

Beam Thermal Photon 0.32 318.12 0.75×10'(

Total 11.971 11233.15 26.9×10'(

Higgs Backgrounds on 1st layer of Vertex. With a safety factor of 10.

Page 29: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Off-energy Background Study Status

7/29/20 ICHEP 2020, H. Shi 29

Effects Beam BG Photon BGTouschek Maybe -

Beam Gas Coulomb Doing To DoBeam Gas Brem Done DoingBeam Thermal

PhotonDone To Do

SR - DoneRBB Done DoingBS Done Done

Page 30: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

7/29/20 ICHEP 2020, H. Shi 30

Simulation

Benchmark

Design

Page 31: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Benchmark - Motivation

• Important to validate the modellings and Monte CarloSimulation codes for the CEPC beam background simulationwith real data where they are applicable• BEPC II/BES III, SuperKEKB/Belle II, LEP I/II…

7/29/20 ICHEP 2020, H. Shi 31

Page 32: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

What can be learnt from BEPCII/BESIII

• Basic Principles• Single beam mode: three dominant contributions from

Touschek, beam-gas and electronics noise & cosmic rays.• 𝑂!"#$%& = 𝑂'()! + 𝑂$*! + 𝑂#("!&+, =

𝑆' % 𝐷(𝜎-#) %𝐼' % 𝐼.𝜎-𝜎/𝜎0

+ 𝑆$ % 𝐼' % 𝑃(𝐼') + 𝑆&

• Double beam mode: additional contributions from luminosityrelated backgrounds, mainly radiative Bhabha scattering• 𝑂'('*% = 𝑂&$ + 𝑂&% + 𝑂ℒ

7/29/20 ICHEP 2020, H. Shi 32

Page 33: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Machine Studies Last Summer

• Two hours of machine time allocated to background studies lastsummer.• Recorded parameters: bunch size, beam current, beam lifetime,

vacuum pressure, MDC/EMC cluster counts.

7/29/20 ICHEP 2020, H. Shi 33

Page 34: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

We may need one more round

• Simulations results DO NOT match the measurements

• Let the accelerator and detector configured properly beforestudy• Most importantly, longer time, more data.

7/29/20 ICHEP 2020, H. Shi 34

H.C. ShiH.C. Shi

Page 35: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Summary

• Background Study Checklist

7/29/20 ICHEP 2020, H. Shi 35

Category Tasks Status

DesignIR Design Optimization To Do

Collimator Design Doing

Simulation

BG Simulation Doing

Collimator Simulation To Do

Detector Simulation Doing

IR Components Simulation To Do

BenchmarkBEPCII/BESIII Machine Study Doing

Literature Benchmark Doing

Page 36: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Outlook

• Improve & Optimize our study• Code Effeiciency• Benchmark

• New Baseline.• New baseline design as a new start.

• Other Mode. • Z & W

• The impact on other sub detectors / accelerator components in the IR

7/29/20 ICHEP 2020, H. Shi 36

Thank You

Page 37: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Backup

7/29/20 ICHEP 2020, H. Shi 37

Page 38: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Off Energy Beam

387/29/20 ICHEP 2020, H. Shi

BeamstrahlungIP1

IP3

Beam Lost ParticlesEnergy Loss > 1.5%(energy acceptance)

Radiative BhabhaScattering

242 bunchesRevolution frequency: 2997Hz𝟏. 𝟓×𝟏𝟎𝟏𝟏 particles/Bunch

L: 𝟑×𝟏𝟎𝟑𝟒𝒄𝒎$𝟐𝒔$𝟏

Beam-Gas BremScattering

Beam-Thermal photon Scattering

Page 39: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Energy Spectrum

7/29/20 ICHEP 2020, H. Shi 39

Page 40: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Collimator Effects - BS

407/29/20 ICHEP 2020, H. Shi

Page 41: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Collimator Effects - RBB

417/29/20 ICHEP 2020, H. Shi

Page 42: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Collimator Effects - BTH

427/29/20 ICHEP 2020, H. Shi

Page 43: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Collimator Effects – BGS2

437/29/20 ICHEP 2020, H. Shi

Page 44: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Lost Distribution with Collimators

• Including Radiative Bhabha, Beam-Gas, Beam Thermal Photon. Almost No Beamstrahlung.

• Normalized to loss power in mW/10cm(one beam)

447/29/20 ICHEP 2020, H. Shi

Page 45: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Add One More Collimator - Position

• Red Line and Black Lineare different runs with 4Collimator Sets.• Orange Line shows one

more collimator locatedat -30m.• Aqua Line shows one

more collimator locatedat -6m.

• Far is safe. Chose -31m.

7/29/20 ICHEP 2020, H. Shi 45

Page 46: CEPC MDI Beam Backgrounds Study - indico.cern.ch · •Beam Gas Scattering •Beam Thermal Photon Scattering •Synchrotron Radiation •Luminosity Related •Beamstrahlung •Radiative

Conclusion of this initial study• Add one more set of collimator after the last bending magnet

can help cut down the lost within the IR• For now, -30.92m could be one choice.• However, this collimator here must be thicker than others.• For now, 10cm Copper + 4cm Tungsten seems to be Ok.• Initial Results, more study need to be done in future.• No Neutrons survive at -6m.• Other issues, including heat deposition, photons hitting the

magnets, instability of the beam, other particles might come out from the collimator, etc., would be done in future.

7/29/20 ICHEP 2020, H. Shi 46

Collimators Hit Density TID NIEL4 Co 36.8372 39901.139 9.65e+135 Co 7.797 8354.393 2.02e+13Ratio 4.72 4.77 4.77