cesd sages scottish alliance for geoscience, environment & society why monitor climate? an...

47
CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh

Upload: earl-bryan

Post on 04-Jan-2016

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESDSAGES Scottish Alliance for Geoscience, Environment &

Society

Why Monitor Climate?

An extended version of the

2007 Margary Lecture Prof. Simon Tett, Chair of Earth System Dynamics &

Modelling: The University of Edinburgh

Page 2: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Margary

•Margary died in 1976 and his obituary was written by Manley.

•Published several papers in the QJ but his major work was running the Phenological network.

•One of the last gentlemen amateurs. He wrote serious books on Roman roads…

•Lecture established for “Broader interest which he and many others found in the manifestation of the British weather”.

From Sparks et al, 2000

Page 3: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

3

CESD

“Reconstructions of climate data for the last 1000 years ... indicate this warming was unusual and is unlikely to be entirely

natural in origin”

Reconstructions of past temperatures from several different investigators. Graphic supplied by Tim Osborn, UEA

Page 4: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Global temperatures

Page 5: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Outline

• Climate models and why they are uncertain

• Case for monitoring climate. – Ozone depletion as example of how nature

surprised us.

• How and issues with past climate records• How?• Example model/data comparision

Page 6: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Models are not the real world.

• Despite the increasing complexity of Earth System Modelling models they are not the real world.

• Choices are made about how and what to model

• These choices lead to different outcomes– We care about the “emergent properties” of

the models not their detailed evolution.

Page 7: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Karl and Trenberth 2003

Modelling the Climate System

Main Message: Lots of things going on!

Page 8: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Meteorology is (roughly) fluid dynamics on rotating sphere.

0)(

Vt

fa FgVΩV

pDt

D

1

2 Navier-stokes on rotating sphere

ContinuityContinuity

VtDt

D

+ thermodynamics + moisture + radiation…+ some simplifications to remove sound and other fast waves

Page 9: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Representing the fields: Gridpoint models

Represent space as a grid of regular (in long/latt co-ords)

Page 10: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Sub-grid.

• Recall equations of motion• Split into large scale average and

residual. Reynolds averaging

VVVV

VVVVVVVV

VVVVVV

)()(

Get large-scale terms that result from sub-grid scale motions…

Page 11: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Parameterisation

• Like the closure problem for fluid dynamics.• Key processes:

– Convection (which involves latent heat release from water vapour condensing)

– Clouds in general.– Boundary layers.– Need to simplify radiation calculations into relatively small number of

broad bands and assume radiation only goes up and down. Can verify calculations through comparison with line-by-line calculations.

– Friction…• Many specialists work in each area. An atmospheric model

(Weather) is a complex piece of software. Numerical methods for dynamics are complex as are parameterisations.

• Parameterisations also contain many empirically defined constants which need to be “tuned”. Model tuning quite time consuming and aims to get a reasonable simulation of current climate.

Page 12: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Parameterized Processes

Slingo From Kevin E. Trenberth, NCAR

Model’s do not have enough resolution to resolve these processes. So they are represented in terms of the large-scale flow (what gets simulated). Many of these processes act at scales of 1-10km.

Page 13: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

“Mass-flux” parameterization

Rain (& snow)

Environmental subsidence

Uplift

Entrainment into cloud

Detrainment

Page 14: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

What are we trying to parameterize?

What is there…

How we parameterise

Page 15: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Future modelling

• Since the 1960’s super-computer performance has doubled every 18 months (or so)

• Implies can double the resolution of models every 10 years.

• Still would take many decades to get to 1-10km global modelling.

• Bottom line will need to parameterize processes for many decades to come.

Page 16: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Chaos

• Numerical models of atmosphere (and ocean) show sensitivity to initial conditions

• For atmosphere practical limit of deterministic forecasts is 10 days.

• Small uncertainties amplify and affect evolution of large-scale state

• For climate purposes this means that future forecasts are probabilistic and detailed evolution of system unknowable.

Page 17: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Predicting the Future

Results based on multi-model archive. Typically show average across all model simulations with uncertainties from range

Scenarios used to drive models. Self-consistent atmospheric concentrations of CO2 and other greenhouse gases. Based on different human development paths

Page 18: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESDProjections of Future Changes in Climate

Best estimate for low scenario (B1) is 1.8°C (likely range is 1.1°C to 2.9°C), and for high scenario (A1FI) is 4.0°C (likely range is 2.4°C to 6.4°C).

Page 19: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Projected warmingin 21st century expected to begreatest over land and at most high northern latitudesand least over the Southern Ocean and parts of the North Atlantic Ocean

Projections of Future Changes in Climate

Page 20: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Projections of Future Changes in Climate

Precipitation increases very likely in high latitudes

Decreases likely in most subtropical land regions

Page 21: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Models are not the real world.

• Despite the increasing complexity of Earth System Modelling models they are not the real world.

• Choices are made about how and what to model• These choices lead to different outcomes

– We care about the “emergent properties” of the models not their detailed evolution. (as we have learnt that models are chaotic and thus their detailed evolution is un-predictable.)

Page 22: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Ozone Depletion as an example of a failure of environmental

modelling.

• In the early 1980’s theory (and models) suggested that CFC’s would only cause moderate stratospheric O3 depletion.

– “… United States National Research Council report projected that continued use of CFCs at then-current rates would … depletion of the total global ozone layer by only about three percent in about a century. ...”

Page 23: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Ozone Depletion – ObservationsHalley Bay, Farmen et al, Nature

1985

Ozone depletion over Antarctica much larger than expected.

Reason: models only used gas-phase chemistry. But ozone depletion occurring on polar stratospheric cloudsOct ‘84

80-84

57-73

Page 24: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

The Discovery of the Ozone Hole

• 1985: British Antarctic Survey balloon measurements show much less ozone than normal at 10-20 km altitude in spring.

• 1999: ozone at 15-20 km, where it normally peaks, was almost completely depleted.

Page 25: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

2007 Sea-ice (its ½ what is should be)

Is this unexpected? Are we missing something fundamental in our understanding of the Earth system? Is this the “ozone” moment?

Page 26: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Observations are direct evidence of change.

• The public believe that observations of climate change are very direct evidence of change. Seem to be using them as view as to what is to come.

• Drives need for monitoring as wants answers soon after “interesting” events.

• Apparently more trustworthy than models. (Though in some cases models are more reliable than observations!)

• Communicating uncertainties (which general public are unaware of).– I.e. need to escape from sterile debate on what warmest year is.

Page 27: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

What is the problem with observations?

• Observing system not stable• Climate changes slowly compared to obs.

system.• Examples:

Page 28: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Bias corrections

• As observing practice or location changes this introduces biases. – For example a move of a temperature sensor can cause a

change in average temperature recorded due to sensor being in a different micro-climate

• Key are systematic biases – lots of small random changes will just introduce a small amount of uncertainty when averaged over a large number of observations

• Estimate biases in a variety of ways. Thus they are uncertain. Relatively small uncertainty for SST; very large for changes in tropospheric temperature

Page 29: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Examples:

• Change from buckets to engine intakes as way of measuring Sea Surface Temperature. Affected many sensors.

• Increasingly large number of buoy SST measurements

• Orbit drift in polar orbitors.

Page 30: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Uncertainties – incomplete coverage. SST example

Page 31: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Uncertainties in observations

• Sampling– Depends on the variable (annual-mean

temperature anomalies vs daily rainfall)– Where they are and their correlation scales.– Temperature with long correlation scales is

less uncertain than extreme daily rainfall with very short correlation scales.

Page 32: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Communicating Uncertainties

John Kennedy, Met Office Hadley Centre

Page 33: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Extreme events have consequences

Tewkesbury 2007Photograph: Daniel Berehulak/GettyImages

Met Office provisional figures show that May to July in the England and Wales Precipitation is the wettest in a record that began in 1766.

We must learn from the events of recent days. These rains were unprecedented, but it would be wrong to suppose that such an event could never happen again…. (Hazel Blears, House of Commons, July 2007)

Page 34: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Models can generally reproduce what has happened…

likely shows a significant anthropogenic contribution over the past 50 years

Observations All forcing natural forcing

SPM-4

Page 35: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

So Why Observe?

• The rate of climate change is unprecedented and so past climate conditions will no longer be a guide to future climate conditions. Need combination of models and observations to provide data for decadal infrastructure planning.

• How to determine which modelling choices are right (or best)? – Depends on the purpose of model.– Test models ability to simulated observed change as that is

directly relevant to what is to come.• Provide evidence of change to support policy action.• Allow Detection & Attribution of climate change (to

support policy action..) [It’s the sun wot did it and other sillyness]

Page 36: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

How (GCOS monitoring principles)?

 Effective monitoring systems for climate should adhere to the following principles:

1. The impact of new systems or changes to existing systems should be assessed prior to implementation. So we know what the change did

2. A suitable period of overlap for new and old observing systems is required. ditto

3. The details and history of local conditions, instruments, operating procedures, data processing algorithms and other factors pertinent to interpreting data (i.e., metadata) should be documented and treated with the same care as the data themselves. So we can figure out when changes happened rather then looking for break points.

4. The quality and homogeneity of data should be regularly assessed as a part of routine operations. So the data is homogeneous

5. Consideration of the needs for environmental and climate-monitoring products and assessments, such as IPCC assessments, should be integrated into national, regional and global observing priorities. The observing system is not just to estimate the mean climate or for weather forecasting but to look for relatively small changes early,.

Page 37: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

How (GCOS monitoring principles) -- cont?

6. Operation of historically-uninterrupted stations and observing systems should be maintained. Long homogenious records are valuable

7. High priority for additional observations should be focused on data-poor regions, poorly-observed parameters, regions sensitive to change, and key measurements with inadequate temporal resolution. Observed where we don’t have data and where new data would help most.

8. Long-term requirements should be specified to network designers, operators and instrument engineers at the outset of system design and implementation. Don’t spec; Don’t get!

9. The conversion of research observing systems to long-term operations in a carefully-planned manner should be promoted. Research data has a short lifetime relative to climate change.

10. Data management systems that facilitate access, use and interpretation of data and products should be included as essential elements of climate monitoring systems. No point collecting the data unless people can use it.

Page 38: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

• Available observed weather data are limited before 1950 and almost non-existent before 1850.

• Many more observations exist, in logbooks, reports and other paper records (mostly in the UK). If we digitised them we could improve the climate record and extend it back to 1800.

• Hadley Centre digitised observations from Royal Navy Ships logbooks for WW2. These give a much-improved picture of 1940s climate.

Digitisation as a source of new data

Page 39: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Example of model-data comparison

Changes in European Precipitation and Temperature.

Source data:

1.CRUTEMP land-sfc temperatures

2.GPCC precipitation data

3.Multi-model archive

Med

W-Euro

N-Euro

Page 40: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Expected change in annual cycle from multi-model ensemble

Dashed lines are precip; Solid temperature

Split into warm (May-Oct) and Cold (Nov-Apr)

Page 41: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Expected changes with time

Page 42: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Do Models agree with Observations?

20th century – warm season

Page 43: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

20th century – cold season

Page 44: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Late 20th century – warm season

Page 45: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Late 20th century – cold season

Page 46: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Do Models agree with Observations?

Problems with capturing change in Nov-Apr precip

Not natural

Page 47: CESD SAGES Scottish Alliance for Geoscience, Environment & Society Why Monitor Climate? An extended version of the 2007 Margary Lecture Prof. Simon Tett,

CESD

Summary

• Hope I convinced you that climate models are uncertain

• Ozone hole shows possibility of surprise• Is Arctic sea-ice changes a surprise too?• Need observations so we know what the climate

system is doing.• Example comparison between observations and

models showed some issues with simulations of winter precipitation change.