chapter 1 introduction - dr. smith home...

17
Chapter 1 Introduction Purpose: provide a brief introduction to: 1. The Standard Model 2. An overview of the fundamental particles 3. The relationship between the particles and the forces 4. The interactions of particles in matter Fundamental Particles: Thomson_Fig-1-1-1 Thomson_Fig-1-1-2

Upload: vanmien

Post on 16-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Chapter1 IntroductionPurpose: provideabriefintroductionto: 1. TheStandardModel 2. Anoverviewofthefundamentalparticles 3. Therelationshipbetweentheparticlesandtheforces 4. TheinteractionsofparticlesinmatterFundamentalParticles: Thomson_Fig-1-1-1

Thomson_Fig-1-1-2

Page 2: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

TheForcesexperiencedbydifferentparticles Strong E.M. WeakQuarks down-type d,s,b Yes Yes Yes up-type u,c,tLeptons charged 𝑒", 𝜇", 𝜏" No Yes Yes neutrinos 𝜈', 𝜈(, 𝜈) No No Yes

Page 3: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

TheFundamentalForces:Inmodernparticlephysics,eachforceisdescribedbyaQuantumFieldTheory(QFT). QED QuantumElectrodynamics thephoton𝛾 QCD QuantumChromodynamics thegluon𝑔 EW ElectroweakInteractions 𝛾, 𝑊-, 𝑊", 𝑍/

Thomson_Fig-1-1-3

InQFT,eachofthethreeforcescorrespondtotheexchangeofaspin-1force-carryingparticle,knownasagaugeboson.Four Forces at a distance of 1 fm (roughly the size of a proton) Force particle relative strength Mass (GeV/c2) Electromagnetic Photon 𝛾 1/137 0 Gravitational Graviton G 10-37 0 Weak nuclear W±, Zo 10-8 80.4, 90.2 Strong nuclear Gluon g 1 0

Page 4: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

TheStandardModelInteractionvertices

Thomson_Fig-1-1-4

ThenatureoftheforcesisdeterminedbythepropertiesofthebosonsoftheassociatedQFTandthewayinwhichthegaugebosonscoupletothespin-halffermions.Foreachtypeofinteractionthereisanassociatedcouplingstrength.ForQEDthecouplingstrengthissimplytheelectroncharge,𝑔012 = 𝑒 ≡ + 𝑒 Aparticlecouplestoaforce-carryingbosononlyifitcarriesthechargeoftheinteraction.

• Onlyelectrically-chargedparticlescoupletothephoton• Onlycolor-chargedparticlescoupletothegluon.

TheW±(weakcharged-current)onlycouplestogetherpairsoffundamentalfermionsthatdifferbyoneunitofelectriccharge,±e.Theweakinteractioncouplesachargedleptonwithitscorrespondingneutrino.

𝜈'𝑒" ,

𝜈(𝜇" , 𝜈)𝜏"

Page 5: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Likewise,forquarks,theweakcharged-current(W±)couplesquarkcombinationsthatdifferbyoneunitofelectriccharge,±e.

𝑢𝑑 , 𝑢𝑠 , 𝑢𝑏 , 𝑐𝑑 , 𝑐𝑠 , 𝑐𝑏 , 𝑡𝑑 , 𝑡𝑠 , 𝑡𝑏

Thestrengthoftheweakcharged-currentcouplingbetweenup-typequarks+=>𝑒 anddown-typequarks −@

>𝑒 isgreatestforquarksofthesame

generation.Weakcharged-currentinteractions(W±)areparticularlyimportantwhenconsideringparticledecaysthatchangeflavor.Thescatteringoftwofermions(f)bytheexchangeboson(X)isshowninthefigurebelow.Thestrengthofthefundamentalinteractionateachofthetwothree-pointvertices(ffX)isdenotedbythecouplingconstantg.Thestrengthofthefundamentalinteractionbetweenthegaugebosonandafermionisdeterminedbythecouplingconstantg.Thequantummechanicaltransitionmatrixelement(ℳ)foraninteractionprocessincludesafactorofthecouplingconstantgforeachinteractionvertex.

ℳ ∝ 𝑔=Intheabovefigure,theinteractionprobabilityisproportionaltothematrixelementsquared ℳ = ∝ 𝑔C.InQED,thequantum-mechanicalprobabilityoftheinteractionincludesasinglefactorof𝛼foreachinteractionvertex,so,𝛼 ∝ 𝑒=,and 𝑀 = ∝ 𝛼=where:

Page 6: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

𝛼 = 𝑒=

4𝜋𝜖Iℏ𝑐=

1137

Strong 𝛼N ∼ 1Electromagnetic 𝛼 = @

@>P

Weak 𝛼Q ∼ @>/

TheintrinsicstrengthoftheweakinteractionisgreaterthanthatofQED;however,thelargemassoftheWbosonmeansthatatrelativelylow-energyscales,theweakinteractionisverymuchweakerthanQED.Homework 1-1

Page 7: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

TheStandardModelInteractionVerticesTheFeynmandiagramforthescatteringprocess𝑎 + 𝑏 → 𝑐 + 𝑑ThisshowstwopossibleFeynmandiagramsforanelectronscattering“offof”anotherelectron.ParticleDecaysTheFeynmandiagramformuondecay.

Page 8: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Threetypesofhadronicstates.(StrongInteractions) Decayofthe𝝆𝒐TheLifetimesofacommonhadronicstatesgroupedbythetypeofdecay.The𝝉andthe𝝁leptonareshownasexamplesoftheweakdecay.

Page 9: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

InteractionsofparticleswithmatterExperimentsaredesignedtodetectandidentifytheparticlesproducedinhigh-energycollisions.Thediscoveryofthetopquarkhttp://www-physics.lbl.gov/~spieler/physics_198_notes_1999/PDF/I-2-d-vertex.pdfInteractionsanddetectionofchargedparticles(“heavy”particleswithz=1).TheBethe-Blochequation:

1𝜌𝑑𝐸𝑑𝑥 =

4𝜋ℏ=𝑐=𝛼=

𝑚'𝑣=𝑚]𝑍𝐴 ℓ𝑛

2𝛽=𝛾=𝑚'𝑐=

𝐼'− 𝛽=

Page 10: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Theunitsfor@de1efare g'h

ij/ljm sometimescalledthe“stoppingpower”Themeanexcitationenergy𝐼' ∼ 10𝑍𝑒𝑉 othersources𝐼' = 16𝑍/.r𝑒𝑉Fig. 2.1 Energy loss by ionization for protons in silicon, based on the data available at http://www.nist.gov/pml/data/star/

Source: R. Poggiani, High Energy Astrophysical Techniques. © Springer International

MinimumIonizingMinimumionizingoccursat𝛽𝛾 ∼ 3.

−1𝜌𝑑𝐸𝑑𝑥 jst

∼ 2𝑀𝑒𝑉𝑔"@𝑐𝑚=

Thestoppingpowerofplasticscintillator 𝜌 ∼ 1𝑔/𝑐𝑚> withrespecttoaminimum-ionizingparticle(e.g.,highenergycosmicrays)is∼ 2𝑀𝑒𝑉/𝑐𝑚.

Page 11: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

SiliconVertexDetectors EarlyworkbymeusingSiliconStripdetectors:CERN—NorthAreaπ-, p(positivelychargedparticles~1GeV)April,1988

Page 12: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Detection of electrons and photons Electrons

• At low energies, energy loss of electrons is dominated by ionization. • Above a “critical energy” Ec, the main energy loss is due to

bremsstrahlung

𝐸l ∼ 800𝑍 𝑀𝑒𝑉

• The rate of bremsstrahlung is inversely proportional to the square of the mass. For example: muon bremsstrahlung is suppressed by jxjy

=

• Muon energy loss is predominantly through ionization until 𝐸( >100𝐺𝑒𝑉. Then bremsstrahlung “kicks in.”

The bremsstrahlung and e+e- pair-production processes. N is a nucleus of charge +Ze. Yes, . . . they mislabeled the e- e+ particles in the second figure. Switch 𝑒- ↔ 𝑒" Radiation Length

• The e.m. interactions of “high energy” electrons and photons in matter are characterized by the radiation length X0.

• The radiation length is the average distance over which the energy of an electron is reduced by bremsstrahlung by a factor of 1/𝑒.

𝑋I ≈@

C�t�m�xmℓt =�P/��/m (for electrons)

• Xo for 𝛾 → 𝑒-𝑒" is ∼ 7/9𝑋I'�'l��It

Page 13: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Photons

Figure 1 Cross sections of photons in Carbon (a) and Lead (b) in barns/atom; 1barn=10-24 cm2. (source: CERN)

• Low energy photons (<1 MeV) lose energy primarily through the photoelectric effect.

• Medium energy photons (~1 MeV) lose energy primarily through Compton scattering.

• High energy photons (>10 MeV) lose energy primarily through pair-production.

Page 14: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Electromagnetic Showers When high-energy electrons interact in a medium, they radiate a bremsstrahlung photon, which in turn produces an e+e- pair. The development of an electromagnetic shower where the number of particles roughly double after each radiation length.

• The average energy of particles of x radiation lengths: 𝐸 = 1=�

• Afterwards, the shower continues to develop until the average energy of the particles falls below the critical energy Ec.

• At energies < Ec, the electrons and positrons lose their energy

primarily through ionization.

• The maximum number of particles in the shower occurs at xmax radiation lengths.

𝑥j�f =ℓ𝑛 𝐸/𝐸lℓ𝑛2

Page 15: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Electromagnetic Calorimeters Hadronic Calorimeters Collider Experiments

The typical layout of a large particle physics detector.

Detection of Quarks The appearance of a jet A single quark emerges and hadronizes into visible particles leaving tracks in the silicon detectors and depositing energy in the calorimeters.

Page 16: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

Appearance of a b-quark in an 𝑒-𝑒" → 𝑍I → 𝑏𝑏 event.

Measurements at particle accelerators Center-of-mass energy 𝒔 The cm-energy squared is the sum of the initial

4-vectors squared.

𝑠 = 𝐸s

=

s�@

=

− 𝑝s

=

s�@

=

Fixed Target vs. Collider Fixed Target 7.0 TeV proton and proton “at rest.” 𝑠 = 115 GeV Collider 7.0 TeV proton and 7.0 GeV proton 𝑠 = 14.0 TeV

Page 17: Chapter 1 Introduction - Dr. Smith Home Pagephysicsx.pr.erau.edu/Courses/CoursesF2017/PS412/Lectures/Chapter 1...In modern particle physics ... When high-energy electrons interact

The Instantaneous Luminosity 𝓛(𝒕) Typeequationhere.The instantaneous luminosity describes the number of particles/area/sec at the point where the beams collide. It can be calculated using the following equation:

ℒ = 𝑓𝑛@𝑛=

4𝜋𝜎f𝜎�

Where n1 and n2 are the number of particles in the two colliding bunches, 𝜎f and 𝜎� are the standard deviations of the beams (assuming a Gaussian profile) in the plane transverse to the beam direction, and f is the collision frequency (40 MHz for the LHC). If a process with a known cross section (𝜎�' ) is observed in the same experiment, and Nref of these events are observed, then the cross section for the “interesting events” (𝜎) can be calculated using the following:

𝜎 = 𝜎�'  𝑁𝑁�' 

Integrated Luminosity ℒ(𝑡)𝑑𝑡 The integrated luminosity is defined as the instantaneous luminosity integrated over the “live time” of the experiment. If the cross section for scattering or production of new particles (i.e., particles of interest) is predicted to be 𝜎, then the number of events you would expect to “see” during the course of the experiment would be:

𝑁 = 𝜎 ℒ 𝑡 𝑑𝑡