chap11--sampling & pulse modulation

59
 Prof. J.F . Huang, Fiber-Optic Communication Lab.  National Cheng Kung Univ ersity, T aiwan 1 Chapter 11. Sampling and Pulse Modulation  The Sampling Theorem PAM -- Natural and Flat-Top Sampling Time-Division Multiplexing (TDM )  Intersymbol Interference (  ISI ) Pulse Width and Pulse Position Modulation  Demodulation Digital Modulation  Pulse Code Modulation (  PCM )  Delta Modulation (  DM ) Qualitative Compa risons Of Pulse and Digital Modulation Systems

Upload: vijay-sharma

Post on 07-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 1/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

1

Chapter 11.

Sampling and Pulse Modulation 

• The Sampling Theorem

• PAM -- Natural and Flat-Top SamplingTime-Division Multiplexing (TDM ) Intersymbol Interference ( ISI )

• Pulse Width and Pulse Position Modulation Demodulation

• Digital Modulation Pulse Code Modulation ( PCM )

 Delta Modulation ( DM )• Qualitative Comparisons Of Pulse and Digital

Modulation Systems

Page 2: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 2/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

2

The Sampling Theorem 

Figure 11-1. Impulse sampling of an analog voltage.

Page 3: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 3/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

3

• A sampler is a mixer with a train of very narrowpulses as the local oscillator input.

• If the analog input is sampled instantaneously at

regular intervals at a rate that is at least twice the

highest analog frequency 

 f s > 2 f a(max)

• then the samples contain all of the information of the original signal.

The Sampling Theorem 

Page 4: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 4/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

4

• The analog signal v( t) has a signal spectrum

represented by the Fourier transform V ( f ),

• and the sampling signal

consists of instantaneous impulses every nT s sec,

where n = 0, +1, +2, … 

The Fourier transform of  s( t) is

n

snT t t s   

s

ns

nf  f T 

 f S

 1

The Sampling Theorem 

Page 5: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 5/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

5

• The time-domain product performed by the

sampler produces a sampled output

spectrum given by 

• where this spectrum consists of replicas of 

the analog signal spectrum V ( f ), translated

in frequency by each of the sampling

frequency harmonics.

s

ns

s nf  f V T 

 f V 

1

The Sampling Theorem 

Page 6: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 6/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

6

• The sampler is a wideband (harmonic) mixerproducing upper and lower sidebands at eachharmonic of the sampling frequency.

• Figure 11-2a illustrates the correct way to sample: if sampling is done at f s > 2 f A(max) the upper andlower sidebands do not overlap each other,

• and the original information can be recovered bypassing the signal through a low-pass filter (seeFigure 11-2c and d).

The Sampling Theorem 

Page 7: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 7/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

7

Figure 11-2. Sample spectra and their outputs. (a) f s > 2 f A(max)Nyquist criteria met. (b) f s < 2 f A(max) Frequency foldover of “aliasing” distortion occurs. (c) f s > 2 f A(max) and recovery of original information with low-pass filter. (d) The original analogsignal spectrum following recovery as in (c). 

The Sampling Theorem 

Page 8: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 8/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

8

• However, if the sampling rate is less than the

Nyquist rate, f s < 2 f A(max) the sidebands overlap,

as shown in Figure 11-2b.

• The result is frequency-folding or aliasing distortion,

which makes it impossible to recover the original

signal without distortion. 

The Sampling Theorem 

Page 9: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 9/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

9

Pulse Amplitude Modulation –  

Natural and Flat-Top Sampling 

• The circuit of Figure 11-3 is used to illustrate pulse

amplitude modulation (PAM). The FET is the

switch used as a sampling gate.

• When the FET is on, the analog voltage is shorted to

ground; when off, the FET is essentially open, so

that the analog signal sample appears at the output.

• Op-amp 1 is a noninverting amplifier that isolates

the analog input channel from the switching

function.

Page 10: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 10/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

10

Figure 11-3. Pulse amplitude modulator,natural sampling. 

Pulse Amplitude Modulation –  

Natural and Flat-Top Sampling 

Page 11: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 11/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

11

• Op-amp 2 is a high input-impedance voltage

follower capable of driving low-impedance loads

(high “fanout”). 

• The resistor R is used to limit the output current of 

op-amp 1 when the FET is “on” and provides a

voltage division with rd of the FET. ( rd, the drain-to-

source resistance, is low but not zero)

Pulse Amplitude Modulation –  

Natural and Flat-Top Sampling 

Page 12: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 12/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

12

• The most common technique for sampling voice in

PCM systems is to a sample-and-hold circuit.

• As seen in Figure 11-4, the instantaneous amplitude

of the analog (voice) signal is held as a constant

charge on a capacitor for the duration of the

sampling period T s.

• This technique is useful for holding the sample

constant while other processing is taking place, but

it alters the frequency spectrum and introduces an

error, called aperture error, resulting in an inability

to recover exactly the original analog signal.

Pulse Amplitude Modulation –  

Natural and Flat-Top Sampling 

Page 13: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 13/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

13

• The amount of error depends on how mach the

analog changes during the holding time, called

aperture time.

• To estimate the maximum voltage error possible,

determine the maximum slope of the analog signal

and multiply it by the aperture time DT in Figure

11-4.

Pulse Amplitude Modulation –  

Natural and Flat-Top Sampling 

Page 14: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 14/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

14

Figure 11-4. Sample-and-hold circuit andflat-top sampling.

Pulse Amplitude Modulation –  

Natural and Flat-Top Sampling 

Page 15: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 15/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab. National Cheng Kung University, Taiwan 

15

• In the three-channel multiplexed PAM system of 

Figure 11-6, each channel is filtered and sampled

once per revolution (cycle) of the commutator.

Notice that the commutator is performing both thesampling and the multiplexing.

• The commutator must operate at a rate that satisfies

the sampling theorem for each channel.

• Consequently, the channel of highest cutoff 

frequency determines the commutation rate for the

system of Figure 11-6.

Time-Division Multiplexing

Page 16: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 16/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

16

Figure 11-6. Time-division multiplex of three

information sources. 

Time-Division Multiplexing

Page 17: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 17/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

17

• As an example, suppose the maximum signal

frequency for the three input channels are

 f A1(max) = 4 kHz, f A2(max) = 20 kHz,

and  f A3(max) = 4 kHz.

• For the TDM system of Figure 11-6,

the multiplexing must proceed at

 f > 2 f A(max) = 40 kHz

to satisfy the worst-case condition.

Time-Division Multiplexing

Page 18: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 18/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

18

• We can calculate the transmission line pulse rate as

follows:

The commutator completes one cycle, called a frame,

every 1/40 kHz = 25 ms.

• Each time around, the commutator picks up a pulse

from each of the three channels. Hence, there are

3 pulses/frame x 40k frames/s = 120k pulses/s. 

Time-Division Multiplexing

Page 19: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 19/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

19

• The 4 kHz channel is being sampled at five times

the rate required by the sampling theorem. But if 

we slow down the commutator, the 20-kHz channel

will be inadequately sampled.

• One the thought might be to multiplex at 8 k-

frames/sec and sample the 20-kHz channel 5 times

per frame.

If you sketch this, as is done in Figure 11-7,you discover that there are

7 pulses/frame x 8k frames/s = 56k pulses/s,

which looks good.

Time-Division Multiplexing

Page 20: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 20/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

20

Figure 11-7. Possible TDM solution. 

Time-Division Multiplexing

Page 21: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 21/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

21

Time-Division Multiplexing

• The two missing samples stolen from the 20-kHzchannel results in inadequate sampling and periodicaliasing distortion.

• For no errors, the commutation rate must be 17.14 kHz,producing 120k samples/s on the transmission line. 

• A better scheme is shown in Figure 11-8 with insertionof channel 1 and 3 between two samples of channel 2.

• With 12.5 ms/pulse and 7 pulses/frame, the multiplexingrate can be

(2 pulses/25ms)/(7 pulses/frame) = 11.428k frames/sand

(11.428k frames/s) x (7 pulses/frame) = 80k pulses/swith no errors.

Page 22: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 22/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

22

Time-Division Multiplexing

Figure 11-8. TDM solution for minimumtransmission line pulse rate. 

Page 23: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 23/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

23

• In pulse width modulation (PWM), thewidth of each pulse is made directlyproportional to the amplitude of theinformation signal.

• In pulse position modulation, constant-widthpulses are used, and the position or time of occurrence of each pulse from somereference time is made directly proportional

to the amplitude of the information signal.• PWM and PPM are compared and

contrasted to PAM in Figure 11-11. 

Pulse Width and Pulse PositionModulation

Page 24: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 24/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

24

Figure 11-11. Analog/pulse modulation signals.

Pulse Width and Pulse PositionModulation

Page 25: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 25/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

25

• Figure 11-12 shows a PWM modulator. This circuitis simply a high-gain comparator that is switchedon and off by the sawtooth waveform derived froma very stable-frequency oscillator.

• Notice that the output will go to +V cc

the instantthe analog signal exceeds the sawtooth voltage.

• The output will go to -V cc the instant the analogsignal is less than the sawtooth voltage. With thiscircuit the average value of both inputs should be

nearly the same.• This is easily achieved with equal value resistors to

ground. Also the +V and – V values should notexceed V cc.

Pulse Width and Pulse PositionModulation

Page 26: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 26/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

26

Figure 11-12. Pulse width modulator. 

Pulse Width and Pulse PositionModulation

Page 27: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 27/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

27

Pulse Width and Pulse PositionModulation

• A 710-type IC comparator can be used for positive-only output pulses that are also TTL compatible.PWM can also be produced by modulation of various voltage-controllable multivibrators.

• One example is the popular 555 timer IC. Other(pulse output) VCOs, like the 566 and that of the565 phase-locked loop IC, will produce PWM.

• This points out the similarity of PWM to continuous

analog FM. Indeed, PWM has the advantages of FM---constant amplitude and good noise immunity---and also its disadvantage---large bandwidth.

Page 28: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 28/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

28

• Since the width of each pulse in the PWM signalshown in Figure 11-13 is directly proportional to the

amplitude of the modulating voltage.

• The signal can be differentiated as shown in Figure

11-13 (to PPM in part a), then the positive pulses are

used to start a ramp, and the negative clock pulses

stop and reset the ramp.

• This produces frequency-to-amplitude conversion (or

equivalently, pulse width-to-amplitude conversion).

• The variable-amplitude ramp pulses are then time-

averaged (integrated) to recover the analog signal.

Demodulation

Page 29: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 29/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

29

Figure 11-13. Pulse position modulator. 

Pulse Width and Pulse PositionModulation

Page 30: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 30/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

30

Demodulation

• As illustrated in Figure 11-14, a narrow clock pulsesets an RS flip-flop output high, and the next PPMpulses resets the output to zero.

• The resulting signal, PWM, has an average voltageproportional to the time difference between thePPM pulses and the reference clock pulses.

• Time-averaging (integration) of the outputproduces the analog variations.

• PPM has the same disadvantage as continuous

analog phase modulation: a coherent clockreference signal is necessary for demodulation.

• The reference pulses can be transmitted along withthe PPM signal.

Page 31: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 31/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

31

• This is achieved by full-wave rectifying the PPMpulses of Figure 11-13a, which has the effect of reversing the polarity of the negative (clock-rate)pulses.

• Then an edge-triggered flipflop (J-K or D-type) canbe used to accomplish the same function as the RSflip-flop of Figure 11-14, using the clock input.

• The penalty is: more pulses/second will requiregreater bandwidth, and the pulse width limit thepulse deviations for a given pulse period.

Demodulation

Page 32: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 32/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

32

Figure 11-14. PPM demodulator.

Demodulation

Page 33: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 33/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

33

Pulse Code Modulation (PCM) 

• Pulse code modulation (PCM) is produced by

analog-to-digital conversion process.

• As in the case of other pulse modulation techniques,

the rate at which samples are taken and encodedmust conform to the Nyquist sampling rate.

• The sampling rate must be greater than, or equal to,

twice the highest frequency in the analog signal,

 f s > 2 f A(max)

Page 34: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 34/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

34

• A simple example to illustrate the pulse code

modulation of an analog signal is shown in Figure

11-15.

•Here, an analog input sample becomes three binarydigits (bits) in a sequence which represents the

amplitude of the analog sample.

• At time t = 1, the analog signal is 3 V. This voltage

is applied to the encoder for a time long enough thatthe three-bit digital "word", 011, is produced.

Pulse Code Modulation (PCM) 

Page 35: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 35/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

35

• The second sample at t = 2 has an amplitude of 6 V,

which is encoded as 110.

• This particular example system is conveniently set

up so that the analog value (decimal) is encodedwith its binary equivalent.

Pulse Code Modulation (PCM) 

Page 36: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 36/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

36

Figure 11-15. A 3-bit PCM system showing

A/D conversion. 

Pulse Code Modulation (PCM) 

Page 37: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 37/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

37

Delta Modulation (DM) 

• Like PCM, a delta modulation system consists of an

encoder and a decoder;

• unlike PCM, however, a delta modulator generates

single-bit words that represent the difference (delta)

between the actual input signal and a quantized

approximation of the preceding input signal sample.

• This is represented in Figure 11-19 with a sample-

and-hold, comparator, up-down counter staircasegenerator, and a D-type flip-flop (D-FF) to derive

the digital pulse stream.

Page 38: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 38/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

38

• The continuous analog signal is band-limited in the

low-pass filter (LPF) to prevent aliasing distortion,

as in any sampling system.

• The analog signal V A is then compared to its

discrete approximation V B . 

Delta Modulation (DM) 

Page 39: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 39/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

39

Figure 11-19. Possible delta modulation encoder. 

Delta Modulation (DM) 

Page 40: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 40/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

40

• If  the amplitude of V A is greater than V B , the

comparator goes high, calling for positive going

steps from the staircase generator.

if, however, V B exceeds V A, the comparator goes low,calling for negative-going from the staircase

generator.

• The comparator also sets the D flip-flop (D-FF) and

the output will be properly clocked because theedge-triggered D-FF can change state only at rising

edges of the input clock. 

Delta Modulation (DM) 

Page 41: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 41/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

41

• Decoding of the delta modulation (DM) signalcan be accomplished with an up-down staircasegenerator and a smoothing filter

• or simply by integrating the DM pulses as shownin Figure 11-20. The resulting demodulated signal

is illustrated as curve B.

• A practical implementation of a delta modulator isshown in Figure 11-21, where the up-down counterand digital-to-analog converter (DAC) comprise the

staircase generator of Figure 11-19.• The delta modulator of Figure 11-21 is usually

referred to as a tracking or servo analog-to-digitalconverter. 

Delta Modulation (DM) 

Page 42: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 42/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

42Figure 11-20. DM demodulator. 

Delta Modulation (DM) 

Page 43: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 43/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

43

Fig. 11-21. Up-down staircase generatorfor delta modulator.

Delta Modulation (DM) 

Page 44: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 44/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

44

• As seen in Figure 11-22, the critical parametersdetermining the quality of a system using a constantstep size are the designer’s choice of step size and

sampling period length 

•With too small a step size, the analog signal changescannot be followed closely enough; this is calledslope overload (Figure 11-22a).

• With too large a step size, two problems arise: poor

signal approximation (resolution) and largequantization noise (Figure 11-22b). This condition iscalled granular noise.

Delta Modulation (DM) 

Page 45: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 45/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

45

Too long a period has the same problem as too smalla step size and poor resolution (Figure 11-22c).

When the period is too short, too much transmissionbandwidth is required.

Fig. 11-22. Critical design parameters in constantstep-size linear delta modulation. 

Delta Modulation (DM) 

Page 46: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 46/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

46

Example: A 5-V pk, 4-kHz sinusoid is to be converted to

a digital signal by delta modulation.

The step size must be 10 mV.  Determine the minimum clock rate that will

allow the DM system to follow exactly the

fastest input analog signal change,that is, to avoid slope overload. 

Delta Modulation (DM) 

Page 47: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 47/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

47

Solution: The fastest rate of change of a sinewave, v( t) =

V sinw t is the slope at the zero crossover points

( t = 0 in Figure 11-23).

slope = dv( t)/  dt= ( d  /  dt).(V sinw t) = wV cosw t.

At t = 0, the slope is wV .cos0 = wV  or Dv / D t =

2p fV , where f is the frequency of the analogsinusoid. 

cyclesV  Hz

mV 

 fV 

vt  / 079.0

5)4000(2

10

2m 

p p 

DD

Delta Modulation (DM) 

Page 48: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 48/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

48

D t is half the clock period because steps occur only atpositive transitions of the clock in a practical system.• Thus, T  clock = 2D t = 1/  f  clock, so that f  clock = 1/2Dt =

1/(2x0.079x10-6 s/cycle) = 6.3 MHz.

Figure 11-23. Example problem. 

Delta Modulation (DM) 

Page 49: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 49/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

49

Practical DM 

• A circuit configuration in present use for telecom-munication applications involving filters, speechscramblers, instrumentation, and remote motorcontrol is shown in Figure 11-24.

• To demodulate the digital signal simple integratethe pulses. In fact, the integrator has the same RCtime constant as the modulator above.

• The integrated demodulator output is the same as

the B curve of Fig. 11-24. The integrator output isthen put through a sharp cutoff LPF to smooth outthe final gain amplifier (VGA) and decision logic asindicated in Fig. 11-25 for adaptive DM.

Page 50: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 50/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

50

Fig. 11-24. Integrating linear delta modulatorblock diagram and signals.

Practical DM 

Page 51: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 51/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

51

Adaptive DM (ADM) 

• A solution to the tradeoffs and compromisesof the simple delta modulation system aboveis to have a variable step size system.

This could be accomplished as in Fig. 11-25with a variable-gain amplifier at the outputof the D-type flip-flop.

• A decision circuit that counts the number of 

+ and – steps taken over a given period of time and decides whether the step sizeshould be increased and by how much.

Page 52: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 52/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

52Figure 11-25. Adaptive delta modulator. 

Adaptive DM (ADM) 

Page 53: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 53/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

53

• As an example of how this circuit might operate,suppose that the adaptive algorithm (decisioncriteria) will be as follows: The preceding four bitsof ADM output are counted.

• If an equal number of 1s and 0s occur in this

interval (the last four bits), then the VGA gain willbe (the FET switch will be a short).

• If more 1s than 0s or more 0s than 1s are counted,the step size is doubled, the input to the integratorwill be doubled.

• The results are constructed for and analog inputand compared to the results for the linear DM inFigs. 11-26 and 11-27.

Adaptive DM (ADM) 

Page 54: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 54/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

54

Figure 11-26. ADM with step or double step sizes.Arrows are shown along the horizontal axis to indicatewhere the step size changes. These changes are basedon the number of 1s and 0s of the previous 4 bits. 

Adaptive DM (ADM) 

A i (A )

Page 55: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 55/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

55

Fig. 11-27. Different DM results depending onstep size used. 

Adaptive DM (ADM) 

Qualitative Comparisons of

Page 56: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 56/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

56

• Like PAM, PCM can be time-division multiplexedbecause the modulated samples maintain a fixedposition (slot) and duration in time.

• However, PCM is less noise-sensitive than PAM,

and PCM can use digital constant-amplitudecircuitry, unlike PAM, which requires linear

circuits.

• A disadvantage of PCM is its greater bandwidth

requirement. For example, in a simple 3-bit PCMsystem, three pulses must be transmitted, whereasonly one is transmitted for the PAM sample (seeFigure 11-30).

Qualitative Comparisons of Pulse Modulation Systems 

Ad i DM (ADM)

Page 57: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 57/59

 Prof. J.F. Huang, Fiber-Optic Communication Lab.

 National Cheng Kung University, Taiwan 

57

Figure 11-30. Pulse and digital modulation waveforms. 

Adaptive DM (ADM) 

Page 58: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 58/59

Qualitative Comparisons of

Page 59: Chap11--Sampling & Pulse Modulation

8/3/2019 Chap11--Sampling & Pulse Modulation

http://slidepdf.com/reader/full/chap11-sampling-pulse-modulation 59/59

Prof. J.F. Huang, Fiber-Optic Communication Lab.

59

Qualitative Comparisons of Pulse Modulation Systems

• An additional disadvantage for PPM over all the

other techniques is that PPM, like continuous-phase

modulation, requires coherent demodulation.

• This usually means that a phase-locked loop and its

acquisition circuitry are required.

• In addition to these advantages for PCM over other

pulse modulation techniques, the use of digital

terminal equipment makes PCM more desirable in

today’s communications marketplace.