ch. 12: chemical kinetics - ms....

56
Ch. 12: Chemical Kinetics

Upload: others

Post on 04-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Ch.12:ChemicalKinetics

  • Recall

    8

  • ReactionRates•  ReactionRateàThechangeinconcentrationofareactantorproductperunitoftime

  • Factors That Affect Rxn Rate 1. Nature of the reactants

    •  Adding an inert gas has no effect 2. Concentration of reactants 3. Temperature 4. Surface Area of Reactants 5. Pressure 6. Catalysis

  • ReactionRate

  • LudwigWilhelmy(1812-1864)•  Wilhelmyiscreditedasthefirstpersontomeasuretherateofachemicalrxncarefully

    •  Measuredhowfastsucrosehydrolyzedintoglucoseandfructose

    •  Showedhowtherxndependedontheamountofsugarpresent–thegreatertheamount,thefastertheinitialrate

  • Recall:ReactionRate•  Asareactionproceedsovertime,theconcentrationofthereactantdecreases,andtheconcentrationofaproductincreases.

  • ReactionRates•  Therateofachemicalrxnisameasureofhowfastarxnoccurs

    •  TheratecanbedeterminedfromthedisappearanceofreactantsORtheappearanceofproducts

    •  However,thevalueshouldalwaysbepositive(byconvention),soyouwillneedtoaddanegativesigntoyourcalculationsforreactants

    Rate = [A]t 2−[A]t1t2 − t1

    =Δ[A]Δt

  • ReactionRatesH2(g)+I2(g)à2HI(g)

    Rate = −Δ[H2 ]Δt

  • ReactionRatesH2(g)+I2(g)à2HI(g)

    Rate = −Δ[I2 ]Δt

  • ReactionRatesH2(g)+I2(g)à2HI(g)

    Rate = + 12Δ[HI ]Δt

  • ReactionRate•  Therxnratetendstodecreasewithtime.Asthereactantstransformtoproducts,theirconcentrationsdecrease,andtherxnslowsdown.

  • MeasuringReactionRate

  • MeasuringReactionRates•  Recall:spectroscopyisthemostcommonmethodtomeasurereactionrates.Why?

  • MeasuringReactionRatesH2(g)+I2(g)à2HI(g)

    •  I2isviolet,whileH2andHIarecolorless.•  AsI2reactswithH2,thevioletcolorfades.•  Thiscanbemonitoredwithaspectrometer.•  Theintensityofthelightabsorptionwilldecreaseastherxnproceeds,providingadirectmeasureof[I2]asafunctionoftime.

  • TheRateLaw

  • TheRateLawForAàproducts

    Rate=k[A]n•  k=rateconstant(constantofproportionality)•  n=reactionorder•  Mostcommonrxnorders:

    –  n=0àZeroorderrxnàrateisindependentof[A]–  n=1à1storderrxnàrateisdirectlyproportionalto[A]–  n=2à2ndorderrxnàrateisproportionalto[A]2

  • RateLaws•  Forazeroorderreaction…•  ChangingtheconcentrationofreactantAhasnoeffectontheoverallrate

  • RateLaws•  Forafirstorderreaction…•  [A]hasadirecteffectontherate.Forexample,doubling[A]willdoubler.

  • RateLaws•  Forasecondorderreaction…•  Changing[A]hasanexponentialeffectontherate.

  • RateLaws•  Iflookathowconcentrationchangeswithtime,wecanlookattheslopetodeterminewhattherategraphswouldlooklike.

  • RateLaws•  Ratevs.concentration•  Whatkindoffunctionsarethese?

  • RateLaws•  Theorderofareactioncanbedeterminedonlybeexperiment

    •  Fromdata,wecanusethemethodofinitialratestodeterminereactionorder

    •  Forthismethod,areactionisrunseveraltimeswithdifferentinitialreactantconcentrationstodeterminetheeffectofconcentrationontherate.

  • RateLaws•  Whathappenswhen[A]doubles?•  Theratealsodoubles•  Thereforen=1andrate=k[A]

    [A](M) InitialRate(M/s)0.10 0.015

    0.20 0.030

    0.40 0.060

  • RateLaws•  Wecandeterminethevalueofkbysubstitutingvaluesfor[A]andtherateusingthedatatable

    [A](M) InitialRate(M/s)0.10 0.015

    0.20 0.030

    0.40 0.060

  • [A](M) InitialRate(M/s)0.10 0.015

    0.20 0.030

    0.40 0.060

    rate = k[A]

    k = rate[A]

    =0.015M / s0.10M

    k = 0.15s−1

  • RateLaws•  Determinetheratelawforthedatabelow:

    [A](M) InitialRate(M/s)0.10 0.015

    0.20 0.015

    0.40 0.015

  • RateLaws•  Rate=k[A]0=k•  Rate=0.015M/s

    [A](M) InitialRate(M/s)0.10 0.015

    0.20 0.015

    0.40 0.015

  • RateLaws•  Determinetheratelawforthedatabelow:

    [A](M) InitialRate(M/s)0.10 0.015

    0.20 0.060

    0.40 0.240

  • RateLaws•  Rate=k[A]2•  Note:Youcouldalsodeterminetheordermathematically

    [A](M) InitialRate(M/s)0.10 0.015

    0.20 0.060

    0.40 0.240

  • RateLaws•  Todeterminetheordermathematically,setuptheratiooftwooftheratesandpluginvalues

    [A](M)

    InitialRate(M/s)

    0.10 0.0150.20 0.0600.40 0.240

    rate2rate1

    =k[A]n

    k[A]n

    0.240M / s0.60M / s

    =k(0.40)n

    k(0.20)n

    4.0 = 2n

    log4.0 = log(2n )n = 2

  • RateLaws•  Thismethodisusefultoknowbecausetheorderdoesnothavetobeaninteger.

    [A](M)

    InitialRate(M/s)

    0.10 0.0150.20 0.0600.40 0.240

    rate2rate1

    =k[A]n

    k[A]n

    0.240M / s0.60M / s

    =k(0.40)n

    k(0.20)n

    4.0 = 2n

    log4.0 = log(2n )n = 2

  • TryThis:•  ThereactionAàBhasbeenexperimentallydeterminedtobesecondorder.Theinitialrateis0.0100M/sat[A]=0.100M.Whatistheinitialrateat[A]=0.500M?

  • RateLaws•  Let’sextendourratelawtomultiplereactants:•  Givenareactionintheformof:

    aA+bBàcC+dD•  Theratelawwouldbe:

    Rate=k[A]m[B]n•  Wherekistherateconstant,[]=molarity,andmandnarethereactionorders.

    •  Theoverallorderofthereactionisthesumoftheexponents(m+n)

  • RateLaws•  Ex/

    C3H6O+Br2àC3H5OBr+HBr

    •  Theratelawwouldhavetheform:Rate=k[C3H6O]m[Br2]n

    •  Andthenwewouldusedatatodeterminetheorderofthereaction(lookforwardtothisinthenotsodistantfuture).

    •  Ratelawsarealwayswrittenintermsofthereactants.

  • TryThis:•  Considerthereactionbetweennitrogendioxideandcarbonmonoxide:NO2(g)+CO(g)àNO(g)+CO2(g)

    •  Fromthedata,determine:a.  Theratelawforthereactionb.  Therateconstant(k)forthereaction

    [NO2](M) [CO](M) InitialRate(M/s)

    0.10 0.10 0.0021

    0.20 0.10 0.0082

    0.20 0.20 0.0083

    0.40 0.10 0.033

  • TryThis:•  Rate=k[NO2]m[CO]n•  IfIdouble[NO2]butkeep[CO]constant,whathappenstotherate?

    •  Som=2•  (remember–youcanalsofindthismathematically)

    [NO2](M) [CO](M) InitialRate(M/s)

    0.10 0.10 0.0021

    0.20 0.10 0.0082

    0.20 0.20 0.0083

    0.40 0.10 0.033

  • TryThis:•  Rate=k[NO2]2[CO]n•  IfIdouble[CO]butkeep[NO2]constant,whathappenstotherate?

    •  Son=0

    [NO2](M) [CO](M) InitialRate(M/s)

    0.10 0.10 0.0021

    0.20 0.10 0.0082

    0.20 0.20 0.0083

    0.40 0.10 0.033

  • TryThis:•  Rate=k[NO2]2[CO]0•  Rate=k[NO2]2•  Nowfindkthroughsubstitution•  k=0.21M-1s-1

    [NO2](M) [CO](M) InitialRate(M/s)

    0.10 0.10 0.0021

    0.20 0.10 0.0082

    0.20 0.20 0.0083

    0.40 0.10 0.033

  • PracticeQuestion•  ForthereactionA+B→products,thefollowingdatawereobtained:

    – Whatistheexperimentalratelaw?a.  Rate=k[A] d.Rate=k[A]2[B]b.  Rate=k[B] e.Rate=k[A][B]2c.  Rate=k[A][B]

    Initialrate 0.030 0.060 0.060

    [A]0 0.10 0.20 0.20

    [B]0 0.20 0.20 0.30

  • TheIntegratedRateLaw

  • IntegratedRateLaw•  Ourpreviousratelawsrelatetheratetoconcentration

    •  Whatifwewanttoshowtherelationshipbetweenconcentrationandtime?

    •  Weusetheintegratedratelawwhenwewanttoknowhowlongareactionneedstoproceedtoreachaspecificconcentrationofareagent

  • IntegratedRateLaw•  Recall

    – Forafirstorderreaction,theratelawcanbeexpressedasrate=k[A]1orsimplyrate=k[A]

    •  Fortheintegratedratelaw(whichincorporatestimeasourvariable),afirstorderreactionbecomes

    ln[A]t=-kt+ln[A]0•  [A]0=theinitialconcentrationofA•  [A]t=theconcentrationofAattimet•  k=rateconstant•  Keepinmindthattheonlyvariablesherearetand[A]t–everythingelseissimplyanumber

  • IntegratedRateLaw•  Thesearesimplyrelatedtoourfriendlylinearfunction:

  • IntegratedRateLaw•  Lookingattheseequations,tellyourneighborwhatyouwouldexpectthegraphstolooklike

  • IntegratedRateLaw•  Withsomevariation,generallywe’relookingat:•  (Notetheslopesare,respectively,-k,-k,andk)

  • ZeroOrder•  Wecangraphdatatodeterminetheorderofareaction

  • FirstOrder•  Wecangraphdatatodeterminetheorderofareaction

  • SecondOrder•  Wecangraphdatatodeterminetheorderofareaction

  • SampleQuestion•  ThefollowingdatawasobtainedforthedecompositionofSO2Cl2.Showthattherxnis1storder,thendeterminetherateconstantfortherxn.

    Time(s) [SO2Cl2](M) Time(s) [SO2Cl2](M)

    0 0.100 800 0.0793

    100 0.0971 900 0.0770

    200 0.0944 1000 0.0748

    300 0.0917 1100 0.0727

    400 0.0890 1200 0.0706

    500 0.0865 1300 0.0686

    600 0.0840 1400 0.0666

    700 0.0816 1500 0.0647

  • Half-Life

  • Half-Life•  Recall:

    – HalfLife(t1/2)=timerequiredfortheconc’ofareactanttofalltohalfofitsinitialvalue

    •  Forafirstorderreaction,half-lifeisindependentoftheinitialconcentration,andwecanuse

    t1/2=0.693/k

  • Half-Life

  • Half-Life•  Note:•  Youcanstilldeterminehalf-lifeforzero-orderandsecond-orderreactions;however,theyaredependentontheinitialconcentrationsandthereforenotconstant

  • SampleQuestion•  Forafirst-orderreactionaA→Products,thefirsthalf-lifeis20minutes– Whatisthesecondhalf-life?a. 10minutesb. 20minutesc.  40minutes

  • SampleQuestion•  Forasecond-orderreactionaA→Products,thefirsthalf-lifeis20minutes– Whatisthesecondhalf-life?a.  10minutesb.  20minutesc.  40minutes