chapter: 2 review of literature -...

58
CHAPTER: 2 Review of Literature

Upload: others

Post on 13-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

CHAPTER: 2

Review of Literature

Page 2: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

64

2.1. Methods used for the analysis of drugs

Analysis of drugs in pharmaceutical products and biological samples is growing in

importance, both in the development of more selective and effective drugs and in

understanding their therapeutic and toxic effects. Knowledge of drug levels in body fluids,

such as serum and urine, allows the optimization of pharmacotherapy and provides a basis

for studies of patient compliance, bioavailability, pharmacokinetics and the influences of

co-medications. The quantitative and qualitative analysis of drugs and their metabolites has

been applied extensively in pharmacokinetic studies because pharmacokinetic variables

such as time to reach maximum plasma concentration, clearance and bioavailability have

to be known for a new drug to be approved. In addition, therapeutic drug monitoring

(TDM) is used to improve drug therapy. In contrast drugs of abuse, illicit drugs,

intoxicating drugs and poisons are analyzed in clinical and forensic toxicology. The

screening of drugs of abuse in body fluids is also important for identifying and treating

users of these drugs and for monitoring drug addicts following withdrawal from therapy.

Also, these analytes are often present at low concentrations in biological samples. Drug

analyses have been performed using various analytical instruments under many

circumstances including clinical control for diagnosis and treatment of diseases, doping

control, forensic analysis and toxicology.

An important place is occupied by chromatographic methods based on high-

performance liquid chromatography (HPLC), thin layer chromatography (TLC), and gas

chromatography (GC)) for the determination of drugs for therapeutic drug monitoring in

biological samples and as organic pollutants in environment. Unification of the equipment

Page 3: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

65

used necessitates preparation of a very accurate and detailed description of conditions for

carrying out the analysis. Other meaningful methods are ultraviolet-visible (UV-vis) &

infrared (IR) spectrophotometry, atomic absorptive spectrometry (AAS), nuclear magnetic

resonance (NMR), mass spectrometry (MS) or spectrofluorimetry, capillary electrophoresis

(CE), capillary zone electrophoresis (CZE), micellar electrokinetic capillary

chromatography (MEKC)) and voltamperometric methods. Any determination of organic

pollutants in environment requires either a direct analysis using these analytical

instruments or a prior preconcentration step followed by analysis. Various methods are

available for the estimation of the pharmaceuticals using chromatographic methods like

thin layer chromatography [1-10], high performance liquid chromatography with different

detectors and derivatization [11-40], gas chromatography with different detectors and

derivatization [41-78], capillary electrophoresis [79-94], ion chromatography [95-104],

ultra-violet spectrophotometry [105-114], flow injection analysis [115-119], voltammetry

and polarography [120, 121] and fluorimetric methods [122-124]. The detection methods

combined with above separation methods including ultra-violet, mass spectra, fluorescent

light, refractive index (RI) and electrochemical detection are also described.

The most widely used approaches in quality control of pharmaceuticals and

pharmacokinetic studies of drugs are HPLC and GC separations, which have become a

powerful and important technology in various other fields as well. These methods are

efficient and versatile, currently available and increasingly used analytical techniques for

qualitative and quantitative analysis of endogenous and exogenous substances in biological

samples. In case of drug formulations, since the purified molecule is routinely used in

drugs assays and it is critical that preparations being tested be devoid of antimicrobial

Page 4: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

66

components introduced during purification. In this regard, HPLC techniques can provide a

valuable tool for generating highly pure preparations for characterizing the antimicrobial

activities. Also HPLC with its ability to analyze both volatile and non-volatile compounds,

to determine ultra trace to preparative to process scale separations, may be employed in

clinical laboratories.

Sample preparation is necessary to isolate the desired components from complex

matrices, because most analytical instruments cannot handle the matrix directly. Recent

trends in sample preparation include various forms of solid-phase extraction (SPE) [125-

138] , solid-phase microextraction (SPME) [139-142], stir-bar sorptive extraction (SBSE)

[143-148], membrane extraction [149-154], liquid-phase microextraction (LPME) [155-

159], supercritical fluid extraction (SFE) [160-163], pressurized liquid extraction (PLE)

[164-168], matrix solid-phase dispersion (MSPD) [169-172], dispersive solid-phase

extraction (DSPE) [173-176], ultrasonic assisted extraction (USAE) [177-179],

microwave-assisted solvent extraction (MASE) [180-185], etc. Some of these methods

often employ large volumes of hazardous organic solvents; others are time-consuming

and/or expensive. Most of these methods require collection of the samples and their

transportation to the laboratory for further processing. Incorrect sample handling during

collection, transportation, and preservation may result in significant variability in the

results.

Solid-phase extraction (SPE) is today the most commonly used sample preparation

method. SPE is used to extract, concentrate and clean-up compounds of interest from a

sample matrix using a solid support. Here, the analytes are adsorbed on the packing bed

and this is followed by the elution or thermal desorption for recovery. Compared to SPE or

Page 5: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

67

liquid-liquid extraction (LLE), microextraction in packed syringe (MEPS) reduces the

sample preparation time and organic solvent consumption. MEPS is a new technique for

miniaturised solid-phase extraction that can be connected online to GC or LC without any

modifications [118-122]. MEPS can be fully automated; the sample processing, extraction

and injection steps are performed online using the same syringe. Compared to solid-phase

micro extraction, MEPS reduces both sample preparation time (Approx. 1 min) and sample

volume (10-1000 µL) and a much higher recovery (>50%) can be obtained.

2.2. Application of pre-concentration techniques with HPLC/GC-MS to

antidepressants

Antidepressant drugs are widely used for the treatment of depression and these

drugs are frequently encountered in emergency toxicology screening, drug-abuse testing

and forensic medical examinations [186]. Various methods for determination of

antidepressant drugs have been reported including HPLC, GC, GC-MS and HPLC-MS.

LLE, SPE, column switching approach and, more recently, SPME and SBSE have been

adopted for that purpose. Two noradrenergic and specific serotonergic antidepressants

mirtazapine and mianserine has been determined and separated simultaneously by using

simple TLC-densitometry method and validated for their determination in commercially

available tablets [187]. A sensitive HPLC method has been described for the simultaneous

determination of eleven cyclic antidepressants in human biological samples [188]. An

isocratic reversed-phase HPLC method with UV detection has been devised and optimized

to quantify antidepressants in human serum [189]. In another approach, a restricted access

material alkyl-diol-silica (RAM-ADS) has been used to prepare a highly biocompatible

Page 6: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

68

SPME capillary for the automated and direct in-tube extraction of several benzodiazepines

from human serum [190]. A novel RAM-SBSE bar has been developed for the direct

extraction and desorption of caffeine and three of its metabolites in biological samples

[191]. LC methods with online sample clean-up and column switching are advantageous,

since they allow automated analysis after preparation of serum or plasma [192-195]. A

selective and reproducible in-tube SPME-LC-UV method has been reported for

simultaneous determination of few antidepressants in human plasma [196]. A few

antidepressants and metabolites have been analyzed and separated by an isocratic HPLC

method with column switching and ultraviolet detection in human serum [197]. Boron-

doped diamond (BDD) electrodes for the electrochemical detection of six tricyclic

antidepressant drugs have been examined [198]. A sensitive method using sample

preparation technique MEPS with LC-UV has been reported for the determination of new

generation antidepressants in human plasma samples [199].

Some tricyclic antidepressants and neuroleptics in their quaternary mixtures have

been simultaneously determined by a reversed-phase HPLC method with UV detection at

252 nm [200]. Santos neto et al. studied the application of a system that joins the known

advantages of capillary LC with those of column-switching using restricted access material

to the analysis of fluoxetine in plasma samples [201]. SPME coupled with HPLC-DAD has

been described for the analysis of heterocyclic aromatic amines [202]. A new and simple

analytical methodology for the simultaneous determination of twenty antidepressant drugs

in human plasma sample has been reported. The method was based on the LC-MS with

sonic spray ionization (SSI) technique [203]. Other recent approach based on in-tube

SPME-LC-MS has been developed for the analysis of ten antidepressants in urine and

Page 7: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

69

plasma [204]. A SPME combined with LC-ESI-MS/MS to determine trace levels

amphetamine (AM) and methamphetamine (MA) in serum has been investigated [206].

Fourteen antidepressants and their metabolites has been separated and analyzed by fully

automated on-line SPE-LC-MS/MS method for the direct analysis in plasma [207]. A LC-

MS/MS method for the simultaneous determination of seventeen antipsychotic drugs in

human postmortem brain tissue has been developed. Sample preparation was performed

using hybrid SPE-precipitation technology for the removal of endogenous protein and

phospholipid interferences [208]. Tricyclic antidepressant drugs have been analyzed by a

fully-automated turbulent-flow LC-MS/MS method in serum [209]. A simple capillary gas

chromatography (CGC) procedure for the analysis of three active ingredients (fluoxetine,

fluvoxamine and clomipramine) in their respective pharmaceutical formulations has been

reported [210]. A few methods based on SBSE in combination with thermal desorption on-

line coupled to CGC-/MS to the analysis of pharmaceutical drug compounds and

metabolites and organic solutes in urine and blood are reported [212, 213].

2.3. Application of pre-concentration techniques with HPLC/GC-MS to

antiepileptics

Several methods have been reported for the determination of one or more

antiepileptic drugs in biological fluids for therapeutic drug monitoring (TDM) or for

toxicology purposes. There are various HPLC methods for the simultaneous determination.

A newly developed HPTLC method for quantitative determination of LTG, ZNS and LVT

in human plasma, in comparison to HPLC and LC-MS/MS methods, has been reported

[214]. PRM and its three major metabolites have been analyzed in rat urine by HPLC using

Page 8: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

70

SPE [215]. A method based on SBSE-HPLC-UV for therapeutic drug monitoring of CBZ,

CBZE, PTN and PHB in plasma samples and compared with a LLE-HPLC-UV method

[216]. Contin et al. proposed a very simple and fast method for the simultaneous

determination of the new generation antiepileptic drugs LTG, OXC and main active

metabolite monohydroxycarbamazepine and FLM in plasma of patients with epilepsy

using HPLC with spectrophotometric detection [217]. Oxcarbazepine and its main

metabolites have been simultaneously determined by a method based on HPLC with UV

detection in combination with SPE for sample pretreatment in human plasma [218].

A simple and fast method for the determination of the new generation antiepileptic

drug LEV in plasma of patients with epilepsy using HPLC with UV detection has been

developed and validated [219]. The newer antiepileptic drugs RFN, ZNS, LTG, OXC and

FBM in plasma of patients with epilepsy using HPLC-UV has been reported [220]. The

separation and simultaneous estimation of the antiepileptic drugs LTG, PHB, CBZ and

PTN has been proposed by reversed-phase HPLC in human serum using a simple single-

step extraction procedure [221]. CBZ has been analyzed and estimated by an HPLC-UV

method in both solution form and rabbit plasma [222]. An interesting study has been

carried out by Thomas et al. to determine the potential impurities of eslicarbazepine

acetate. The impurities were identified by HPLC coupled with ESI and IT/MS/MS [223].

A simple method for the simultaneous determination of seven antiepileptic drugs in serum

by HPLC-DAD has been developed [224]. After SPE, separation is achieved on a C18

analytical column using isocratic elution with a mixture of acetonitrile, methanol and

phosphate buffer at 45◦C. In another analytical method, the simultaneous determination of

seven non-steroidal anti-inflammatory drugs and the anticonvulsant carbamazepine has

been examined in river and wastewater. The method involved pre-concentration and clean-

up by SPME followed by analysis with HPLC-DAD [225].

Page 9: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

71

A rapid and reliable HPLC-DAD has reported for the simultaneous determination

of the oxcarbazepine and its metabolites in plasma and saliva from psychiatric and

neurological patients [226]. In another approach, HPLC-PDA has been developed for the

simultaneous determination of six antiepileptic drugs and two metabolites in human

plasma [227]. A simple and reliable method has been developed for the simultaneous

determination of seven non steroidal anti-inflammatory drugs and the anticonvulsant CBZ.

The method involved preconcentration and clean-up by SPME followed by HPLC-DAD

analysis [228]. In another recent application, a simple and sensitive high-performance

liquid chromatographic method for determination of gabapentin in human serum using

LLE and 9-fluorenylmethyl chloroformate (FMOC-Cl) as pre-column labeling agent has

been developed [229].

A HPLC-FD method for the simultaneous determination of the three antiepileptic

drugs in human plasma has been presented [230]. A HPLC-ELSD (evaporative light

scattering detector) method has been studied for simultaneous separation and quantitation

of four commonly used AEDs [231]. A specific and sensitive LC-MS method for the

simultaneous determination of CBZ and eight metabolites in human plasma is also

reported [232]. A restricted access media-molecularly imprinted polymer (RAM-MIP) for

cyclobarbital has been developed for selective extraction of antiepileptics in river water

samples. The RAM-MIP for cyclobarbital showed molecular recognition abilities for PHB,

AMB and PTN as well as cyclobarbital. The analysis was performed by column-switching

HPLC-MS/MS [233]. OXC and its pharmacologically active dihydro metabolite have been

determined by a HPLC-MS method. The method was successfully applied to several

authentic plasma samples from patients treated or intoxicated with OXC [234]. The CBZ

and its five main metabolites have been analyzed in aqueous samples using SPE followed

Page 10: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

72

by LC-ES-MS/MS analysis [235]. In another different approach, a simple HPLC-MS has

been developed for the determination of PTN in human plasma. The sample preparation

involves a simple procedure based on liquid-liquid extraction [236]. A simple and accurate

method based on a LC-ESI-MS/MS for the simultaneous determination of PCM, NAP,

IBP, ETD, DCL, LTG, CBZ, PTN, PHB, CYB, AMB and CAF has been developed in

human live and post-mortem whole blood [237].

A sensitive LC-MS/MS method has been developed for the simultaneous

quantification of ten antiepileptic drugs in human plasma as a tool for drug monitoring

[238]. OXC, 10-hydroxycarbazepine (MHD) and trans-diol-carbazepine (DHD), in human

serum, have been analyzed by using LC-MS/MS. Serum drugs were extracted by C8 solid-

phase cartridges [239]. Valproic acid has been examined by using sensitive and high

throughput LC-MS/MS detection with SPE as clean up procedure in human plasma [240].

AM, CAF, PTN, RNT, and THP has been determined simultaneously by an LC-MS/MS

assay in small volume human plasma specimens for pharmacokinetic evaluations in

neonates [241]. In a recent GC-MS method, the detection of pharmaceutical residues in

various waters applying SPE has been developed [242]. A method for a range of acidic

pharmaceuticals, CBZ, and endocrine disrupting compounds has been reported in soils

with final analysis by GC-MS [243]. Another method based upon GC/MS separation has

been reported for the simultaneous determination of thirteen pharmaceuticals and five

wastewater-derived contaminants by SPE and derivatization with N,O-(bistrimethylsilyl)-

trifluoroacetamide (BSTFA). The method was applied to the analysis of raw and treated

sewage samples obtained from a wastewater treatment plant [244]. ETSX, LTG, CBZ and

CBZE have been determined after solute extraction followed by analysis using CE [245].

Page 11: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

73

2.4. Application of pre-concentration techniques with HPLC/GC-MS to

fluoroquinolones (FQs)

Several efforts have been made during the last few years to develop analytical

methods suitable for monitoring of fluoroquinolone residues in foodstuffs [249].

Appropriate methods for the determination of these antibiotics in milk [252, 253], eggs

[255, 256], poultry [257, 259-263] and fish [269, 270] have been recently reported. Turiel

et al. analyzed several quinolones in soil samples [246]. The method was based on the

extraction of these analytes by an USAE in small columns and their subsequent

quantification by HPLC using UV detection. A HPLC method with UV detection for seven

quinolones in plasma and amniotic fluid has been presented [247]. Another method has

been developed based on HPLC-UV for the determination of four quinolones in urine,

ground water, chicken muscle, hospital wastewater and pharmaceutical samples using C18

and reverse phase amide columns [248]. The separation and analysis of several quinolones

and fluoroquinolones has been proposed in baby-food samples. The method involves

isolation of these analytes by USAE procedure followed by a SPE sample clean-up step

and final determination of the analytes by HPLC using UV detection [249]. A different

approach based on UA-DLLME coupled with LC-UV for the determination of four

fluoroquinolones in pharmaceutical wastewater has been developed [250]. An interesting

study has been carried out for the simultaneous analysis of the fluoroquinolones in bovine

serum. In this method, HPIAC column containing covalently bound anti-sarafloxacin

antibodies was used to capture the fluoroquinolones while allowing the remainder of the

serum components to elute to waste [251]. A HPLC method with DAD for the

determination of seven tetracyclines in milk has been developed [252]. Ten quinolones has

Page 12: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

74

been examined with HPLC followed by a simple SPE cleanup procedure in cow’s milk

[253].

A HPLC-FD after MI-SPE sample pretreatment has been reported for simultaneous

analysis of few fluoroquinolones in environmental water samples [254]. In another

method, the simultaneous determination of seven quinolones in egg samples of laying hens

by HPLC-FD has been carried out [255]. A method based on PLE and HPLC-FD has been

developed for the simultaneous determination of three fluoroquinolones in table eggs

[256]. Norfloxacin and ofloxacin from chicken breast muscles has been examined using

HPLC-FD with SFE as a sample preparation [257]. The traces of the most common

veterinary fluoroquinolones marbofloxacin and enrofloxacin used as antibacterial agents

have been determined in cattle and swine farms in natural waters. Quantitative analysis

was done by HPLC-FD with SPE [258]. A sample cleanup procedure combining molecular

imprinting and matrix solid-phase dispersion (MI-MSPD) for the simultaneous isolation of

ofloxacin, pefloxacin, norflorxacin, ciprofloxacin, and enrofloxacin in chicken eggs and

swine tissues followed by HPLC-FD has been reported [259]. Enrofloxacin and its active

metabolite ciprofloxacin have been identified simultaneously by a HPLC method in

chicken muscle [260]. A cloud point extraction process to extract two fluoroquinolone

antimicrobial agents, ofloxacin and gatifloxacin, from aqueous media has been described

[261]. LC-UV, LC-MS and LC-MS/MS have been used for the simultaneous quantification

of quinolones antibiotics in turkey and chicken muscles [262, 263]. Simultaneous

determination of the structurally different antibiotics from environmental and biological

monitoring using HPLC-UV, single mass and tandem mass spectrometry has been

performed and compared [264].

Three widely used fluoroquinolones have been determined by HPLC coupled to

pneumatically assisted ESI-MS in human urine. The determination of FQs in honey sample

Page 13: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

75

based on the combination of SRSE with HPLC-ESI-MS has been proposed [266]. A LC-

MS/MS has been utilized for the quantification of the quinolone residues in poultry muscle

and eggs [267]. More recently, a new method in which MIP material was packed as

sorbent in a device for MEPS combined with LC-MS/MS for the analysis of selected FQs

drugs in municipal wastewater samples has also been developed [268]. Two CE-MS

methods for the simultaneous determination of twelve antibacterial residues in fish and

livestock, and five quinolone residues in chicken and fish have been reported [269, 270].

2.5. Application of pre-concentration techniques with HPLC/GC-MS to

N-acyl homoserine lactones (AHLs)

A method for the determination of N-acyl homoserine lactones in the form of their

hydrolysis products has been presented. Real samples were analyzed by CZE-MS after

alkaline lactonolysis and extraction by mixed-mode anion-exchange SPE [271]. AHLs in

lung tissues of mice infected with Pseudomonas aeruginosa has been detected [272].

AHLs produced by sequential Pseudomonas aeruginosa isolated from chronically infected

patients with cystic fibrosis have been measured by thin-layer chromatography [273]. In

another method, AHL production in Gram-negative psychrotrophic bacteria has been

detected in raw milk [274]. A total of 84.9% of the bacteria were identified as AHL

producers eliciting a diversity of responses in the AHL-monitor systems. These results

demonstrate that AHL-production is common among psychrotrophic bacteria isolated from

milk and indicate that quorum sensing may play an important role in the spoilage of this

product. The isolation of AHL-degrading Shewanella sp. strain MIB015 from the intestinal

microflora of Plecoglossus altivelis (the ayu fish).17) MIB015 interrupted quorum-sensing

and exoprotase production in Aeromonas sp. by degrading AHL has been reported [275]. A

Page 14: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

76

method based on SPE followed by UPLC for the determination of five derivatives of

AHLs has been proposed. In order to demonstrate the applicability of the method,

supernatants with the known AHL producer Burkholderia cepacia LA3 grown in different

media were investigated [276]. Another method based on fast and MS compatible UPLC-

DAD for the rapid quantitative determination of AHLs and their corresponding hydrolysis

products has been optimized and was successfully applied to a bacterial culture supernatant

real sample containing AHLs [277].

The direct evidence for the presence of AHLs in CF sputum were established.

AHLs were detected in sputum from patients colonised by P. aeruginosa or B. cepacia but

not Staphylococcus aureus. Furthermore, using HPLC-MS and thin layer chromatography,

the presence of N-hexanoylhomoserine lactone and N-(3-oxododecanoyl) homoserine

lactone respectively in sputum samples from patients colonised by P. aeruginosa was

confirmed [278]. A method using reversed-phase HPLC coupled with positive-ion ESI and

ion trap mass spectrometry for the identification and quantification of AHLs in crude cell-

free supernatants of bacterial cultures has been described. The selectivity was based on the

MS-MS fragment ions of the molecular [M+H]+

ions and on their relative intensities and

was successfully applied to Vibrio vulnificus, a marine bacterium [279]. The production of

AHLs by bacteria associated with marine sponges has been identified [280].

A method involving direct separation by GC with EI-MS to determine some AHLs has

been employed and simultaneous separation and characterization of AHLs were possible

without prior derivatization. The method was applied for the analysis of AHLs in

Burkholderia cepacia (strains JA-7 and LA-10) extracts [281]. The occurrence of AHLs in

extracts of some Gram-negative bacteria by GC-MS has been determined. Crude cell-free

Page 15: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

77

supernatants of bacterial cultures of Aeromonas hydrophila, Aeromonas salmonicida,

Pseudomonas aeruginosa, Pseudomonas fluorescens, Yersinia enterocolitica and Serratia

liquefaciens were screened for AHL production in selected ion monitoring mode using the

prominent fragment at m/z 143 [282]. The extracts of mucopurulent respiratory secretions

from thirteen cystic fibrosis patients infected with P. aeruginosa and/or strains of the B.

cepacia complex has been studied using reverse-phase HPLC and analyzed for the

presence of AHLs using a traI-lux CDABE-based reporter that responds to AHLs with acyl

chains ranging between 4 and 12 carbons [283]. Using this assay system, a broad range of

AHLs were detected and identified despite being present at low concentrations in limited

sample volumes. N-(3-oxo-dodecanoyl)-L-homoserine lactone, N-(3-oxo-decanoyl)-L-

homoserine lactone and N-octanoyl-L-homoserine lactone (OHL) were the AHLs most

frequently identified. OHL and N-decanoyl-L-homoserine lactone were detected in

nanomolar concentrations compared to picomolar amounts of the 3-oxo-derivatives of the

AHLs identified [283]. A comparison tabulation of data on HPLC and GC-MS methods

has been given in Table 2.1.

Page 16: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

78

Table 2.1 Survey of HPLC and GC-MS methods for quantitative determination of antiepileptics, antidepressants and

quinolones and their applications

Analytes Matrix

analyzed

Sample Preparation

Method

Analytical Technique

Used

LOD

(S/N=3)

LOQ

(S/N=10)

Recover

y (%)

Reference

AMITRI,

AMOXI,

CLOMI,

DESI, IMI,

MAPRO,

MAIN, NRT,

etc.

Biological

Samples

LLE HPLC-UV ((column 1

C8 RP columns:

a) TSK gel Super octyl

(100 mm×4.6 mm i.d.,

particle size 2 µm),

b) Hypersil MOS-C8cle

(100 mm ×4.6 mm i.d.,

particle size 5 µm),

Yokogawasize

-- 0.5

µg/mL

94-103 [188]

AMITRI,

NRT, IMI,

CLOMI,

NORCLM,

TRIMI,

MAPRO,

DESI, DOXE,

NORDX, etc.

Human serum SPE

3-ml 3M-Empore

disk cartridges

HPLC-UV

Nucleosil 100-Protect 1

(250 mm×4.6 mm i.d.,

particle size 5 µm),

Macherey and Nagel

-- -- 75-99 [189]

Benzodiazepi

ne

Human Serum SPME

(RAM-ADS)

HPLC-UV

LiChrospher 100 RP-18

(15.0 cm×4.0 mm i.d.,

particle size 5 µm),

Merck

22-29

ng/mL

74-98

ng/mL

>90 [190]

Caffeine and Rat Plasma SBSE HPLC-UV 25 ng/mL -- >50 [191]

Page 17: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

79

metabolites (RAM-ADS), ODS Hypersil (60 mm

×4.6 mm, particle size 5

µm), Thermo Hypersil-

Keystone

ARP Human Serum RAM Column

Switching (10

mm× 4 mm i.d.,

particle size 20

µm)

HPLC-UV

LiChrospher CN column

(250 mm × 4.6 mm i.d.

particle size 5 µm), MZ-

Analysentechnik

-- <50 µg/L 94.7-

111.5

[192]

QUE, CLZ,

PRZ, OLZ

and

metabolites

Human Blood Column Switching

Silica C8 material,

particle size 20 µm

HPLC-UV

(ODS Hypersil C18

material (250 mm×4.6

mm i.d., particle size 5

µm), MZ-

Analysentechnik

-- 10-50

ng/mL

87-123 [193]

FLUVO and

its metabolites

Plasma LLE and Column

Switching

Hydrophilic meta

acrylate polymer

column, (35

mm×4.6 mm i.d.),

particle size 10 µm

HPLC-UV

C18 STR ODS-II column

(150 mm×4.6 mm

i.d., particle size 5 µm),

Shinwa Chemical

Industry

-- 0.9-1.2

ng/mL

96-100 [195]

MIRTA, CIT,

PARO,

DULO,

FLUVO and

SRT

Human Plasma In tube SPME

Fused-silica

capillary (80

cm×250 µm i.d.)

coated with the

OV-1701 phase

HPLC-UV

LiChrospher 60 RP-

select B (C18) column

(250 mm×4 mm, particle

size 5 µm), Merck

5-20

ng/mL

20-50

ng/mL

95-102 [196]

CLOMI, Serum Column Switching HPLC-UV -- -- 95-108 [197]

Page 18: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

80

AMITRI,

ARP, CLZ,

DESI, FLU,

IMI, TRIMI,

DELO, NRT,

etc.

Perfect-Bond, (10

mm×4 mm),

particle size 20

µm, MZ-

Analysentechnik

LiChrospher 60 RP

Select (125 mm×4 mm

i.d., particle size 5 µm),

MZ-Analysentechnik

IMI, DESI,

CLOMI,

AMITRI,

NRT, DOXE

Human Plasma Centrifugation HPLC-UV

C18 column Inertsil ODS-

3 (150 mm×4.6 mm i.d.,

particle size 5 µm)

0.5-1080

nM

90.89-

92.83

[198]

SRT, MIRTA,

FLU, CIT,

PARO

Human Plasma MEPS

C8 and strong

cationic exchange

sorbent (2 mg) in

250 µL syringe

HPLC-UV

RP 18 LichroCART

(125 mm×4 mm i.d.,

particle size 5µm), Merck

-- 10-25

ng/mL

84-97 [199]

AMITRI, IMI,

CHLOR,

THIO

Pharmaceutical

Formulations

Dilution HPLC-UV

(Lichrospher100

RP-18 (250 mm×4 mm

i.d., particle size 5 µm)

with a guard column

(4 mm×4 mm, particle

size 5 µm), Merck

0.332-

0.451

µg/mL

1.5-1.69

µg/mL

98.4-

101.9

[200]

FLU Human Plasma RAM-BSA-C18

column

(50 mm×520 µm)

Capillary LC-UV (C18

analytical column (100

mm×520 µm)

-- 20 ng/mL [201]

Heterocyclic

aromatic

amine

Food Samples SPME

CW-TPR (50 µm),

CW-DVB (65 µm),

PDMS-DVB (60

HPLC-DAD

TSK-Gel ODS-80TM

column (150 mm×4.6mm

i.d., particle size 5 µm),

0.1-14

ng/mL

-- 17.8-

74.9

[202]

Page 19: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

81

µm), PA (85 µm) Tosoh Biosep

IMI, AMITRI,

DESI,

CLOMI,

TRIMI,

MIAN,

FLUVO,

PARO, etc.

Human Plasma SPE

Oasis1 HLB

cartridge column (1

mL)

LC/MS

Inertsil

C8 (150 mm×2.0 mm,

particle size 5 µm)

0.03-0.63

µg/ mL

0.10-1.0

µg/mL

69- 102 [203]

TRZ, CLZ,

CIT, DOXE,

PARO,

FLUVO, IMI,

AMITRI,

FLU, SRT,

CLOMI, etc.

Human Urine

and Plasma

SPME

Hybrid silica

monolith with

cyanoethyl

functional groups)

LC-MS

(Inertsil

C8 (150 mm×2.0 mm,

particle size 5 µm) with a

C18 guard column),

Shimadzu

0.06-2.95

ng/mL

-- 75.2-113 [204]

Antidepressan

t and

neuroleptic

drugs

Serum LLE LC-EI-MS -- 1.2-54

nmol/L

[205]

AM and MA Human serum SPME

(7 µm, 100 µm)

(PDMS), 60 µm,

65 µm

(PDMS/DVB), 50

µm (CW/TPR) and

75 µm

(CAR/PDMS)

LC-ESI-MS/MS

Supelco Discovery C18

(15 cm×3.0 mm, particle

size 5 µm), Supelco

0.04-0.3

µg/L

0.13- 0.9

µg/L

95-96 [206]

AMITRI, Plasma SPE LC-MS/MS -- 10 µg/L >99 [207]

Page 20: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

82

NRT, IMI,

DESI, FLU,

PARO,

FLUVO,

SRT, etc.

SPE MCX

cartridge

(cation-exchange

mode)

Gemini C18 guard

column (4 mm×2.0 mm,

particle size 5 µm),

Phenomenex

SLP, TRP,

ASLP, PLP,

RSP, QUE,

CLZ, ARP,

THIO, etc.

Human brain

tissue

SPE

1 mL Hybrid SPE-

PPT, Supelco

(Sigma-Aldrich)

LC-MS/MS

ZORBAX Eclipse Plus

C8 Narrow Bore (150

mm×2.1 mm, particle

size 5 µm), and the guard

column, Agilent

-- 2-80 ng/g [208]

AMITRI,

DESI, IMI,

NRT

Serum SPE

Cyclone-P online

SPE column

(0.5×50 mm)

LC-MS/MS

Hypersil Gold C18 (50

mm×3 mm, particle size

of 5 μm), Thermo Fisher

Scientific

< 3

ng/mL

< 20

ng/mL

97-114 [209]

FLU,

FLUVO,

CLOMI

Pharmaceutical

formulations

Homogenizations

and Centrifugation

CGC-F.I.D.

HP-5 (5% phenyl

methylsilicone, 15

m×0.25 mm i.d., 0.25 µm

film thickness), Hewlett-

Packard

10.1- 105

µg/L

33-300

µg/L

98-102 [210]

SSRI’s

Antidepressan

t

Urine LLE GC-MS 100

ng/mL

-- [211]

MTD, EUG,

DDA, DZP,

TMZ, BZP,

NDZP, etc.

Urine SBSE

Twister Gerstel,

coated with

25 μL PDMS

CGC-MS

HP-5MS column (30

m×0.25 mm i.d., 0.25 μm

df), Agilent Technologies

1 µg/L 5 µg/L 32-52 [212]

Page 21: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

83

EUG, LNL,

NMT, MNT,

CRV, GRN,

FRN, etc.

Urine and

Blood

SBSE

Twister Gerstel,

coated with

25 μL PDMS

CGC-MS

HP-5MS column (30

m×0.25 mm i.d., 0.25 μm

df), Agilent Technologies

0.3 µg/L 1 µg/L [213]

LTG, ZNS,

LEV

Human Plasma Centrifugation HPTLC

Silica gel 60F254 (10

cm×10 cm, 250 µm

thicknesses), Merck

1.3-2.25

µg/mL

3.69-6.85

µg/mL

98-104 [214]

PRM and its

metabolites

Rat Urine SPE Bond Elut

Certify LRC

columns containing

C8 sorbent and a

SCX

HPLC-UV

Nucleosil 100-5 µm, C18,

(250 mm×4.6 mm )

Macherey-Nagel

0.5

µg/mL

1.5- 2

µg/mL

59-100 [215]

CBZ, CBZE,

PTN, PHB

Plasma SBSE 10 mm

long glass-

encapsulated

magnetic stir bar,

externally coated

with 0.5 mm thick

22µg of PDMS,

HPLC-UV

LiChrospher 100 RP-18

column (125 mm×4 mm,

particle size 5 µm),

Merck

-- 0.08-

0.125

µg/mL

72-86 [216]

LTG, OXC,

FLM

Plasma Centrifugation HPLC-UV

Synergi 4 µm Hydro-RP

column, (150 mm×4 mm

i.d.), Phenomenex

0.25-2.5

µg/mL

0.5-5

µg/mL

100.2-

104.4

[217]

OXC and its

metabolites

Plasma SPE

Oasis HLB

cartridges (30 mg,

1 ml), Waters

HPLC-UV

Varian Microsorb MV

Rainin RP column (C18,

150 mm×4.6 mm i.d.,

particle size 5 µm) with a

5 ng/mL 15 ng/mL 94.7-

98.8

[218]

Page 22: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

84

Varian C18 precolumn

(30 mm×4.6 mm i.d.,

particle size 5 µm).

LEV Plasma Deproteinization

and centrifugation

HPLC-UV

Synergi Hydro-RP

column, (150 mm×4.6

mm i.d., particle size 4

µm), Phenomenex

-- 2 µg/mL <90 [219]

RFN, ZNS,

LTG, OXC,

FLM

Plasma Centrifugation HPLC-UV

Synergi Hydro-RP

column, (150 mm×4.6

mm i.d., particle size 4

µm), Phenomenex

-- 2 µg/mL 97-103 [220]

LTG, PHB,

CBZ, PTN

Human Serum Centrifugation HPLC-UV

NOVA PAK C18

Hypersil ODS stainless

steel column (250

mm×4.6 mm. particle

size 5 µm) with guard

cartrige Hypersil ODS

(7.5 mm×4.6 mm,

particle size 5 µm), Flexit

Jour Pvt. Ltd.

-- 0.2

µg/mL

95-102 [221]

CBZ Rabbit Plasma Centrifugation HPLC-UV

C18 µ-Bondapak, (150

mm×4.6 mm i.d., particle

size 10 µm), Waters

-- 0.5

µg/mL

98.37-

100.45

[222]

ECBZA Water Dissolution HPLC-UV

RP-8, (250 mm×4.6 mm,

0.020

µg/mL

0.060

µg/mL

93.55-

103.28

[223]

Page 23: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

85

particle size 5 µm),

Waters

PTN, PHB,

CBZ, VPA,

ESM, LTG,

OXC, ZNS

Serum SPE

Oasis HLB

disposable

extraction columns

(30 mg, 1 ml),

Waters

HPLC-DAD

(15 cm×0.46 cm) packed

with Alltima C18, Alltech

Nederland

0.009-

0.039

mg/L

0.014-

0.065

mg/L

98-103 [224]

CBZ, NPR,

DCL, KTP,

PIR, INDO,

DFL

River and

wastewater

SPME

Fused-silica fiber

coated with

(PDMS-DVB

60-µm film

thickness),

Supelco.

HPLC-DAD

Discovery RP-Amide

C16 column, (150

mm×4.6 mm, particle

size 5 µm), Supelco.

-- 5-20

µg/L

72-125 [225]

OXC and its

metabolites

Plasma MEPS

4mg C18 material,

inserted into a 250

µL gas-tight

syringe, SGE

Analytical Science

HPLC-DAD

Gemini C18 reversed-

phase column (150

mm×4.6 mm i.d., particle

size 5 µm) equipped with

a C18 cartridge (4 mm×3

mm i.d., particle size 5

µm precolumn),

Phenomenex

0.015-

0.037

µg/mL

0.050-

0.125

µg/mL

86.5-

96.8

[226]

OXC, CBZ,

LTG, PRM,

PTN, PHB

Plasma SPE

Oasis HLB

cartridges (30 mg,

1 ml), Waters

HPLC-DAD

Spherisorb RP column

(C18 150 mm× 4.0 mm,

i.d. particle size 4.5 µm),

25-100

ng/mL

70-300

ng/mL

87-103 [227]

Page 24: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

86

Varian

NPR, KTP,

DCL, PIR,

INDO, DFL

River Water SPME

Fused-silica fiber

coated with

(PDMS-DVB 60

µm film thickness),

Supelco

HPLC-DAD

Discovery RP-Amide

C16 column, (150

mm×4.6 mm, particle

size 5 µm), Supelco

0.5-3

µg/L

1-4 µg/L 71.6-

122.8

[228]

GBP Human Serum LLE/

Derivatization

HPLC-FD

Shimpack CLC-C18 (150

mm×4.6 mm i.d., particle

size 5 µm) with Shim-

pack G-C18 guard column

(10 mm×4.0mm i.d.,

particle size 5 µm),

Shimadzu

-- 0.03

µg/mL

90 [229]

GBP, VGB,

TPR

Human Plasma SPE

Oasis MCX

cartridges (30 mg,

1mL), Waters

HPLC-F

Synergy Hydro-RP

column, (150 mm×4.6

mm i.d., particle size 4

µm), Phenomenex

0.1-0.3

µg/mL

0.2-1

µg/mL

92-98 [230]

CBZ, PCT,

PRM, VPA

Water Dissolution HPLC-ELS

Hibar pre-packed column

RT 250-4, Lichrosorb

RP-8 (250 mm × 4 mm,

particle size 5µm), Merck

0.01-0.1

µg/mL

0.09-0.51

µg/mL

[231]

CBZ, OXC

and

metabolites

Human Plasma Centrifugation LC-MS Zorbax eclipse

XD8 C8 column, (150

mm×4.6 mm, i.d.,

particle size 4 µm)

-- 0.02-0.5

mg/L

80-105 [232]

Page 25: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

87

PTN, PHB,

AMB, CYB

River Water RAM-MIP

(4-vinylpyridine

and ethylene glycol

dimethacrylate)

LC-MS

Cosmosil 5 C18 MS-II

(150 mm×2.0 mm i.d.)

and Cosmosil 5 C18-MS-

II guard column

(10 mm×4.6 mm i.d.),

Nacalai Tesque

0.5-5

ng/L

2-15

ng/L

96.5-113 [233]

OXC and its

metabolites

Plasma Centrifugation and

filtration

LC-MS

Merck LiChroCART

Column, (125 mm×2 mm

i.d.) with a LiChroCART

10-2 Superspher 60 RP

Select B guard column,

Merck

0.01

mg/L

0.1 mg/l 60-86 [234]

CBZ and its

metabolites

Aqueous

Samples

SPE

Oasis HLB

cartridges, (500

mg, 6 mL)Waters

LC-EI-MS

Genesis C8 column (150

mm×2.1 mm i.d., particle

size 3µm), Jones

Chromatography

0.8-4.8

pg

-- 83.6-

103.5

[235]

PTN Plasma Derivatization and

centrifugation

LC-EI-MS

(Hypersil Hypurity C18,

50 mm×4.6 mm, particle

size 5μm)

-- 101.2

ng/mL

78.33 [236]

Acidic and

neutral drugs

Human Blood Centrifugation and

filtration

LC-ESI-MS/MS

Synergi Polar-RP column

(150 mm×2.0 mm i.d.,

particle size 4 μm)

connected to a Polar-RP

Security Guard pre-

18-470

µg/L

60-1600

µg/L

92-101 [237]

Page 26: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

88

column cartridge (2.0

mm i.d.×4 µm),

Phenomenex

GBP, VPA,

LEV, LTG,

CBZE, CBZ,

OXC, ZNS,

TPR, PTN

Human Plasma Protein

Precipitation with

CAN

LC-MS/MS Luna

C18 column (100 mm×2.0

mm, particle size 3 μm),

Phenomenex,

-- 1 µg/mL 85-114.5 [238]

OXC and its

metabolites

Human Serum SPE

C8 sorbent

LC-MS/MS

Symmetry C18, (100

mm×2.1 mm i.d, particle

size 3.5 μm), Waters

3.9-7.8

ng/mL

95.6-104 [239]

VPA Human Plasma SPE

Oasis HLB

cartridges, Waters

LC-MS/MS

Betabasic C8 column,

(100 mm×4.6 mm i.d.,

particle size 5 μm),

Thermo Electron

-- 2 µg/mL 74.47-

99.73

[240]

AMP, CAF,

PTN, RNT,

TPL

Human Plasma Protein

Precipitation with

methanol

LC-MS/MS

Luna C18 column (150

mm×3 mm, particle size

3 μm), Phenomenex

-- 12.2-48.8

ng/mL

90.2-

113.3

[241]

KTP, IBP,

CLF, NPR,

GEM, FPF,

etc.

Water Samples SPE

RP-C18 material (1

g) (BAKERBOND

Polar Plusm,

Mallinckrodt-

Baker

GC-MS

HP5MS, (30 m×0.25 mm

i.d., 0.25 μm film

thickness), Agilent

Technologies

1-10 ng/L 1-40

ng/L

70-110 [242]

CBZ, EDs,

etc.

Soil PLE

RP Oasis HLB

GC-MS

HP5-MS Fused silica

0.025-2.5

ng/g

-- 54-118 [243]

Page 27: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

89

cartridge, (200 mg) capillary column (30

m×0.25 mm, 0.25μm

film thickness)

CBZ and

other

pharmaceutica

l compounds

Wastewater SPE

Oasis HLB

cartridges (200 mg,

N vinylpyrrolidone

and divinylbenzene

mixture, particle

size 30 μm,

Waters,

C18-U-MCAX (200

mg), Supelco,

Oasis MCX (200

mg) Waters,

Strata X, and

StrataXC (both 500

mg), Phenomenex

GC-MS

DB-5MS column, (30

m×0.25 mm

i.d., 0.25 μm phase

thickness), Agilent

1-30 ng/L 3-90

ng/L

21-111 [244]

CBZ, CBZE,

LTG, ESM

Plasma LLE CE Fused-silica

capillaries (360 mm×50

μm i.d.), Polymicro

Technologies

0.40-15

µM

-- 94.76-

108

[245]

CINO, OXO,

NAL, FLQ

Soil USAE

Glass columns (10

cm×2 cm i.d.),

Scharlab

HPLC-UV

Atlantis C18 column (150

mm×3.0 mm, particle

size 3 μm), Waters

0.05-0.08

µg/g

0.15-0,25

µg/g

90.2-

104.3

[246]

LEVO, ENO,

MOXI,

LOME, OXO,

Plasma and

Amniotic

flui.d.

SPE

Strata X (30 mg,1

mL), Phenomonex

HPLC-UV

a) Zorbax Eclipse XDB-

C8 column (150 mm×4.6

0.005-

0.01

µg/mL

0.020-

0.035

µg/mL

95-98.6 [247]

Page 28: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

90

MARB,

PEFLO

mm i.d.) connected to a

Kromasil C8 column (20

mm×4.5 mm i.d.)

b) Zorbax Eclipse XDB-

C18 column (150 mm×4.6

mm i.d.) in connection to

a Phenomenex C18

column (4 mm×3.0 mm

i.d.).

OFLO,

LOME,

CINO, NAL

Urine, Water

samples,

Chicken

muscles

Filtration and

centrifugation

HPLC-UV

C18 RP analytical column

Acclaim 120, (250

mm×4.6 mm i.d., particle

size 5 μm) Dionex

Supelco RP-amide

column, (150 mm×4.6

mm i.d., particle size 5

μm), Ascentis

0.55-1.41

ng/mL

1.67-4.27

ng/mL

>90 [248]

ENRO, ENO,

CINO, CIP,

NOR, DANO,

NAL, FLQ,

OXO

Baby food USAE/MI-SPE

(MIP-SAX, 150

mg)

HPLC-UV

Atlantis C18 HPLC

column (150 mm×3.9

mm, particle size 3 μm)

coupled to an Atlantis

C18 guard column (20

mm×3.9 mm, particle

size 3 μm), Waters

0.03-0.11

µg/g

0.10-0.35

µg/g

>85 [249]

OFLO, NOR,

ENRO,

LOME

Pharmaceutical

wastewater

UA-DLLME

HPLC-UV

Zorbax Eclipse XDB-C18

column (150 mm×4.6

0.14-0.81

µg/L

-- 82.7-

110.9

[250]

Page 29: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

91

mm, particle size 5 μm),

Agilent Company

CIP, ENRO,

SARA,

DIFLO

Bovine Serum

PEEK cartridges

(2.1 × 30 mm) with

POROSE media

containing protein

G (PE Biosystems)

HPIAC

Inertsil phenyl column

(150 mm×4.6 mm,

particle size 5 μm),

Alltech

0.18-0.47

ng/mL

1 ng/mL 95-100.8 [251]

MNC, OTC,

MTC, DMC,

CTC, DC

Milk SPE (Abselut

Nexus), Varian,

(Discovery,

Supelco), and

(Lichrolut), Merck.

HPLC-DAD

Inertsil ODS-3 analytical

column, (250 mm×4

mm2

, particle size 5 μm)

3-6

ng/mL

10-20

ng/mL

93.8-

103.7

[252]

ENO, OFLO,

NOR, DANO,

CIP, ENRO,

NAL, FLU

Milk SPE

LiChrolut RP-18

(200 mg, 3 mL)

cartridges, Merck

HPLC-PDA Perfect Sil

Target ODS-3 analytical

column (250 mm×4 mm2,

particle size 5 μm), MZ-

Analysentechnik

1.5-6.8

ng/µL

-- 75-92 [253]

ENRO, CIP,

NOR, LOME,

DANO,

SARA, FLQ,

OXO, AMX,

etc.

Aqueous

Samples

MI-SPE

The template

enrofloxacin

(183.4 mg, 0.5

mmol), functional

monomer 1 (187.1

mg, 0.5 mmol),

methacrylamide

(85 mg, 1 mmol),

EDMA (3.8 mL,

20 mmol) and the

HPLC-FD Aqua C18

column (polar

endcapped; 250 mm×4.6

mm i.d., particle size 5

μm) protected by an

RP18 guard column (4.0

mm×3.0 mm i.d., particle

size 5 μm), Phenomenex

0.01-0.30

µg/L

-- [254]

Page 30: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

92

free radical

initiator ABDV

(42.4 mg, 1%

(w/w) total

monomers)

dissolved in ACN

(5.6 mL)

ENRO,DIFL

O, DANO,

CIP, FLQ,

OXO, SARA

Eggs Protein

Precipitation

HPLC-FD

Waters Symmetry C18

column, (150 mm×3.0

mm), Waters

4-12 ng/g 99.2-

100.6

[255]

ENRO,

CIPRO

Eggs PLE

HPLC-FD

AQUA C18 column,

(polar endcapped, 250

mm×4.6 mm, particle

size 5 µm) protected by a

RP18 guard column (4.0

mm×3.0 mm, particle

size 5 µm), Phenomenex

LC-MS

Synergi MAX-RP

column, (150 mm×2 mm

i.d., particle size 4 µm),

Phenomenex

17-20

ng/g

30-41

ng/g

67-90 [256]

NOR, OFLO Chicken

muscles

SFE

10 ml stainless

SFE vessel (150

mm×10mm o.d.)

HPLC-F

Novapak C18 stainless

column (300 mm × 3.9

mm i.d., particle size 4

-- 2.5

ng/mL

70-87 [257]

Page 31: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

93

µm), Waters

MARB,

ENRO

Surface water SPE

(Envi-18 and SDB-

XC, Strata-XC,

MM1, WAX-HLB)

cartriges

HPLC-FD

Hypersil C18 column,

(250 mm×4.6 mm,

particle size 5 µm),

Varian

0.7-2.2

ng/L

2-6 ng/L 90-116 [258]

OFLO,

PEFLO,

NOR, CIP,

ENRO

Chicken eggs

and Swine

tissue

MI-MSPD

MAA, TRIM, and

AIBN sorbent

HPLC-FD

ODS C18 stationary

phase VP-ODS, (150 mm

× 4.6-mm i.d., particle

size 5 µm), Shimadzu

0.05-0.09

ng/g

-- 85.7-

104.6

[259]

ENRO, CIP Chicken

muscles

MI-SPE

EDMA and AIBN

as polymerization

mixture

HPLC-FD

ODS C18 stationary phase

VP-ODS, (150 mm × 4.6

mm i.d., particle size 5

µm), Shimadzu

0.07-0.09

ng/g

-- 77.8-

94.6

[260]

OFLO,GATI CPE

FD F-4500 recording

spectrofluorometer with a

xenon lamp, Hitachi Ltd.

0.04-0.06

ng/mL

-- 96.5-

99.39

[261]

CIP, DANO,

ENRO,

DIFLO, FLQ

Turkey muscles SPE

ENV+ Isolute

cartridges

LC-UV Zorbax Eclipse

XDB-C8 column (150

mm×4.6 mm i.d., particle

size 5 µm), Agilent

Technologies and using a

pre-column Kromasil C8

(20 mm×4.5 mm),

Aplicaciones Analíticas.

LC-MS

4-10

µg/kg

0.4-2

13-33

µg/kg

2-6 µg/kg

70-87

72-85

[262]

Page 32: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

94

LC-MS/MS

µg/kg

0.05-0.1

µg/kg

0.2-0.5

µg/kg

73-85

NOR, CIP,

SARA,

DIFLO,

ENRO,

DANO, OXO,

FLM

Chicken

muscles

LLE/SPE

ENV+ cartridges

(200 mg, 3 mL)

LC-UV

LC-MS Zorbax Eclipse

XDB-C8 (150 mm×4.6

mm i.d., particle size 5

µm), Agilent

Technologies

5-20

µg/kg

0.15-0.50

µg/kg

15-60

µg/kg

0.50-1.50

µg/kg

70-85

70-85

[263]

CIP, OFLO,

CEFA, CEFT,

CEFU,

CHLOR

Urine and wipe

samples

SPE

Bakerbond C18

cartridges, (1000

mg, 6 mL), Baker

HPLC-UV

Nucleosil 100-5 C18 HD

(250 mm×3 mm i.d.),

Macherey-Nagel

HPLC-MS

Nucleodur 100-5 C18 EC

(125 mm×3 mm i.d.),

Macherey-Nagel

HPLC-MS/MS

Nucleodur 100-5 C18 EC

column (125 mm×2 mm

i.d.), Macherey-Nagel

30-75

µg/L

0.4-70 µg

/L

0.05-0.3

µg/L

-- >70 [264]

NOR, CIP,

OFLO, ENRO

Human Urine SPE

3M-Empore MPC

Extraction

cartridges, Supelco

HPLC-ESI-MS

Kromasil C8 column,

(250 mm×4.6 mm i.d.),

Teknokroma

13-21

µg/L

44-58

µg/L

46-62 [265]

PEFLO,

DANO, CIP,

Honey SRSE

Monolithic

HPLC-ESI-MS

Agilent Eclipse-XDB-C18

0.06-0.14

ng/g

0.21-0.48

ng/g

70.3-

122.6

[266]

Page 33: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

95

DIFLO polymer AMPS,

OCMA, EDMA,

DMF, PEG and

AIBN.

column (150 mm×4.6

mm i.d., particle size 5

µm)

ENRO,

DIFLO,

DANO, FLU,

OXO

Poultry

muscles and

eggs

Homogenization

and centrifugation

LC-MS/MS

Waters Symmetry C18

column (150 mm× 3.0

mm), Waters

1-10

µg/Kg

2-20

µg/Kg

-- [267]

CIP, NOR,

OFLO, FLQ

Wastewater MI-MEPS

Polymerization

solution, CIP,

MAA, EGDMA,

AIBN and MeOH,

(100 µL gas-tight

syringe with 4mg

polymer)

LC-MS/MS

Hypersil Gold PFP

column (30 mm×2.1 mm,

particle size 5 µm),

Thermo Scientific

0.5-8.1

ng/L

-- 87-115 [268]

Sulfonamides

and

quinolones

Fish and

Livestock

SPE

ODS (MFE-Pak

C18) particle

diameter in the

range of 45-55 µm

and pore diameter

60 Å), Análisis

Vínicos

CE-MS

Fused silica capillary, 75

cm total length, 50 cm

thermostated, 25 cm at

room temperature,

75 mm i.d., and 375 mm

o.d., Supelco

1-10

µg/kg

15-30

µg/kg

78-97 [269]

DANO, FLQ,

OFLO,

ENRO,

PPMA

Chicken

muscles and

Fish

SPE

ODS (MFE-Pak

C18) particle

diameter in the

range of 45-55 µm

CE-MS

Fused silica capillary, 75

cm total length, 50 cm

thermostated, 25 cm at

room temperature, 75

20 ng/g -- 62-99 [270]

Page 34: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

96

and pore diameter

60 Å), Análisis

Vínicos

mm i.d., and 375 mm

o.d., Supelco

AHLs Culture

supernatant of

B. cepacia

SPE

Oasis MAX

cartridges, Waters

CZE-MS

Fused-silica capillaries

(50 cm length, 75 mm

i.d., 360 mm o.d.),

Polymicro Technologies

0.01

µg/mL

0.05

µg/mL

95-105 [271]

AHLs Mice lung

tissue

-- TLC

C18 RP TLC plates,

aluminium sheets RP- 18

F254g (20 cm×20 cm),

Merck Chrom line

-- -- -- [272]

AHLs P. aeruginosa -- TLC C18 reversed-phase

TLC plates, Merck

-- -- -- [273]

AHLs Milk Agitation TLC

-- -- -- [274]

AHLs Shewanella sp. -- HPLC

Crestpak C18T-5 C18

reverse phase column,

Jasco

-- -- -- [275]

AHLs (C4-

C14)

Barley sees SPE

(Bond Elut LRC

C18-OH, Mega

Bond Elut C18,

Bond Elut PPL,

Bond Elut PRS and

Bond Elut SCX),

UPLC

(100 mm×2.1 mm i.d.,

particle size 1.7 µm),

filled with BEH C18

packing material,

0.4-10

µM

3.2-6.6

µM

94-97 [276]

Page 35: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

97

Varian

(Bakerbond C18,

Octadecyl polar

plus, Bakerbond

phenyl, Bakerbond

Silica Gel,

Bakerbond

Florisil, Bakerbond

Diol, Bakerbond

WP CBX,

Bakerbond

Cation Exchange),

Baker

(Strata-X Cation

Exchange), Pheno-

menex (Oasis

MAX), Waters

(Chromabond HR-

P), Macherey and

(Adsorbex NH2),

Merck

AHLs B. cepacia -- UPLC-MS Acquity

BEH C18 column, (100

mm×2.1 mm, particle

size 1.7 µm), Waters

Corporation

0.11-1.64

mg/L

1.03-4.90

mg/L

-- [277]

AHLs Sputum Dilution and

centrifugation

TLC/LC-MS

Kromasil KR100-5C8

column (250 mm×8 mm),

-- -- -- [278]

Page 36: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

98

Hichrom

AHLs E. coli Centrifugation HPLC-MS/MS

C18 RP column Hypersil

ODS, (250 mm×4.6 mm,

particle size 5 µm)

0.28-93

pM

-- 63-116 [279]

AHLs Marine sponges -- -- -- -- -- [280]

AHLs B. cepacia -- GC-MS HP-5 MS

capillary column, (30

m×250 mm i.d., 0.25 µm

film thickness) coated

with 5% Ph Me siloxane

-- -- -- [281]

AHLs Y. enterocolitia Centrifugation GC-MS

HP-5 MS capillary

column, (30 m×250 mm

i.d., 0.25 µm film

thickness) coated with

5% Ph Me siloxane.

3.2-6.2

µM

-- -- [282]

AHLs Respiratory

secretion

Centrifugation -- 0.02 µM-

250 nM

-- -- [283]

Page 37: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

99

2.6. Conclusions

Sample preparation is a process required for the transformation of a sample to make

it amenable for chemical analysis or to improve the analysis. This is necessary when a

given sample cannot be directly analyzed or when direct analysis generates poor results.

Typical problems with analyses are interferences and low sensitivity. Sample preparation

is usually needed to eliminate interferences and to increase sensitivity.

SPE has evolved rapidly as a major sample pretreatment technique with a wide

application area. There is a continuously growing interest in this technique from various

fields. Application of a SPE technique makes sample preparation very simple, rapid and

accurate. SPE is chiefly used to prepare liquid samples and extracts of semi-volatile or

nonvolatile analytes but may also be used for solids pre-extracted into solvents. SPE has

been widely adopted for preparing samples in the analysis of pharmaceuticals and drugs of

abuse in biological matrices. The choice of sorbent is the key factor in SPE because this

can control parameters such as selectivity, affinity and capacity. This choice depends

strongly on the analytes and their physic-chemical properties, which should define the

interactions with the chosen sorbent. However, results also depend on the kind of sample

matrix and interactions with both the sorbent and the analyte. SPE sorbents range from

chemically bonded silica of the C8 and C18 organic groups, grafitized carbon, ion-exchange

materials up to polymeric materials, mixed-mode sorbents, immuno sorbents, molecularly

imprinted polymers as well as restricted access materials and recently developed monolith

sorbents. MIPs are capable of molecular recognition and are stable enough for long-term

storage, easy to prepare and inexpensive. Thus, they may be considered to be a new

artificial affinity media. Different modes of MIP based SPE have been demonstrated

Page 38: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

100

including various modes of off-line and on-line SPE for pre-concentration or pre-treatment

of analytes and for conventional SPE where the MIP is packed into columns or cartridges.

MEPS relates the versatility of the new tool to provide an avenue for improved

sample preparation to aid the speed, sensitivity and selectivity options provided by HPLC

and GC. Although, MEPS is in its infancy; potential exists for this technique to be applied

on a larger scale since it provides an opportunity for easy, efficient and cleaner sample

preparation. It could fit in well with the available tools in both the qualitative and

quantitative aspects of separation science. The technique may lead to newer innovations

since it provides flexibility in different parameters including type of adsorbent materials,

loading environment, sample load size, etc. It is anticipated that the participation of

researchers should further aid in refining and defining the optimal use of MEPS with LC or

GC strategy including the control of the matrix effects.

Page 39: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

101

References

1. D.H. Shewiyo, E. Kaale, P.G. RishA B. Dejaegher, J. Smeyers-Verbeke, Y.

Vander Heyden, J. Chromatogr. A 1216 (2009) 7102-7107.

2. L. Antonilli, V. Brusadin, F. Filipponi, R. Guglielmi, P. Nencini, J. Pharm.

Biomed. Anal. 56 (2011) 763-770.

3. P. K. Zarzycki, M. B. ZarzyckA V. L. Clifton, J. Adamski, B. K. Głód , J.

Chromatogr. A 1218 (2011) 5694-5704.

4. G. Zydek, E. BrzezińskA J. Chromatogr. B 879 (2011) 1764-1772.

5. I. Meisen, M. Mormann, J. Müthing, BioChim. Biophys. Acta 1811 (2011) 875-

896.

6. S. Vijaykadga, S. Cholpol, S. Sitthimongkol, A. Pawaphutanan, A.

Pinyoratanachot, C. Rojanawatsirivet, R. Kovithvattanapong, K. Thimasarn, J.

Trop. Med. Public Health 37 (2006) 5-10.

7. H. Kaur, M.D. Green, D.M. Hostetler, F.M. Fernández, P.N. Newton, Therapy 7

(2010) 49-57.

8. P.G. Risha, Z. Msuya, M. Clark, K. Johnson, M. Ndomondo-Sigonda, T. Layloff,

Health Policy 87 (2008) 217-222.

9. A. Venkatachalam, V. S. Chatterjee, Anal. Chim. Acta 598 (2007) 312-317

10. S. K. Motwani, R. K. Khar, F. J. Ahmad, S. ChoprA K. Kohli, S. Talegaonkar, Z.

Iqbal, Anal. Chim. Acta 576 (2006) 253-260.

11. G. Khoschsorur, Clin Chem 51 (2005) 1721-1724.

12. S. Baldelli, S. Zenoni, S. Merlini, N. Perico, D. Cattaneo, Clin. Chim. Acta 364

(2006) 354-358.

Page 40: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

102

13. F. T. Musuamba, V. Di Fazio, R. Vanbinst, P. Wallemacq. Ther Drug Monit 31

(2009) 110-115.

14. P. J. Taylor, Ther. Drug Monit. 26 (2004) 215-219.

15. N. Ansermot, M. Fathi, J. L. Veuthey, J. Desmeules, S. Rudaz, D. Hochstrasser,

Clin. Biochem 41 (2008) 728-735.

16. P. Kaiser, T. Akerboom, W. G. Wood, H. Reinauer, Clin Lab.52 (2006) 37-42.

17. P. Salm, P. J. Taylor, F. Rooney, Ther. Drug Monit. 30 (2008) 292-300.

18. C. Seger, K. Tentschert, W. Stoggl, A. Griesmacher, S. L. Ramsay, Nat. Protoc. 4

(2009) 526-34.

19. A. Meinitzer, G. Gartner, S. Pilz, M. Stettin, Ther. Drug Monit. 32 (2010) 61-66.

20. M. J. Bogusz, E. A. Enazi, H. Hassan, J. Abdel-Jawaad, J.A. Ruwaily, M. A.

Tufail, J. Chromatogr. B 850 (2007) 471-480.

21. P. Salm, C. Warnholtz, J. Boyd, L. Arabshahi, P. Marbach, P.J. Taylor, Clin.

Biochem. 39 (2006) 732-738.

22. M. Shipkova, E. Schutz,V.W. Armstrong, P.D. Niedmann, M. Oellerich, E.

Wieland, Clin. Chem. 46 (2000) 365-372.

23. P. J. Taylor, Ther. Drug Monit. 29 (2007) 131-132.

24. P. J. Taylor, S. R. Brown, D. P. Cooper, P. Salm, M. R. Morris, P. I. Pillans, S. V.

Lynch, Clin. Chem. 51 (2005) 1890-1893.

25. P. J. Taylor, M. E. Franklin, K. S. Graham, P. I. Pillans, 2007. J. Chromatogr. B

848 (2007) 208-214.

26. I. T. Wang, Y. T. Feng, C. Y. Chen, J. Chromatogr. B 878 (2010) 3095-3105.

27. I. Laverdière, P. Caron, F. Couture, É. Lévesque, C. Guillemette, J. Chromatogr. B

885-886 (2012) 131-137.

Page 41: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

103

28. A. K. Singh, A. Chaurasiya, G. K. Jain, A. Awasthi, D. Asati, G. Mishra, R. K.

Khar, R. Mukherjee, Talanta 78 (2009) 1310-1314.

29. X. Huang, Y. Zhao, L. He, Z. Liang, L. Guo, Z. Zeng, Z. Chen, M. Zhang, B.

Fang, J. Integr. Agri. 11 (2012) 465-473.

30. A. S. Yazdi, Z. Eshaghi, J. Chromatogr. A 1094 (2005) 1-8.

31. H. Liu, F. Feng, M. MA S. Cui, D. Xie, S. Xu, J. Chromatogr. B 858 ( 2007) 42-

48.

32. J. Sachse, J. Köller, S. Härtter, C. Hiemke, J. Chromatogr. B 830 (2006) 342-348.

33. J. Hou, F. Qu, C. Wu, Q. Ren, J. Zhang, J. Pharm. Biomed. Anal. 66 (2012) 232-

239.

34. A. Kaufmann, P. Butcher, K. Maden, M. Widmer, Anal. Chim. Acta 586 (2007)

13-21.

35. S. Notari, A. Bocedi, G. Ippolito, P. Narciso, L. P. Pucillo, G. Tossini, R. P.

Donnorso, F. Gasparrini, P. Ascenzi, J. Chromatogr. B 831 (2006) 258-266.

36. G. Trachta, B. Schwarze, B. Sägmüller, G. Brehm, S. Schneider, J. Mol. Str. 693

(2004) 175-185.

37. S. O. Choi, N. L. Rezk, A. D. M. Kashuba J. Pharm. Biomed. Anal. 43 (2007)

1562-1567.

38. T. Hu, T. Peng, X. Li, D. Chen, H. Dai, X. Deng, Z. Yue, G. Wang, J. Shen, X. A

S. Ding, Y. Zhou, A. Zhu, H. Jiang, J. Chromatogr. A 1219 (2012) 104-113.

39. R. W. Bolderman, J. J. R. Hermans, J. G. Maessen, J. Chromatogr. B 877 (2009)

1727-1731.

40. L. Toribio, M. J. del Nozal, J. L. Bernal, C. Alonso, J. J. Jiménez, J. Chromatogr.

A 1091 (2005) 118-123.

Page 42: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

104

41. A. J. Kueh, P. J. Marriott, P. M. Wynne, J. H. Vine, J. Chromatogr. A 1000 (2003)

109-124.

42. W. F. Smyth, J. Chromatogr. B 824 (2005) 1-20.

43. K. Langel, T. Gunnar, K. Ariniemi, O. Rajamäki, P. Lillsunde, J. Chromatogr. B

879 (2011) 859-870.

44. S. M. Song, P. Marriott, A. Kotsos, O. H. Drummer, P. Wynne, Forensic Sci. Int.

143 (2004) 87-101.

45. B. Guthery, T. Bassindale, A. Bassindale, C. T. Pillinger, G. H. Morgan, J.

Chromatogr. A 1217 (2010) 4402-4410.

46. R. F. Staack, H. H. Maurer, J. Chromatogr. B 804 (2004) 337-343.

47. J. J. B. Nevado, M. J. V. Llerena, A. M. C. Salcedo, E. A. Nuevo, J. Pharm.

Biomed. Anal. 38 (2005) 52-59.

48. S. Paterson, R. Cordero, S. Burlinson, J. Chromatogr. B 813 (2004) 323-330.

49. J. Meng, X. Zhang, H. Wu, J. Bu, C. Shi, C. Deng, Y. Mao, Anal. Chim. Acta 710

(2012) 125-130.

50. C. Cheng, S. Liu, B. J. Mueller, Z. Yan, J. Chromatogr. A 1217 (2010) 6413-

6421.

51. T. Einsle, H. Paschke, K. Bruns, S. Schrader, P. Popp, M. Moeder, J. Chromatogr.

A 1124 (2006) 196-204.

52. G. Dowling, E. Malone, J. Pharm. Biomed. Anal. 56 (2011) 359-365.

53. I. González-Mariño, J. B. Quintana, I. Rodríguez, R. Cela, J. Chromatogr. A 1217

(2010) 1748-1760.

Page 43: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

105

54. M. Moller, K. Aleksa, P. Walasek, T. Karaskov, G. Koren, Forensic Sci. Int. 196

(2010) 64-69.

55. E. Lyris, G. Tsiakatouras, Y. Angelis, M. Koupparis, M. Spyridaki, C.

Georgakopoulos, J. Chromatogr. B 827 (2005) 199-204.

56. A. H. Ewald, F. T. Peters, M. Weise, H. H. Maurer, J. Chromatogr. B 824 (2005)

123-131.

57. X. Joya, M. Pujadas, M. Falcón, E. Civit, O. Garcia-Algar, O. Vall, S. Pichini, A.

Luna, R. Torre, Forensic Sci. Int. 196 (2010) 38-42.

58. K. L. Lynch, A. R. Breaud, H. Vandenberghe, A. H. B. Wu, W. Clarke, Clin.

Chim. Acta 411 (2010) 1474-1481.

59. M. Pujadas, S. Pichini, E. Civit, E. SantamariñA K. Perez, R. Torre, J. Pharm.

Biomed. Anal. 44 (2007) 594-601.

60. I. Brondz, A. B. Fialkov, A. Amirav, J. Chromatogr. A 1216 (2009) 824-829.

61. P. Adamowicz, M. Kała, Forensic Sci. Int. 198 (2010) 39-45.

62. S. Strano-Rossi, C. Colamonici, F. Botrè, Anal. Chim. Acta 606 (2008) 217-222A.

Helenkár, Á. Sebők, Gy. Záray, I. Molnár-Perl, A. Vasanits-Zsigra Talanta 82

(2010) 600-607.

63. J. Dobor, M. Varga J. Yao, H. Chen, G. Palkó, G. Záray, Microchem. J. 94 (2010)

36-41.

64. S. S. Verenitch, C. J. Lowe, A. Mazumder, J. Chromatogr. A 1116 (2006) 193-

203.

65. K. Lachenmeier, F. Musshoff, B. Madea, Forensic Sci. Int. 159 (2006) 189-199.

66. T. Gunnar, C. Engblom, K. Ariniemi, J. Chromatogr. A 1166 (2007) 171-180.

Page 44: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

106

67. K. Kuwayama, K. Tsujikawa, H. Miyaguchi, T. Kanamori, Y. Iwata, H. Inoue, S.

Saitoh, T. Kishi, Forensic Sci. Int. 160 (2006) 44-52.

68. S. S. H. Davarani, A. M. Najarian, S. Nojavan, M. A. Tabatabaei, Anal. Chim.

Acta, 725 (2012) 51-56.

69. E. S. Emídio, V. M. Prata, H. S. Dórea, Anal. Chim. Acta 670 (2010) 63-71.

70. Y. Sitaramaraju, A. Hul, K. Wolfs, A. V. Schepdael, J. Hoogmartens, E. Adam, J.

Pharm. Biomed. Anal. 47 (2008) 834-840.

71. K. Kudo, T. Ishida, K. Hara, S. Kashimura, A. Tsuji, N. Ikeda, J. Chromatogr. B

855 (2007) 115-120.

72. A. Canini, D. Alesiani, G. D’Arcangelo, P. Tagliatesta, J. Food Comp. Anal. 20

(2007) 584-590.

73. Z. Eshaghi, Anal. Chim. Acta 641 (2009) 83-88.

74. R. Gottardo, F. Bortolotti, G. De Paoli, J. P. Pascali, I. Mikšík, F. Tagliaro, J.

Chromatogr. A 1159 (2007) 185-189.

75. S. Zühlke, U. Dünnbier, T. Heberer, J. Chromatogr. A 1050 (2004) 201-209.

76. S. Gentili, M. Cornetta, T. Macchia, J. Chromatogr. B 801 (2004) 289-296.

77. T. Gunnar, S. Mykkänen, K. Ariniemi, P. Lillsunde, J. Chromatogr. B 806 (2004)

205-219.

78. R. Gottardo, A. Fanigliulo, D. Sorio, E. Liotta, F. Bortolotti, F. Tagliaro, Forensic

Sci. Int. 216 (2012) 101-107.

79. C. Cruces-Blanco, A. M. García-Campaña, Trends Anal. Chem. (2012) 85-95.

80. R. Gottardo, F. Bortolotti, G. D. Paoli, J. P. Pascali, I. Mikšík, F. Tagliaro, J.

Chromatogr. A 1159 (2007) 185-189.

Page 45: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

107

81. Z. Zhang, X. Zhang, S. Zhang, Anal. Biochem. 387 (2009) 171-177.

82. Y. M. Liu, J. T. Cao, H. Wang, Chin. Chem. Lett. 19( 2008) 962-964.

83. X. Liu, S. Li, J. Zhang, X. Chen, J. Chromatogr. B 877 (2009) 3144-3150.

84. A. Macià, F. Borrull, M. Calull, C. Aguilar, Trends Anal. Chem. 26 (2007) 133-

153.

85. T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás, R. Galera, J. Pharm. Biomed.

Anal. 38 (2005) 87-93.

86. K. Németh, G. Tárkányi, E. VargA T. Imre, R. Mizsei, R. Iványi, J. Visy, J.

Szemán, L. Jicsinszky, L. Szente, M. Simonyi, J. Pharm. Biomed. Anal. 54 (2011)

475-481.

87. A. Alnajjar, A. M. Idris, M. Multzenberg, B. McCord, J. Chromatogr. B 856

(2007) 62-67.

88. D. Schaller, E. F. Hilder, P. R. Haddad, Anal. Chim. Acta 556 (2006) 104-111.

89. É. Szökő, T. Tábi, J. Pharm. Biomed. Anal. 53 (2010) 1180-1192.

90. W. F. Smyth, V. Rodriguez, J. Chromatogr. A 1159 (2007) 159-174.

91. A. Musenga, E. Kenndler, E. Morganti, F. Rasi, M. A. Raggi, Anal. Chim. Acta

626 (2008) 89-96.

92. A.Yardımcı, N. Özaltın, Anal. Chim. Acta 549 (2005) 88-95.

93. W. Gao, J. Kang, J. Chromatogr. A 1108 (2006) 145-148.

94. N. Jakobsson, M. Degerman, E. Stenborg, B. Nilsson, J. Chromatogr. A 1138

(2007) 109-119.

95. X. Chen, L. Hu, X. Su, L. Kong, M. Ye, H. Zou, J. Pharm. Biomed. Anal. 40,

(2006) 559-570.

96. K. J. Fountain, A. Kloss, I. Garibyan, B. Blitshteyn, A. Brezzani, S. Kyostio-

Moore, A. Zuk, R. Sacchiero, A. S. Cohen, J. Chromatogr. B 846 (2007) 245-251.

Page 46: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

108

97. M. N. Kumar, K. S. R. P. Kumar, V. J. Kumar, S. J. Prasanna, H. K. Sharma, V.

K. Reddy, J. Pharm. Biomed. Anal. 54 (2011) 596-601.

98. D. N. Mallett, S. Dayal, G. J. Dear, A. J. Pateman, J. Pharm. Biomed. Anal. 41,

(2006) 510-516.

99. L. Boudesocque, P. Lameiras, N. Amarouche, M. Giraud, F. Quattrini, J. Mc

Garrity, J. Nuzillard, J. Renault, J. Chromatogr. A 1236 (2012) 115-122.

100. Z. Zhong, G. Li, B. Zhu, Z. Luo, L. Huang, X. Wu, Food Chem. 131 (2012) 1044-

1050.

101. S. Mazumder, P. Lerouge, C. Loutelier-Bourhis, A. Driouich, B. Ray, Carbohydr.

Polymers, 59 (2005) 231-238.

102. M. Iammarino, A. Di Taranto, M. Muscarella, D. Nardiello, C. Palermo, D.

Centonze, Anal. Chim. Acta 672 (2010) 61-65.

103. Y. Sun, P. Gu, J. Environ. Sci. 19 (2007) 885-891.

104. L. Campanella, A.L. Magrı̀, A. Sorbo, M. Tomassetti, J. Pharm. Biomed. Anal. 29

(2002) 1135-1148.

105. M. Meloun, S. Bordovská, A. Vrána, Anal. Chim. Acta 584 (2007) 419-432.

106. E. A. Gadkariem, K. E. E. Ibrahim, N. A. A. Kamil, M. E. M. Haga, H. A. El-

Obeid, Saudi Pharm. J.17 (2009) 289-293.

107. M. Meloun, S. Bordovská, L. Galla, J. Pharm. Biomed. Anal. 45 (2007) 552-564.

108. H. E. Abdellatef, M. M. El-Henawee, H. M. El-Sayed, M. M. Ayad, Spectro

Chim. Acta Part A 65 (2006) 997-999.

109. H. E. Abdellatef, M. M. El-Henawee, H. M. El-Sayed, M. M. Ayad, Spectro

Chim. Acta Part A 65 (2006) 1087-1092.

Page 47: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

109

110. H. A. Omara, A. S. Amin, Arabian Journal of Chemistry, 4 (2011) 287-292.

111. J. Sachse, J. Köller, S. Härtter, C. Hiemke, J. Chromatogr. B 830 (2006) 342-348.

112. H. A. Omara, A. S. Amin, Journal of Saudi Chemical Society, 16 (2012) 75-81.

113. M. M. Ayad, H. E. Abdellatef, M. M. El-Henawee, H. M. El-Sayed, Spectro

Chim. Acta Part A, 66 (2007) 106-110.

114. X. Liu, S. Li, J. Zhang, X. Chen, J. Chromatogr. B 877 (2009) 3144-3150.

115. K. Mičová, D. Friedecký, E. Faber, A. Polýnková, T. Adam, Clin. Chim. Acta 411

(2010) 1957-1962.

116. W. M. Mullett, J. Biochem. Bioph. Methods, 70 (2007) 263-273.

117. G. Lattanzio, A. M. García-Campaña, J. J. Soto-Chinchilla, L. Gámiz-Gracia, S.

Girotti, J. Pharm. Biome. Anal. 46 (2008) 381-385.

118. Y. M. Issa, A. F. Khorshid, Journal of Advanced Research, 2 (2011) 25-34.

119. A. Hilali, J. C. Jiménez, M. Callejón, M. A. Bello, A. Guiraúm, J. Pharm. Biomed.

Anal. 38 (2005) 768-775.

120. S. R. Hernández, G. G. Ribero, H. C. Goicoechea, Talanta 61 (2003) 743-753.

121. P. C. A. G. Pinto, M. Lúcia M.F.S. Saraiva, J. L.M. Santos, J. L.F.C. Lima,

Talanta 68 (2006) 857-862.

122. N. A. Mohamed, H. M. Abdel-Wadood, S. Ahmed, Talanta 85 (2011) 2121-2127.

123. W. K. Adeniyi, A. R. Wright, Spectro Chim. Acta Part A 74 (2009) 1001-1004.

124. A. M. Jacobsen, B. H. Sørensen, F. Ingerslev, S. H. Hansen, J. Chromatogr., A

1038 (2004) 157-170.

125. S. C. Kim, K. Carlson, Anal. Bioanal. Chem. 387 (2007) 1301-1315.

126. V. K. Balakrishnan, K. A. Terry, J. Toito, J. Chromatogr., A 1131 (2006) 1-10.

Page 48: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

110

127. S. Abuin, R. Codony, R. Compano, M. Granados, M. D. Prat, J. Chromatogr. A

1114 (2006) 73-81.

128. M. Granados, M. Encabo, R. Compano, M.D. Prat, Chromatographia 61 (2005)

471-477.

129. S. Castiglioni, R. Bagnati, D. Calamari, R. Fanelli, E. Zuccato, J. Chromatogr. A

1092 (2005) 206-215.

130. T. A. M. Msagati, M. M. Nindi, Talanta 69 (2006) 243-250.

131. W. C. Lin, H. C. Chen, W. H. Ding, J. Chromatogr. A 1065 (2005) 279-285.

132. J. B. Quintana, R. Rodil, T. Reemtsma, J. Chromatogr. A 1061 (2004) 19-26.

133. U. Koesukwiwat, S. Jayanta, N. Leepipatpiboon, J. Chromatogr. A 1140 (2007)

147-156.

134. P.A. Blackwell, H. H. Lutzhøft, H. Ma, B. H. Sørensen, A. B. A. Boxall, P. Kay,

Talanta 64 (2004) 1058-1064.

135. N. Zheng, Q. Fu, Y. Z. Li, W. B. Chang, Z. M. Wang, T. J. Li, Microchem. J. 69

(2001) 153.

136. S. G. Hu, L. Li, X. W. He, Anal. Chim. Acta 537 (2005) 215-222.

137. E. Caro, R. M. Marce, P. A. G. Cormack, D. C. Sherrington, F. Borrull, Anal.

Chim. Acta 552 (2005) 81-86.

138. F. M. Musteata, J. Pawliszyn, Trends Anal. Chem. 26 (2007) 36-45.

139. L. J. Krutz, S. A. Senseman, A. S. Sciumbato, J. Chromatogr., A 999 (2003) 103-

121.

140. G. Ouyang, J. Pawliszyn, Anal. Bioanal. Chem. 386 (2006) 1059-1073.

141. H. Kataoka, Trends Anal. Chem. 22 (2003) 232-244.

Page 49: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

111

142. F. David, B. Tienpont, P. Sandra, LCGC Eur. 16 (2003) 410-417.

143. B. Tienpont, F. David, T. Benijts, P. Sandra, J. Pharm. Biomed. Anal. 32 (2003)

569-579.

144. M. S. Balbão, C. Bertucci, M. M. Bergamaschi, R. H. C. Queiroz, W. R. Malfará,

S. A. C. Dreossi, L. P. Mello, M. E. C. Queiroz, J. Pharm. Biomed. Anal. 51,

(2010) 1078-1083.

145. L. P. Melo, A. M. Nogueira, F. M. Lanças, M. E. C. Queiroz, Anal. Chim. Acta

633 (2009) 57-64.

146. A. R. Chaves, S. M. Silva, R. H. C. Queiroz, F. M. Lanças, M. E. C. Queiroz, J.

Chromatogr. B 850 (2007) 295-302.

147. M. G. Kassem, Arabian Journal of Chemistry, 4 (2011) 25-35.

148. M. R. Payán, M. Á. B. López, R. F. Torres, M. V. Navarro, M. C. Mochón,

Talanta 85 (2011) 394-399.

149. S. Seidi, Y. Yamini, A. Heydari, M. Moradi, A. Esrafili, M. Rezazadeh, Anal.

Chim. Acta 701 (2011) 181-188.

150. Y. Wu, W. Li, H. Gao, Q. Li, Y. Li, K. Wang, I. Mahmood, H. Liu, Journal of

Membrane Science, 347 (2010) 17-25.

151. R. M. Smith, J. Chromatogr., A 1000 (2003) 3-27.

152. K. Ridgway, S. P. D. Lalljie, R. M. Smith, J. Chromatogr. A 1153 (2007) 36-53.

153. J.A. Jonsson, L. Mathiasson, Trends Anal. Chem. 18 (1999) 318-325.

154. M. Cruz-Vera, R. Lucena, S. Cárdenas, M. Valcárcel, J. Chromatogr. A 1202

(2008) 1-7.

155. Q. Xiao, B. Hu, J. Chromatogr. B 878 (2010) 1599-1604.

Page 50: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

112

156. A. Saleh, E. Larsson, Y. Yamini, J. Å. Jönsson, J. Chromatogr. A 1218 (2011)

1331-1339.

157. J.B. Quintana, R. Rodil, T. Reemtsma, J. Chromatogr. A 1061 (2004) 19-26.

158. K.E. Rasmussen, S. Pedersen-Bjergaard, Trends Anal. Chem. 23 (2004) 1-10.

159. A. M. A. El-Aty, J. H. Choi, M. W. Ko, S. Khay, A. Goudah, H. C. Shin, J. S.

Kim, B. J. Chang, C. H. Lee, J. H. Shim, Anal. Chim. Acta 631 (2009) 108-115.

160. J. H. Choi, M.I.R. Mamun, A.M. A. El-Aty, K. T. Kim, H. B. Koh, H. C. Shin, J.

S. Kim, K. B. Lee, J. H. Shim, Talanta 78 (2009) 348-357.

161. R. J. Maxwell, A. R. Lightfield, J. Chromatogr., B 715 (1998) 431-435.

162. B. R. Simmons, J. T. Stewart, J. Chromatogr., B 688 (1997) 291-302.

163. C. Blasco, A. D. Corcia, Y. Picó, Food Chemistry, 116 (2009) 1005-1012.

164. V. Jiménez, R. Companyó, J. Guiteras, Talanta 85 (2011) 596-606.

165. H. Wu, M. Chen, Y. Fan, F. Elsebaei, Y. Zhu, Talanta 88 (2012) 222-229.

166. A. Gentili, Trend. Anal. Chem. 26 (2007) 595-608.

167. S. A. Barker, J. Chromatogr. A 885 (2000) 115-127.

168. M. Míguez-Framil, A. Moreda-Piñeiro, P. Bermejo-Barrera, I. Álvarez-Freire, M.

J. Tabernero, A. M. Bermejo, J. Chromatogr. A 1217 (2010) 6342-6349.

169. K. Aguilar-Arteaga, J. A. Rodriguez, J. M. Miranda, J. Medina, E. Barrado,

Talanta 80 (2010) 1152-1157.

170. L. Sanchez-Prado, J. P. Lamas, G. Alvarez-Rivera, M. Lores, C. Garcia-Jares, M.

Llompart, J. Chromatogr. A 1218 (2011) 5055-5062.

171. K. Kishida, Food Control 18 (2007) 301-305.

172. W. H. Tsai, T. C. Huang, J. J. Huang, Y. H. Hsue, H. Y. Chuang, J. Chromatogr.

A 1216 (2009) 2263-2269.

Page 51: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

113

173. W. H. Tsai, H. Y. Chuang, H. H. Chen, J. J. Huang, H. C. Chen, S. H. Cheng, T.

C. Huang, Anal. Chim. Acta 656 (2009) 56-62.

174. F. Plössl, M. GierA, F. Bracher, J. Chromatogr. A 1135 (2006) 19-26.

175. A. Posyniak, J. Zmudzki, K. Mitrowska, J. Chromatogr. A 1087 (2005) 259-264

176. J. Zhou, X. Xue, Y. Li, J. Zhang, F. Chen, L. Wu, L. Chen, J. Zhao, Food

Chemistry, 115 (2009) 1074-1080.

177. X. Pan, Z. Qiang, W. Ben, M. Chen, J. Environ. Sci. 23 (2011) 1729-1737.

178. P. A. Blackwell, H. C. H. Lutzhøft, H. Ma, B. H. Sørensen, A. B. A. Boxall, P.

Kay, Talanta 64 (2004) 1058-1064.

179. J. Dobor, M. Varga, J. Yao, H. Chen, G. Palkó, G. Záray, Microchemical Journal,

94 (2010) 36-41.

180. X. Zhu, Q. Su, J. Cai, J. Yang, Anal. Chim. Acta 579 (2006) 88-94.

181. V. Mandal, Y. Mohan, S. Hemalatha, J. Pharm. Biomed. Anal. 46 (2008) 322-327

182. A. Azzouz, E. Ballesteros, Sci Total Environ. 419 (2012) 208-215.

183. V. Mandal, Y. Mohan, S. Hemalatha, Phcog Rev. 1 (2007) 7-18.

184. M. H. Akhtar, L. G. Croteau, Analyst 121 (1996) 803-806.

185. A. H. Dawson, Cyclic antidepressant drugs, in: R.C. Dart (Ed.), Medical

Toxicology, third ed., Lippincott Williams & Wilkins, Philadelphia, 2004,

834-843.

186. T. Gondova, I. Petrikova, J. AOAC Int. 93 (2010) 778-782.

187. E. Tanaka, M. Terada, T. Nakamura, S. Misawa, C. Wakasugi, J. Chromatogr. B

692 (1997) 405-412.

188. C. Frahnert, M. L. Rao, K. Grasmader, J. Chromatogr. B 794 (2003) 35-47.

Page 52: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

114

189. W. M. Mullett, K. Levsen, D. Lubda, J. Pawliszyn, J. Chromatogr. A 963 (2002)

325-334.

190. J. Philippe Lambert, W. M. Mullett, E. Kwong, D. Lubda, J. Chromatogr. A 1075

(2005) 43-49.

191. K. M. Kirschbaum, M. J. Muller, G. Zernig, A. Saria, A. Mobascher, J. Malevani,

C. Hiemke, Clin Chem 51 (2005) 1718-1721.

192. J. Sachse, J. Köller, S. Härrter, C. Hiemke, J. Chromatogr. B Analyt Technol

Biomed Life Sci 830 (2006) 342-348.

193. C. Waldschmitt, F. Vogel, M. Maurer, C. Hiemke, Ther. Drug Monit. 29 (2007)

767-772.

194. N. Yasui-Furukori, Y. Inoue, S. Kaneko, K. Otani, J. Pharm. Biomed. Anal. 37

(2005)121-125.

195. B. J. G. Silva, F. M. Lancas, M. E. C. Queiroz, J. Chromatogr. B 862 (2008) 181-

188.

196. C. Waldschmitt, B. Pfuhlmann, C. Hiemke, Chromatographia, 69 (2009) 821-827.

197. T. A. Ivandini, B. V. Sarada, C. Terashima, T. N. Rao, D. A. Tryk, H. Ishiguro, Y.

Kubota , A. Fujishima, J. Electroanal. Chem. 521 (2002) 117-126.

198. A. R. Chaves, F. Z. Leandro, J. A. Carris, M. Eugênia, C. Queiroz, J. Chromatogr.

B 878 (2010) 2123-2129.

199. J. Karpinska, B. Starczewska, J. Pharm. Biomed. Anal. 29 (2002) 519-525.

200. A. J. Santos-Neto, C. J. Rodrigues, C. Fernandes, G. M. Titato, C. Alves, F. M.

Lancas, J. Chromatogr. A 1105 (2006) 71-76.

201. L. Cardenes, J. H. Ayala, A. M. Afonso, V. Gonzalez, J. Chromatogr. A 1030

(2004) 87.

202. T. Shinozuka, M. Terada, E. Tanaka, Forensic Sci. Int. 162 (2006) 108-112.

Page 53: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

115

203. M. M. Zheng, S. T. Wang, W. K. Hu, Y. Q. Feng, J. Chromatogr. A, 1217 (2010)

7493-7501.

204. U. Gutteck, K.M. Rentsch, Clin. Chem. Lab.Med. 41 (2003) 1571-1579.

205. C. C. Chou, M. R. Lee, Anal. Chim. Acta 538 (2005) 49-56.

206. A. D. Castro, M. d. Mar, R. Fernandez, M. Laloup, N. Samyn, G. D. Boeck, M.

Wood, V. Maes, M. Lopez-Rivadulla, J. Chromatogr. A 1160 (2007) 3-12.

207. M. C. Sampedro, N. Unceta, A. Gomez-Caballero, L. F. Callado, B. Morentin,

208. M. A. Goicolea, J. J. Meana, R. J. Barrio, Forensic Sci. Int. 219 (2012) 172-178.

209. A. R. Breaud, R. Harlan, J. M. D. Bussolo, G. A. McMillin, W. Clarke, Clin.

Chim. Acta 411 (2010) 825-832.

210. J. J. Nevado, M. J. Llerena, A. M. Salcedo, E. A. Nuevo, J. Pharm. Biomed. Anal.

38 (2005) 52-59.

211. H. H. Maurer, J. Bickeboeller-Friedrich, J. Ana l. Toxicol. 24 (2000) 340-347.

212. B. Tienpont, F. David, T. Benijts, P. Sandra, J. Pharm. Biomed. Anal. 32 (2003)

569-579.

213. B. Tienpont, F. David, K. Desmet, P. Sandra, Anal. Bioanal. Chem. 373 (2002)

46-55.

214. L. Antonilli, V. Brusadin, F. Filipponi, R. Guglielmi, P. Nencini, J. Pharm.

Biomed. Anal. 56 (2011) 763-770.

215. V. Ferranti, C. Chabenat, S. Menager, O. Lafont, J. Chromatogr. B, 718 (1998)

199-204.

216. R. H. C. Queiroz, C. Bertucci, W. R. Malfara, S. A. C. Dreossi, A. R. Chaves, D.

A. R. Vale´rio, M. E. C. Queiroz, J. Pharm. Biomed. Anal. 48 (2008) 428-434.

217. M. Contin, M. Balboni, E. Callegati, C. Candela, F. Albani, R. Riva, A. Baruzzi, J.

Chromatogr. B 828 (2005) 113-117.

Page 54: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

116

218. R. Mandrioli, N. Ghedini, F. Albani, E. Kenndler, M.A. Raggi, J. Chromatogr. B,

783 (2003) 253-263.

219. M. Contin, S. Mohamed, F. Albani, R. Riva, A. Baruzzi, J. Chromatogr. B 873

(2008) 129-132.

220. M. Contin, S. Mohamed, C. Candela, F. Albani, R. Riva, A. Baruzzi, J.

Chromatogr. B 878 (2010) 461-465.

221. K. M. Patil, S. L. Bodhankar, J. Pharm. Biomed. Anal. 39 (2005) 181-186.

222. H. A. Mowafy, F. K. Alanazi, G. M. E. Maghraby, Saudi Pharm. J. 20 (2012) 29-

34.

223. S. Thomas, A. Bharti, P. K. Maddhesia, S. Shandilya, A. Agarwal, Dharamvir, S.

Biswas, V. Bhansal, A. K. Gupta, P. K. Tewari, C. S. Mathela, J. Pharm. Biomed.

Anal. 61 (2012) 165-175.

224. T. A. C. Vermeij, P. M. Edelbroek, J. Chromatogr. B 857 (2007) 40-46.

225. M. D. Gil García, F. Canada Canada, M. J. Culzonia, L. Vera-Candioti, G. G.

Siano, H. C. Goicoechea, M. Martínez Galera, J. Chromatogr. A 1216 (2009)

5489-5496.

226. M. A. Saracino, K. Tallarico, M. A. Raggi, Anal. Chim. Acta 661 (2010) 222-228.

227. F. Bugamelli, C. Sabbioni, R. Mandrioli, E. Kenndler, F. Albani, M. A. Raggi,

Anal. Chim. Acta 472 (2002) 1-10.

228. L. Vera-Candioti, M.D. Gil García, M. Martínez Galera, H. C. Goicoechea, J.

Chromatogr. A 1211 (2008) 22-32.

229. G. Bahrami, A. Kiani, J. Chromatogr. B 835 (2006) 123-126.

230. L. Mercolini, R. Mandrioli, M. Amore, M. A. Raggi, J. Pharm. Biomed. Anal. 53

(2010) 62-67.

231. M. K. M. Babu, J. Pharm. Biomed. Anal. 34 (2004) 315-324.

Page 55: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

117

232. H. Breton, M. Cociglio, F. Bressolle, H. Peyriere, J. P. Blayac, D. Hillaire-Buys, J.

Chromatogr. B 828 (2005) 80-90.

233. K. Hoshina, S. Horiyama, H. Matsunaga, J. Haginaka, J. Chromatogr. A 1216

(2009) 4957-4962.

234. H. H. Maurer, C. Kratzsch, A. A. Weber, F. T. Peters, T. Kraemer, J. Mass

Spectrom. 37 (2002) 687-692.

235. X. S. Miao, C. D. Metcalfe, Anal. Chem. 75 (2003) 3731-3738.

236. S. M. N. Roy, S. M. Yetal, V. V. Vaidya, S. S. Joshi, E-Journal of Chemistry, 5

(2008) 169-176.

237. L. K. Sørensen. Forensic Sci. Int. 206 (2011) 119-126.

238. K. B. Kim, K. A. Seo, S. E. Kim, S. K. Bae, D. H. Kim, J. G. Shin, J. Pharm.

Biomed. Anal. 56 (2011) 771-777.

239. G. Paglia, O. D’Apolito, D. Garofalo, C. Scarano, G. Corso, J. Chromatogr. B 860

(2007) 153-159.

240. D. S. Jain, G. Subbaiah, M. Sanyal, P. Shrivastav, Talanta 72 (2007) 80-88.

241. Y. Zhang, N. Mehrotra, N. R. Budha, M. L. Christensen, B. Meibohm, Clin Chim.

Acta 398 (2008) 105-112.

242. K. Reddersen, T. Heberer, J. Sep. Sci. 26 (2003) 1443-1450.

243. J. C. Durán-Alvarez, E. Becerril-Bravo, V. S. Castro, B. Jiménez, R. Gibson,

Talanta 78 (2009) 1159-1166.

244. K. J. Bisceglia, J. T. Yu, M. Coelhan, E. J. Bouwer, A. L. Roberts, J. Chromatogr.

A 1217 (2010) 558-564.

245. W. Thormann, R. Theurillat, M. Wind, R. Kuldvee, J. Chromatogr. A 924 (2001)

429-437.

246. E. Turiel, A. Martín-Esteban, J. L. Tadeo, Anal. Chim. Acta 562 (2006) 30-35.

Page 56: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

118

247. E. Nemutlu, S. Kír, O. O. Zyuncu, M. S. Beksac, Chromatographia, 66 (2007) 15-

24.

248. A. Kumar, A. K. Malik, D. K. Tewary, B. Singh, J. Sep. Sci. 2008, 31, 294-300.

249. M. Díaz-Alvarez, E. Turiel, A. Martín-Esteban, Anal Bioanal Chem 393 (2009)

899-905.

250. H. Yan, H. Wang, X. Qin, B. Liu, J. Du, J. Pharm. Biomed. Anal. 54 (2011) 53-

57.

251. C. K. Holtzapple, S. A. Buckley, L. H. Stanker, J. Chromatogr. B 754 (2001) 1-9.

252. V. F. Samanidou, K. I. Nikolaidou, L. N. Papadoyannis, J Sep Sci 30 (2007) 2430-

2439.

253. E. A. Christodoulou, V. F. Samanidou, J Sep Sci 30 (2007) 2421-2429.

254. E. Benito-Pena, J. L. Urracaa, B. Sellergren, M. C. Moreno-Bondi, J. Chromatogr.

A 1208 (2008) 62-70.

255. M. K. Hossouan, O. Ballesteros, J. Taoufiki, J. Chromatogr. B 852 (2007) 625.

256. S. Herranz, M. C. Moreno-Bondi, M .D. Marazuela, J. Chromatogr. A 1140 (2007)

63-70.

257. J. Y. Shen, M. R. Kim, C. J. Lee, I. S. Kim, K. B. Lee, J. H. Shim, Anal. Chim.

Acta 513 (2004) 451-455.

258. M. Sturini, A. Speltini, L. Pretali, E. Fasani, A. Profumo, J. Sep. Sci. 32 (2009)

3020–3028.

259. H. Yan, F. Qiao, K. H. Row, Anal. Chem. 79 (2007) 8242-8248.

260. H. Yan, K. H. Row, Bull. Korean Chem. Soc. 29 (2008) 1173-1178.

261. H. Wu, G. Zhao, L. Du, Spectrochim. Acta Part A 75 (2010) 1624-1628.

262. M. Clemente, M. P. Hermo, D. Barron, J. Barbosa, J. Chromatogr. A 1135 (2006)

170-178.

Page 57: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

119

263. S. Bailac, D. Barron, J. Barbosa, Anal. Chim. Acta 580 (2006)163-169.

264. J .Tuerk, M. Reinders, D. Dreyer, T. K. Kiffmeyer, K. G. Schmidt, H. M. Kuss, J.

Chromatogr. B 831 (2006) 72-80.

265. O. Ballesteros, I. Toro, V. Sanz-Nebot, A. Navalón, J. L. Vílchez, J. Barbosa, J.

Chromatogr. B 798 (2003) 137-144.

266. Y. B. Luo, Q. Ma, Y. Q. Feng, J. Chromatogr. A 1217 (2010) 3583-3589.

267. M. G. Pikkemaat, P. P. Mulder, J. W. Elferink, A. de Cocq, M. W. Nielen, H. J.

Egmond, Food Addit. Contam. 24 (2007) 842-850.

268. A. Prieto, S. Schrader, C. Bauer, M. Möder, Anal. Chim. Acta 685 (2011) 146-

152.

269. A. Juan-García, G. Font, Y. Picó, Electrophoresis 28 (2007) 4180-4194.

270. A. Juan-García, G. Font, Y. Picó, Electrophoresis 27 (2006) 2240-2249.

271. M. Frommberger, N. Hertkorn, M. Englmann, S. Jakoby, A. Hartmann, A.

Kettrup, P. Schmitt-Kopplin, Electrophoresis 26 (2005) 1523-1532.

272. H. Wu, Z. Song, M. Hentzer, J. B. Andersen, A. Heydorn, K. Mathee, C. Moser,

L. Eberl, S. Molin, N. Høiby, M. Givskov, Microbiology (2000), 146, 2481-2493.

273. O. Geisenberger, M. Givskov, K. Riedel, N. Høiby, B. Tümmler, L. Eberl, FEMS

Microbiol. Lett. 184 (2000) 273-278.

274. U. M. Pinto, E. S. Viana, M. L. Martins, M. C. D. Vanetti, Food Control, 18

(2007)1322-1327.

275. T. Morohoshi, S. Nakazawa, A. Ebata, N. Kato, T. Ikeda, Biosci. Biotechnol.

Biochem. 72 (2008) 1887-1893.

Page 58: CHAPTER: 2 Review of Literature - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/13581/10... · Several methods have been reported for the determination of one or more antiepileptic

120

276. X. Li, A. Fekete, M. Englmann, C. Gotz, M. Rothballer, M. Frommberger, K.

Buddrus, J. Fekete, C. Cai, P. Schroder, A. Hartmann, G. Chen, P. Schmitt-

Kopplin, J. Chromatogr. A 1134 (2006) 186-193.

277. M. Englmann, A. Fekete, C. Kuttler, M. Frommberger, X. Li, I. Gebefügi, J.

Fekete, P. Schmitt-Kopplin, J. Chromatogr. A 1160 (2007) 184-193.

278. A. Middleton, H. C. Rodgers, M. Cámara, A. J. Knox, P. Williams, A. Hardman,

FEMS Microbiol. Lett. 207 (2002) 1-7.

279. A. Morin, B. Grasland, K. Vallée-Réhel, C. Dufau, D. Haras, J. Chromatogr. A

1002 (2003) 79-92.

280. M. W. Taylor, P. J. Schupp, H. J. Baillie, T. S. Charlton, R. de Nys, S. Kjelleberg,

P. D. Steinberg, Appl. Environ. Microbiol. 70 (2004) 4387-4389.

281. T. R. I. Cataldi, G. Bianco, M. Frommberger, Ph. Schmitt-Kopplin, Rapid

Commun. Mass Spectrom. 18 (2004) 1341-1344.

282. T. R. I. Cataldi, G. Bianco, L. Palazzo, V. Quaranta, Anal. Biochem. 361 (2007)

226-235.

283. A. E. Chambers, M. B. Visser, U. Schwab, P. A. Sokol, FEMS Microbiol. Lett.

244 (2005) 297-304.