chapter 1-three phase

Upload: macbon

Post on 05-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Chapter 1-Three Phase

    1/90

    1

    Chapter 1.

    Three-Phase System

  • 7/31/2019 Chapter 1-Three Phase

    2/90

    1.1: Review of Single-Phase System

    The Sinusoidal voltage

    v1(t) = Vm sin wt

    i

    v1

    Load

    ACgenerator

    v2

    2

  • 7/31/2019 Chapter 1-Three Phase

    3/90

    3

    1.1: Review of Single-Phase System

    The Sinusoidal voltage

    v(t) = Vm sin wtwhere

    Vm = the amplitude of the sinusoid

    w = the angular frequency in radian/s

    t = time

    v(t)

    Vm

    -Vm

    wt

  • 7/31/2019 Chapter 1-Three Phase

    4/90

    4

    v(t)

    Vm

    -Vm

    t

    w 2T

    T

    1f

    f2wThe angular frequency in radians per second

  • 7/31/2019 Chapter 1-Three Phase

    5/90

    5

    A more general expression for the sinusoid (as

    shown in the figure):

    v2(t) = Vm sin (wt + )where is the phase

    v(t)

    Vm

    -Vm

    wt

    V1= V

    msin wt

    V2= V

    msin wt + )

  • 7/31/2019 Chapter 1-Three Phase

    6/90

    6

    A sinusoid can be expressed in either sine or cosine form.

    When comparing two sinusoids, it is expedient to express

    both as either sine or cosine with positive amplitudes.

    We can transform a sinusoid from sine to cosine form or

    vice versa using this relationship:

    sin (t 180o) = - sin t

    cos (t 180o) = - cos t

    sin (t 90o

    ) = cos tcos (t 90o) = + sin t

  • 7/31/2019 Chapter 1-Three Phase

    7/90

    7

    Sinusoids are easily expressed in terms of phasors.

    A phasor is a complex number that represents the

    amplitude and phase of a sinusoid.

    v(t) = Vm cos (t + )

    Time domain Phasor domain

    Time domain

    mVV Phasor domain

    )cos( wtVm mV

    )sin( wtVmo

    m 90V

    )cos( wtmI mI

    )sin( wtmIo

    m 90I

  • 7/31/2019 Chapter 1-Three Phase

    8/90

    8

    Time domain

    Phasor domain

    v(t)

    Vm

    -Vm

    wt

    V1= V

    msin wt

    V2

    = Vm

    sin wt + )

    V1

    V2

    v2(t) = Vm sin (wt + )

    v1(t) = Vm sinwt

    m

    VV2

    01 mVV

    or

    or 01 rmsVV

    rms

    VV2

  • 7/31/2019 Chapter 1-Three Phase

    9/90

    9

    1.1.1: Instantaneous and Average Power

    The instantaneous power is the power at any instantof time.

    p(t) = v(t) i(t)

    Where v(t) = Vm cos (wt + v)i(t) = Im cos (wt + i)

    Using the trigonometric identity, gives

    )cos()cos()( ivmmivmm t2IV2

    1IV

    2

    1t wp

  • 7/31/2019 Chapter 1-Three Phase

    10/90

    10

    The average power is the average of the

    instantaneous power over one period.

    T

    dttpT

    P0

    )(1

    )cos( ivmmIV21 P

    p(t)

    t

    )cos( ivmmIV2

    1

    mmIV2

    1

  • 7/31/2019 Chapter 1-Three Phase

    11/90

    11

    The effective value is the root mean square (rms) of

    the periodic signal.The average power in terms of the rms values is

    Where

    )cos(iv

    P rm srms

    IV

    2

    VV mrm s

    2

    II

    m

    rm s

  • 7/31/2019 Chapter 1-Three Phase

    12/90

    12

    1.1.2: Apparent Power, Reactive Power and

    Power Factor

    The apparent power is the product of the rms values

    of voltage and current.

    The reactive power is a measure of the energy

    exchange between the source and the load reactive

    part.

    rm srm sIVS

    )sin( ivQ rm srm sIV

  • 7/31/2019 Chapter 1-Three Phase

    13/90

    13

    The power factor is the cosine of the phase difference

    between voltage and current.

    The complex power:

    )cos( ivfactorPower S

    P

    iv

    jQP

    rm srm s IV

  • 7/31/2019 Chapter 1-Three Phase

    14/90

    14

    1.2: Three-Phase System

    In a three phase system the source consists of three

    sinusoidal voltages. For a balanced source, the three

    sources have equal magnitudes and are phase

    displaced from one another by 120 electrical degrees.

    A three-phase system is superior economically and

    advantage, and for an operating of view, to a single-

    phase system. In a balanced three phase system the

    power delivered to the load is constant at all times,whereas in a single-phase system the power pulsates

    with time.

  • 7/31/2019 Chapter 1-Three Phase

    15/90

    15

    1.3: Generation of Three-Phase

    Three separate windings or coils with terminals R-R,Y-Y and B-B are physically placed 120o apartaround the stator.

    Y

    BY

    B

    Stator

    Rotor

    Y

    R

    B

    R

    R

    N

    S

  • 7/31/2019 Chapter 1-Three Phase

    16/90

    16

    Vor vis generally represented a voltage, butto differentiate the emf voltage of generatorfrom voltage drop in a circuit, it is convenient touse eor Efor induced (emf) voltage.

  • 7/31/2019 Chapter 1-Three Phase

    17/90

    1717

    v(t)

    wt

    vR

    vY

    vB

    The instantaneous e.m.f. generated in phase R, Y and B:

    eR= EmR sin wteY= EmY sin (wt -120

    o)

    eB= EmB sin (wt -240o)= EmBsin (wt +120

    o)

  • 7/31/2019 Chapter 1-Three Phase

    18/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN

    18

  • 7/31/2019 Chapter 1-Three Phase

    19/90

    The instantaneous e.m.f. generated in phase R, Y and B:

    eR= EmR sin t

    eY= EmY sin (t -120o)

    eB= EmB sin (t -240o) = EmBsin (t +120

    o)

    In phasor domain:

    ER= ERrms 0o

    EY= EYrms -120o

    EB= EBrms 120o

    Phase voltage

    120o

    -120o

    0o

    ERrms= EYrms= EBrms= Ep Magnitude of phase voltage19

  • 7/31/2019 Chapter 1-Three Phase

    20/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN

    Line voltage

    ERY

    ERY

    = ER

    - EY

  • 7/31/2019 Chapter 1-Three Phase

    21/90

    21

    Line voltage

    ERY

    = ER

    - EY

    120o

    -120o

    0o

    -EYERY

    = Ep 0o - Ep -120

    o

    = 1.732Ep

    ERY

    30o= 3 Ep

    = EL

    30o

    30o

  • 7/31/2019 Chapter 1-Three Phase

    22/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN

    Line voltage

    EYB

    EYB

    = EY

    - EB

  • 7/31/2019 Chapter 1-Three Phase

    23/90

    Line voltage

    EYB

    = EY

    - EB

    120o

    -120o

    0o

    -EB

    EYB

    = Ep -120o - Ep

    120o

    = 1.732Ep

    EYB

    -90o

    -90o= 3 Ep

    = EL

    -90o

  • 7/31/2019 Chapter 1-Three Phase

    24/90

    ER

    Three-phaseLoad

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN

    Line voltage

    EBR

    EBR = EB- ER

  • 7/31/2019 Chapter 1-Three Phase

    25/90

    2525

    Line voltage

    EBR

    = EB

    - ER

    120o

    -120o

    0o

    -ER

    EBR= Ep 120

    o - Ep 0o

    = 1.732Ep

    EBR

    150o

    150o= 3 Ep

    = EL

    150o

    For star connected supply, EL= 3 Ep

  • 7/31/2019 Chapter 1-Three Phase

    26/90

    26

    120o

    -120o

    0o

    Phase voltages

    ER= Ep 0o

    EY= Ep -120o

    EB= Ep 120o

    Line voltages

    ERY= EL 30o

    EYB= EL -90o

    EBR= EL 150o

    It can be seen that the phasevoltage ER is reference.

  • 7/31/2019 Chapter 1-Three Phase

    27/90

    2727

    Phase voltages

    ER= Ep -30o

    EY= Ep -150o

    EB= Ep 90o

    Line voltages

    ERY= EL 0o

    EYB= EL -120o

    EBR= EL 120o

    Or we can take the line voltageERYas reference.

  • 7/31/2019 Chapter 1-Three Phase

    28/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    ERY

    Delta connected Three-Phase supply

    ERY= ER = Ep 0o

  • 7/31/2019 Chapter 1-Three Phase

    29/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    EYB

    EBR

    For delta connected supply, EL= Ep

    Delta connected Three-Phase supply

  • 7/31/2019 Chapter 1-Three Phase

    30/90

    30

    Connection in Three Phase System

    4-wire system (neutral line with impedance)

    3-wire system (no neutral line )

    4-wire system (neutral line without impedance)

    Star-Connected Balanced Loadsa)4-wire system b) 3-wire system

    3-wire system (no neutral line ), delta connected load

    Delta-Connected Balanced Loads

    a) 3-wire system

  • 7/31/2019 Chapter 1-Three Phase

    31/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN ZN

    VN

    4-wire system (neutral line with impedance)

    VN= INZNVoltage drop across neutralimpedance: 1.1

  • 7/31/2019 Chapter 1-Three Phase

    32/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN ZN

    VN

    4-wire system (neutral line with impedance)

    IR + IY+ IB= IN

    Applying KCL at star point

    1.2

  • 7/31/2019 Chapter 1-Three Phase

    33/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN ZN

    VN

    4-wire system (neutral line with impedance)

    Applying KVL on R-phase loop

    33

  • 7/31/2019 Chapter 1-Three Phase

    34/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    IR

    VR ZR

    IN ZN

    VN

    Applying KVL on R-phase loop

    ERVRVN= 0

    ERIRZRVN= 0

    IR=

    ThusERVN

    ZR

    1.3

    4-wire system (neutral line with impedance)

    34

  • 7/31/2019 Chapter 1-Three Phase

    35/90

    4 i ( l li i h i d )

  • 7/31/2019 Chapter 1-Three Phase

    36/90

    36

    Three-phase

    Load

    Three-phaseAC generator

    VYEY

    IY

    ZY

    IN ZN

    VN

    Applying KVL on Y-phase loop

    4-wire system (neutral line with impedance)

    EYVYVN= 0

    EYIYZYVN= 0IY=

    ThusEYVN

    ZY

    1.4

    4 i t ( t l li ith i d )

  • 7/31/2019 Chapter 1-Three Phase

    37/90

    Three-phase

    Load

    Three-phaseAC generator

    EB

    IB

    ZB

    VB

    IN ZN

    VN

    4-wire system (neutral line with impedance)

    Applying KVL on B-phase loop

    EBVBVN= 0

    EBIBZBVN= 0IB=

    ThusEBVN

    ZB

    1.5

    37

    4 i t ( t l li ith i d )

  • 7/31/2019 Chapter 1-Three Phase

    38/90

    38

    4-wire system (neutral line with impedance)

    IR + IY+ IB= IN

    Substitute Eq. 1.2, Eq.1.3, Eq. 1.4 and Eq. 1.5 into

    Eq. 1.1:

    =EBVN

    ZB+

    EYVN

    ZY

    ERVN

    ZR +

    VN

    ZN

    ERVN EYVN+ + EBVN =VN

    ZNZR ZR ZY ZY ZB ZB

    ER

    ZR+

    EY

    ZY+

    EB

    ZB=

    1

    ZN+

    1

    ZR+

    1

    ZY

    VN +1

    ZB

    4 i t ( t l li ith i d )

  • 7/31/2019 Chapter 1-Three Phase

    39/90

    39

    4-wire system (neutral line with impedance)

    ER

    ZR+

    EY

    ZY+

    EB

    ZB=

    1

    ZN+

    1

    ZR+

    1

    ZY

    VN +1

    ZB

    VN =

    ERZR

    + EYZY

    + EBZB

    1

    ZN

    +1

    ZR

    +1

    ZY

    +1

    ZB

    1.6

    4 i t ( t l li ith i d )

  • 7/31/2019 Chapter 1-Three Phase

    40/90

    4-wire system (neutral line with impedance)

    VN =

    ERZR

    + EYZY

    + EBZB

    1

    ZN

    +1

    ZR

    +1

    ZY

    +1

    ZB

    1.6

    VN is the voltage drop across neutral line impedance

    or the potential different between load star point andsupply star point of three-phase system.

    We have to determine the value of VN in order to find thevalues of currents and voltages of star connected loads of

    three-phase system. 40

  • 7/31/2019 Chapter 1-Three Phase

    41/90

    Example

    ER

    Three-phase

    Load

    ZY= 2

    IR

    VR

    EY

    EB

    ZR= 5

    IY

    IB

    ZB= 10

    VB

    IN ZN=10

    VN

    Find the line currents IR,IYand IB. Also find

    the neutral current IN.

    EL = 415 volt

    Th h 3 wire system (no neutral line )

  • 7/31/2019 Chapter 1-Three Phase

    42/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    IN ZN

    VN

    3-wire system (no neutral line )

    Th h 3 wire system (no neutral line )

  • 7/31/2019 Chapter 1-Three Phase

    43/90

    ER

    Three-phase

    Load

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    VN

    3-wire system (no neutral line )

    No neutral line = open circuit , ZN=

    43

    3 wire system (no neutral line )

  • 7/31/2019 Chapter 1-Three Phase

    44/90

    44

    VN =

    ER

    ZR+ E

    Y

    ZY+ E

    B

    ZB

    1

    ZN +

    1

    ZR +

    1

    ZY +

    1

    ZB

    1.6

    3-wire system (no neutral line )

    =ZN

    1

    = 0

    3 wire system (no neutral line )

  • 7/31/2019 Chapter 1-Three Phase

    45/90

    45

    VN =

    ER

    ZR+ E

    Y

    ZY+ E

    B

    ZB

    1

    ZR +

    1

    ZY +

    1

    ZB

    1.7

    3-wire system (no neutral line )

  • 7/31/2019 Chapter 1-Three Phase

    46/90

    Example

    ER

    Three-phase

    Load

    ZY= 2

    IR

    VR

    EY

    EB

    ZR= 5

    IY

    IB

    ZB= 10

    VBVN

    EL = 415 volt

    Find the line currents IR,IYand IB. Also find

    the voltages VR, VY and VB.

    3 wire system (no neutral line ) delta connected load

  • 7/31/2019 Chapter 1-Three Phase

    47/90

    3-wire system (no neutral line ),delta connected load

    ER

    Three-phaseLoad

    Three-phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IY

    IB

    ZB ZY

    VB

    3 wire system (no neutral line ) delta connected load

  • 7/31/2019 Chapter 1-Three Phase

    48/90

    3-wire system (no neutral line ),delta connected load

    ER

    Three-phaseLoad

    Three-phaseAC generator

    IR

    EY

    EB

    IY

    IB

    VRY

    ZRYZBR

    ZYB

    VYB

    VBR

    Ir

    IbIy

    3-wire system (no neutral line ) delta connected load

  • 7/31/2019 Chapter 1-Three Phase

    49/90

    3-wire system (no neutral line ),delta connected load

    ER

    Three-phaseLoad

    Three-phaseAC generator

    IR

    EY

    EB

    IY

    IB

    VRY

    ZRYZBR

    ZYB

    VYB

    VBR

    Ir

    IbIy

    ERY=VRY

    EYB =VYB

    EBR =VBR

    3-wire system (no neutral line ) delta connected load

  • 7/31/2019 Chapter 1-Three Phase

    50/90

    50

    3-wire system (no neutral line ),delta connected load

    Phase currents

    30oIr=

    VRY

    ZRY=

    ERY

    ZRY=

    EL

    ZRY

    -90oIy=

    VYB

    ZYB=

    EYB

    ZYB=

    EL

    ZYB

    150oIb

    =VBR

    ZBR=

    EBR

    ZBR=

    EL

    ZBR

    3-wire system (no neutral line ) delta connected load

  • 7/31/2019 Chapter 1-Three Phase

    51/90

    3-wire system (no neutral line ),delta connected load

    ER

    Three-phaseLoad

    Three-phaseAC generator

    IR

    EY

    EB

    IY

    IB

    VRY

    ZRYZBR

    ZYB

    VYB

    VBR

    Ir

    IbIy

    ERY=VRY

    EYB =VYB

    EBR =VBR

    Line currents

    IR= Ir Ib-

    =EL

    ZRY

    30o-

    150oEL

    ZBR

    IY= Iy Ir-

    =EL

    ZYB

    -90o-

    30oEL

    ZRY

  • 7/31/2019 Chapter 1-Three Phase

    52/90

  • 7/31/2019 Chapter 1-Three Phase

    53/90

  • 7/31/2019 Chapter 1-Three Phase

    54/90

    Example

    ER

    Three-phase

    Load

    ZY= 2

    IR

    VR

    EY

    EB

    ZR= 5

    IY

    IB

    ZB= 10

    VBVN

    Find the line currents IR,IYand IB .

    EL = 415 volt

    Use star-delta conversion.

    Three-phase 4-wire system (neutral line without impedance)

  • 7/31/2019 Chapter 1-Three Phase

    55/90

    ER

    Three-phase

    Load

    Three phaseAC generator

    VY

    IR

    VR

    EY

    EB

    ZR

    IR

    IB

    ZB ZY

    VB

    INZ

    N

    VN

    4 wire system (neutral line without impedance)

    =0

    VN = INZN= IN(0)= 0 volt55

    4-wire system (neutral line without impedance)

  • 7/31/2019 Chapter 1-Three Phase

    56/90

    56

    4 wire system (neutral line without impedance)

    For 4-wire three-phase system, VN

    is equal to0, therefore Eq. 1.3, Eq. 1.4, and Eq. 1.5become,

    IB=EB

    ZB

    1.5EBVN

    IY=EY

    ZY

    1.4EYVN

    IR=ER

    ZR1.3

    ERVN

  • 7/31/2019 Chapter 1-Three Phase

    57/90

    Example

    ER

    Three-phase

    Load

    ZY= 2

    IR

    VR

    EY

    EB

    ZR= 5

    IY

    IB

    ZB= 10

    VB

    IN

    VN

    Find the line currents IR,IYand IB. Also find

    the neutral current IN.

    EL = 415 volt

    (t)

  • 7/31/2019 Chapter 1-Three Phase

    58/90

    58

    v(t)

    wt

    vR

    vY

    vB

    The instantaneous e.m.f. generated in phase R, Y and B:

    eR= EmR sinw

    teY= EmY sin (wt -120

    o)

    eB= EmB sin (wt -240o)= EmBsin (wt +120

    o)

  • 7/31/2019 Chapter 1-Three Phase

    59/90

    59

    1.4: Phase sequencesRYB and RBY

    120o

    -120o

    120o VR

    VY

    VB

    wo

    )rms(RR0VV

    o

    )rms(YY120VV

    o

    )rms(B

    o

    )rms(BB

    120V

    240VV

    VR leads VY, which in turn leads VB.This sequence is produced when the rotor rotates in

    the counterclockwise direction.

    (a) RYB or positive sequence

  • 7/31/2019 Chapter 1-Three Phase

    60/90

    60

    (b) RBY or negative sequence

    120o

    -120o

    120

    o

    VR

    VB

    VY

    w

    o

    )rms(RR0VV

    o

    )rms(BB120VV

    o

    rmsY

    o

    rmsYY

    V

    V

    120

    240

    )(

    )(

    V

    VR leads VB, which in turn leads VY.This sequence is produced when the rotor rotates in

    the clockwise direction.

  • 7/31/2019 Chapter 1-Three Phase

    61/90

  • 7/31/2019 Chapter 1-Three Phase

    62/90

    62

    Star Connectionb) Four wire system

    VRN

    VBN

    VYN

    ZR

    ZY ZB

    R

    B

    NY

  • 7/31/2019 Chapter 1-Three Phase

    63/90

    63

    Wye connection of Load

    Z1

    Z3

    Z2

    R

    B

    Y

    NLoad

    Z3

    Z1

    Z2

    R

    Y

    B

    Load

    N

  • 7/31/2019 Chapter 1-Three Phase

    64/90

    64

    1.5.2: Delta Connection

    R

    Y

    B

    Y

    B

    R

  • 7/31/2019 Chapter 1-Three Phase

    65/90

    65

    Delta connection of load

    Zc

    Za

    Zb

    R

    B

    Y

    Load

    Zc

    Zb

    Za

    R

    Y

    B

    Load

  • 7/31/2019 Chapter 1-Three Phase

    66/90

    Wye-Connected Balanced Loads

  • 7/31/2019 Chapter 1-Three Phase

    67/90

    67

    Example

    ER

    Three-phase

    Load

    ZY= 20

    IR

    VR

    EY

    EB

    ZR= 20

    IY

    IB

    ZB= 20

    VBVN

    EL = 415 volt

    Find the line currents IR,IYand IB. Also find

    the voltages VR, VY and VB.

    Wye Connected Balanced Loadsb) Three wire system

  • 7/31/2019 Chapter 1-Three Phase

    68/90

    68

    Wye-Connected Balanced Loadsb) Three wire system

    VN = = 0 volt

    VR= ER

    VY= EY

    VB= EB

    1.6.1: Wye-Connected Balanced Loads

    ) i

  • 7/31/2019 Chapter 1-Three Phase

    69/90

    69

    Example

    ER

    Three-phase

    Load

    ZY= 20

    IR

    VR

    EY

    EB

    ZR= 20

    IY

    IB

    ZB= 20

    VB

    IN

    VN

    Find the line currents IR,IYand IB. Also find

    the neutral current IN.

    EL = 415 volt

    a)Four wire system

    1.6.1: Wye-Connected Balanced Loads

  • 7/31/2019 Chapter 1-Three Phase

    70/90

    70

    VRN

    VBN

    Z1

    Z2 Z3

    R

    B

    N

    Y

    VYN

    IR

    IY

    IB

    IN

    BYRNIIII

    For balanced load system,

    IN = 0 and Z1 = Z2 = Z3

    3

    o

    BN

    B

    2

    o

    YN

    Y

    1

    o

    RN

    R

    Z

    120VI

    Z

    120V

    I

    Z

    0VI

    BNYNRNphasa

    phasaBN

    phasaYN

    phasaRN

    VVVVwhere

    120VV

    120VV

    0VV

    a)Four wire system

  • 7/31/2019 Chapter 1-Three Phase

    71/90

    71

    Wye-Connected Balanced Loadsb) Three wire system

    R

    Y

    B

    Z1

    Z 2 Z3

    IR

    IY

    IB

    VRY

    VYB

    VBR S

    0IIIBYR

    3

    o

    BS

    B

    2

    o

    YS

    Y

    1

    o

    RS

    R

    Z

    120VI

    Z

    120VI

    Z

    0VI

    BSYSRSphasa

    phasaBS

    phasaYS

    phasaRS

    VVVVwhere

    240VV

    120VV

    0VV

  • 7/31/2019 Chapter 1-Three Phase

    72/90

    72

    1.6.2: Delta-Connected Balanced Loads

    ZZ

    Z

    R

    Y

    B

    VRY

    VYB

    VBR

    IR

    IRY

    IBR

    IYB

    IB

    IY

    Phase currents:

    3

    o

    BR

    BR

    2

    o

    YB

    YB

    1

    o

    RY

    RY

    Z

    120VI

    Z

    120VI

    Z

    0VI

    Line currents:

    YBBRB

    RYYBY

    BRRYR

    III

    III

    III

    lineBYR

    phasaBRYBRY

    IIIIand

    IIIIwhere

  • 7/31/2019 Chapter 1-Three Phase

    73/90

  • 7/31/2019 Chapter 1-Three Phase

    74/90

    74

    1.7.1: Wye-Connected Unbalanced LoadsFour wire system

    VRN

    VBN

    Z1

    Z2 Z3

    R

    B

    N

    Y

    VYN

    IR

    IY

    IB

    IN

    BYRNIIII

    For unbalanced load system,

    IN

    0 and Z1

    Z2

    Z3

    3

    o

    BN

    B

    2

    o

    YN

    Y

    1

    o

    RN

    R

    Z

    120VI

    Z

    120V

    I

    Z

    0VI

    120VV

    120VV

    0VV

    phasaBN

    phasaYN

    phasaRN

  • 7/31/2019 Chapter 1-Three Phase

    75/90

    75

    1.7.2: Delta-Connected Unbalanced Loads

    Z

    Z

    Z

    R

    Y

    B

    VRY

    VYB

    VBR

    IR

    IRY

    IBR

    IYB

    IB

    IY

    Phase currents:

    3

    o

    BR

    BR

    2

    o

    YB

    YB

    1

    o

    RY

    RY

    Z

    120VI

    Z

    120VI

    Z

    0VI

    Line currents:

    YBBRB

    RYYBY

    BRRYR

    III

    III

    III

    120VV

    120VV

    0VV

    phasaBN

    phasaYN

    phasaRN

  • 7/31/2019 Chapter 1-Three Phase

    76/90

    76

    1.8 Power in a Three Phase

    System

  • 7/31/2019 Chapter 1-Three Phase

    77/90

    77

    Power Calculation

    The three phase power is equal the sum ofthe phase powers

    P = PR+ PY+ PB

    If the load is balanced:

    P = 3 Pphase = 3 Vphase Iphase cos

    1.8.1: Wye connection system:

  • 7/31/2019 Chapter 1-Three Phase

    78/90

    78

    I phase= I L and

    Real Power, P = 3 Vphase Iphase cos

    Reactive power,

    Q = 3 Vphase

    Iphase

    sin

    Apparent power,

    S = 3 Vphase Iphase

    or S = P + jQ

    phaseLL VV 3

    WattIV LLL cos3

    VARIV3 LLL sin

    VAIV3 LLL

  • 7/31/2019 Chapter 1-Three Phase

    79/90

    79

    1.8.2: Delta connection system

    VLL= Vphase

    P = 3 Vphase Iphase cos

    phaseL I3I

    WattIV LLL cos3

  • 7/31/2019 Chapter 1-Three Phase

    80/90

    80

    1.9: Three phase power

    measurement

  • 7/31/2019 Chapter 1-Three Phase

    81/90

    81

    Power measurement

    In a four-wire system (3 phases and a

    neutral) the real power is measured using

    three single-phase watt-meters.

    Three Phase Circuit

  • 7/31/2019 Chapter 1-Three Phase

    82/90

    82

    Three Phase Circuit

    Four wire system,

    Each phase measured separately

    A

    A

    V

    W

    W

    Phase A

    Phase B

    Phase C

    VAN

    IA

    IC

    V

    A

    V

    W

    IB

    VBN

    VCN

    Neutral (N)

    PA

    PB

    PC

    watt-meter connection

  • 7/31/2019 Chapter 1-Three Phase

    83/90

    8383

    Current coil (low impedance)

    voltage coil (high impedance)

    W

    Examplea)Four wire system

  • 7/31/2019 Chapter 1-Three Phase

    84/90

    Example

    ER

    Three-phase

    Load

    IR

    VR

    EY

    EB

    ZR= 5

    IYIB

    ZB= 20

    VB

    IN

    VN

    Find the three-phase total power, PT.

    EL = 415 volt30o

    ZY= 10 90o

    45o

    WR

    WB

    WY

  • 7/31/2019 Chapter 1-Three Phase

    85/90

    Exampleb)Three wire system

  • 7/31/2019 Chapter 1-Three Phase

    86/90

    Example

    ER

    Three-phase

    Load

    IR

    VR

    EY

    EB

    ZR= 5

    IYIB

    ZB= 20

    VN

    Find the three-phase total power, PT.

    EL = 415 volt30o

    ZY= 10 90o

    45o

    WR

    WB

    WY

    VB

    Th Ph Ci it

  • 7/31/2019 Chapter 1-Three Phase

    87/90

    87

    Three Phase Circuit

    Three wire system,

    The three phase power is the sum of the two watt-

    meters readingA

    A

    V

    V

    W

    W

    Phase A

    Phase B

    Phase C

    VAB

    = VA

    - VB

    VCB

    = VC

    - VB

    IA

    IC

    PAB

    PCBCBABT PPP

    CBABT PPP Proving:

  • 7/31/2019 Chapter 1-Three Phase

    88/90

    8888

    The three phase power (3-wire system) is the

    sum of the two watt-meters reading

    Instantaneous power:

    pA = vA iA

    pB= vBiB

    pC= vCiC

    A

    A

    V

    W

    W

    Phase A

    Phase B

    Phase C

    VAN

    IA

    IC

    V

    A

    V

    W

    IB

    VBN

    VCN

    Neutral (N)

    PA

    PB

    PC

    pT= pA + pB+ pC= vA iA + vBiB+vCiC

    = vA iA + vBiB+vCiC= vA iA + vB(-iA -iC)+vCiC

    Proving:

  • 7/31/2019 Chapter 1-Three Phase

    89/90

    8989

    The three phase power (3-wire system) is the

    sum of the two watt-meters reading

    CBABT PPP

    Instantaneous power:A

    A

    V

    W

    W

    Phase A

    Phase B

    Phase C

    VAN

    IA

    IC

    V

    A

    V

    W

    IB

    VBN

    VCN

    Neutral (N)

    PA

    PB

    PC

    pT= pAB+ pCB

    pT= vA iA + vB(-iAiC) +vCiC

    = (vA vB)iA + (vC vB)iC

    = vABiA + vCBiC

    A

    A

    V

    V

    W

    W

    Phase A

    Phase B

    Phase C

    VAB

    = VA

    - VB

    VCB

    = VC

    - VB

    IA

    IC

    PAB

    PCB

  • 7/31/2019 Chapter 1-Three Phase

    90/90

    Power measurement

    In a four-wire system (3 phases and a

    neutral) the real power is measured using

    three single-phase watt-meters.

    In a three-wire system (three phases

    without neutral) the power is measured

    using only two single phase watt-meters.

    The watt-meters are supplied by the line

    current and the line-to-line voltage.