chapter 1 section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض...

22
CHAPTER 1 Section 1.4 اد عد ا ودان ع ل ه ا ل ي ه د.( رض ع ل ا دة ع م ن د ا ب ت ع ضو)

Upload: bryan-craig

Post on 12-Jan-2016

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

CHAPTER 1Section 1.4

إعدادالعودان. هيله د

( العرض معدة باذن (وضعت

Page 2: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Example 3 Consider the matrices

A = B= C= D=

Here

AB=AC=

0 1

0 2

1 1

3 4

2 5

3 4

3 7

0 0

3 4

6 8 H.A.O

Page 3: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.2. Assuming that sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.

(a) A+0=0+A=A(b) A-A=0(c) 0-A=-A(d) A0=0; 0A=0

H.A.O

Page 4: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

IDENTITY MATRICES

and so on.

1 00 1

1 0 00 1 00 0 1

1 0 0 00 1 0 00 0 1 00 0 0 1

H.A.O

Page 5: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.3. If R is the reduced row-echelon from of an n × n matrix A, then either R has a row of zeros or R is the identity matrix In.

H.A.O

Page 6: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Definition. If A is a square matrix, and if a matrix B of the same size can be found such that AB = BA = I, then A is said to be invertible and B is called an inverse of A.

H.A.O

Page 7: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.4. If B and C are both inverses of the matrix A, then B=C.

H.A.O

Page 8: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

AA = I and A A= I-1 -1

H.A.O

Page 9: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.5. The matrix

A=is invertible if ad-bc≠0, in witch case the

inverse is given by the formula

A = =

a bc d

1ad - bc

-1 d -b-c a

dad - bc

bad - bc

cad - bc

aad - bc

H.A.O

Page 10: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.6. If A and B invertible matrices of the same size, then:

(a) AB is invertible.

(b)(AB) = B A .-1 -1 -1

H.A.O

Page 11: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

A product of any number of invertible matrices is invertible, and the inverse of the product is the product of the inverses in the reverse order.

H.A.O

Page 12: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Example 7 Consider the matrices

A= B= AB=

Applying the formula in Theorem1.4.5, we obtain

A = B = (AB) =Also,

B A = =

Therefore, (AB) = B A as guaranteed by Theorem 1.4.6.

1 21 3

3 22 3

7 69 8

-1 -1 -1

-1 -1

-1 -1 -1

3 -2-1 1

1 -1-1 3

2

4 -3- 9

272

1 -1-1 3

2

3 -2-1 1

4 -3- 9

272

H.A.O

Page 13: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

POWERS OF A MATRIX

Definition. If A is a square matrix, then we define the nonnegative integer powers of A to be

Moreover, if A is invertible, then we define the negative integer powers to be

Aº = IAⁿ = AA∙ ∙ ∙A (n >0)

n factors

Aˉⁿ = (Aˉ¹)ⁿ = Aˉ¹ Aˉ¹ ∙ ∙ ∙ Aˉ¹

n factors

H.A.O

Page 14: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.7. If A is a square matrix and r and s are integers, then

r s r+s r s rs

A A = A (A ) = A

H.A.O

Page 15: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.8. If A is an invertible matrix, then:

(a) Aˉ¹ is invertible and (Aˉ¹ ) ˉ¹ = A.

(b) Aⁿ is invertible and (Aⁿ) ˉ¹ =(Aˉ¹ ) ⁿ for n=0,1,2,…

(c) For any nonzero scalar k, the matrix kA is invertible and (kA) ˉ¹ = Aˉ¹ .1

k

H.A.O

Page 16: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Example 8. Let A and Aˉ¹ be as in Example 7,that is

A = A ˉ¹ = Then

A³ = =

A ˉ ³ =(A ˉ¹ ) ³ = =

1 21 3

3 -2-1 1

1 21 3

1 21 3

1 21 3

11 3015 41

3 -2-1 1

3 -2-1 1

3 -2-1 1

41 -30-15 11

H.A.O

Page 17: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

POLYNOMIAL EXPRESSIONS INVOLVING MATRICES

If A is a square matrix, say m × m, and if

p(x)= a + a x + ∙ ∙ ∙+a x (1)

is any polynomial, then we define

p(A)= a I + a A + ∙ ∙ ∙+a A Where I is the m × m identity matrix. In words,

p(A) is the m × m matrix that results when A is substituted for x in (1) and a is replaced by a I.

0

0 1

1 n

n

nn

0 0

H.A.O

Page 18: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Example 9. If

p(x)=2x²-3x+4 and A=Then

p(A)=2A²-3A+4I=2 -3 +4

= - + =

-1 2 0 3

-1 2 0 3

2

-1 2 0 3

1 00 1

2 80 18

-3 6 0 9

4 00 4

9 20 13

H.A.O

Page 19: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.9. If the sizes of the matrices are such that the stated operations can be performed, then

(a) ((A) ) = A(b) (A+B) = A +B and (A-B) = A - B

(c) (kA) = kA , where k is any scalar

(d) (AB) = B A TTT

T

T

T

TTTTT

TT

H.A.O

Page 20: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

The transpose of a product of any number of matrices is equal to the product of their transposes in the reverse order.

H.A.O

Page 21: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Theorem 1.4.10. If A is an invertible matrix, then A is also invertible and

(A )ˉ¹ = (A ˉ¹) (4)T T

H.A.O

Page 22: CHAPTER 1 Section 1.4 إعداد د. هيله العودان (وضعت باذن معدة العرض )

Example 10 Consider the matrices

A = A =

Applying Theorem 1.4.5 yields

A ˉ¹ = (A )ˉ¹ =

As guaranteed by Theorem 1.4.10, these matrices satisfy(4)

T

T-5 -3 2 1

-5 2-3 1

1 3 -2 -5

1 -2 3 -5

H.A.O