chapter 3_ electrics & direct current_2016_reviewed

Upload: syaza-izzaty

Post on 07-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    1/89

      HAPTER 3

    ELE TRI URRENT

    AND DIRE T-

      URRENT IR UITS

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    2/89

    CHAPTER 3 : ELECTRIC CURRENT AND

    DIRECT-CURRENT CIRCUITS

    3.1Electric Conduction3.2O!"# l$% $nd Re#i#ti&it'

    3.3($ri$tion o) re#i#t$nce %it te!*er$ture

    3.+Electro!oti&e )orce ,e!) intern$l re#i#t$nce $nd*otenti$l di))erence

    3./Electric$l ener0' $nd *o%er 

    3.Re#i#tor# in #erie# $nd *$r$llel3.irco))"# L$%#

    3.4Potenti$l di&ider 

    3.5Potentio!eter $nd 6e$t#tone 7rid0e

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    3/89

    3.1 Electric$l Conduction

    3.1.1 Electric$l Current

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    4/89

     Area, A

    Addin0 $ 8$tter' i!*o#e# $n electric *otenti$l

    di))erence 8et%een te end# o) te loo* t$t $re

    connected to te ter!in$l# o) te 8$tter'.

    Te 8$tter' tu# *roduce# $n electric )ield %itin

    te loo* )ro! ter!in$l to ter!in$l 9 te )ield c$u#e#

    c$r0e# to !o&e $round te loo*.

    Te !o&e!ent o) c$r0e# i# $ current I

    e F 

     E    I 

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    5/89

    Te )lo% o) c$r0e , current *er#i#t# )or $# lon0 $#

    tere i# $ *otenti$l di))erence.

     Te direction o) te current i# o**o#ite te direction

    o) )lo% o) electron#.

     6itout $ *otenti$l di))erence no c$r0e )lo%# #ince

    no electric )ield $nd electric )orce *roduced. Tere)oreno current *roduced.

    Ti# i# $n$lo0ue to

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    6/89

    Te tot$l c$r0e Q )lo%in0 trou0 $n $re$ *er unit

    ti!e t .

    or 

    De)inition o) Electric current ,I

    in#t$nt$neou# current $&er$0e current

    electr 

    on

    )lo%

    Current I

      

    Direction of electric current :Po#iti&e to ne0$ti&e ter!in$l

    Direction of electron flows :Ne0$ti&e to *o#iti&e ter!in$l

    Q I  =

    dt 

    dQ I  =

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    7/89

    SI Unit o) electric current i# A!*ere ,A Sc$l$r  ;u$ntit' C$n 8e !e$#ured u#in0 $n $!!eter .

    1 $!*ere  of current is defined as one coulo!8 o)c$r0e *$##in0 trou0 te #ur)$ce $re$ in one

    #econd.

    OR

    Note:

    If the c$r0e !o&e $round $ circuit in te #$!e direction

    $t $ll ti!e#, the current is called direct current ,dc, which is

    *roduced 8' te 8$tter'.

    1sC1

    second1

    coulomb1ampere1   −==

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    8/89

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    9/89

    • te#e

    )ree electron# under0o r$ndo! !otion

    trou0out te l$ttice #tructure.

    • Ti# !otion i# $n$lo0ou# to te !otion o) 0$#

    !olecule#.

    3.1.2

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    10/89

    • Ho%e&er %en $ *otenti$l di))erence i#

    $**lied $cro## te !et$l ,e? 8' !e$n# o) $

    8$tter' $n electric )ield i# #et u* in te!et$l.

    • Ti# )ield e?ert# $n electric )orce on te

    )reel' !o&in0 electron#.

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    11/89

    • Te )reel' !o&in0 electron# tend to dri)t %it

    con#t$nt $&er$0e &elocit' ,dri)t &elocit' vd 

    #lo%l' $lon0 te !et$l  in $ direction o**o#ite

    t$t o) te electric )ield.

    • Te )lo% o) )ree electron# in one #*eci)ic

    direction *roducin0 $ current.

     > @

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    12/89

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    13/89

    E?$!*le

    Tere i# $ current o) ./ A in $ )l$#li0t 8ul8 )or 2 !in.

    Ho% !uc c$r0e *$##e# trou0 te 8ul8 durin0 ti#

    ti!e BSolution

    i&en : I ./ A t   2 !in 12 #

    ro!:

    A #il&er %ire c$rrie# $ current o) 3. A. Deter!ine

    $ te nu!8er o) electron# *er #econd *$## trou0 te

    %ire8 te $!ount o) c$r0e )lo%# trou0 $ cro##-#ection$l

    $re$ o) te %ire in // #.

    ,i&en c$r0e o) electron e 

    1.×

     1 15 C

     Answer : (a) 1.88×10 19 electrons per second; (b) 165 C

    ollo% U* E?erci#e

    t  I Q = )120(5.0= 60 C=

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    14/89

    3.2.1 O!"# L$%

    #t$te# t$t te *otenti$l di))erence,&olt$0e $cro## $ conductor V   i#

    *ro*ortion$l  to te current I  )lo%in0trou0 it i) it# *'#ic$l condition# 9

    te!*er$ture $re con#t$nt.

    E?*re##ed !$te!$tic$ll' :

    %ere V : *otenti$l di))erence ,&olt$0e

       I : current )lo% trou0

      R  : Re#i#t$nce o) te conductor 

    3.2 O!"# l$% $nd Re#i#ti&it' ,F

     I V  ∝

     IRV  =

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    15/89

    • Not $ll !$teri$l# o8e' O!"# l$%.

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    16/89

    3.2.2 Re#i#t$nce , R

    -- i# $ *ro*ert' %ic o**o#e# or li!it# current  in $n

    electric$l circuit.

    An$lo0ue

    to G

    i# de)ined $# te r$tio o) *otenti$l di))erence ,V  $cro##

    conductor to te current ,I t$t )lo%# trou0 it.

    De)inition o) Re#i#t$nce ,R

    whereMathematically,

     I 

    V  R = (voltage)difference potential:V 

    current: I 

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    17/89

    In 0ener$l re#i#t$nce o) $ conductor de*end# on :

    1. T'*e o) !$teri$l it i# !$de2. It# len0t

    3. It# cro## #ection$l $re$

    +. It# te!*er$ture

    It i# $ #c$l$r  ;u$ntit' $nd it# unit i# o! ,Ω

      or ( A 1

    In $ circuit i) re#i#t$nce R  i# con#t$nt $# V  I.

    RUN ANI

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    18/89

    o It i# $ #c$l$r  ;u$ntit'

    o Unit i# o! !eter  ,Ω

     mo It i# $ !e$#ure o) $ !$teri$l"# $8ilit' to

    o**o#e te )lo% o) $n electric current.

    (A)

    (l )

    3.2.3 Re#i#ti&it' , ρ 

    is defined as te re#i#t$nce o) $ unit cro##-#ection$l$re$ *er unit len0t o) te !$teri$l.

    Mathematically,

    where

    RUN ANI

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    19/89

    Material Resistiity,  ρ  ( Ω m)

    !iler  ".#$ × "%−&

    'oer  ".& × "%−&

     Aluminum *.&* × "%−&

    Gold *.++ × "%−&

    Glass "%"%−"%"+

    o Resistiity deends on the t'*e o) te !$teri$l andon the te!*er$ture.

    o  A ood electric conductor#  hae a ery lo%re#i#ti&itie#  and ood  in#ul$tor#  hae ery i0re#i#ti&itie#.

    o -ale elow shows the resistiity for ariousmaterials at *% °'.

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    20/89

    E?$!*le

    A con#t$nt$n %ire o) len0t 1.! $nd cro## #ection$l

    $re$ o) ./ !!2

     $# $ re#i#ti&it' o) +.5 ? 1 >

     J!. indte re#i#t$nce o) te %ire.

    Solution

    U#in0:

    i&en:   1. ! A ./ !!2  ./ ? 1 > !2

      ρ  +.5 ? 1 > J !

     A

     L R

      ρ =

    "

    6

    #.$ 10 (1.0)

    0.5 10

    ×=×

    Ω= $%.0 R

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    21/89

    T%o %ire# P $nd K %it circul$r cro## #ection $re

    !$de o) te #$!e !et$l $nd $&e e;u$l len0t. I) te

    re#i#t$nce o) %ire P i# tree ti!e# 0re$ter t$n t$t o)%ire K deter!ine te r$tio o) teir di$!eter#.

    Solution :

    i&en :

    ro!:

    E?$!*le

    /nowin that :

    & ' & 'same metal : same lengt: ρ ρ l l = =

    '&  R R   =

    2

    '

    2

    &

    d =

    '

    ''

    &

    &&

     A

    l  ρ

     A

    l  ρ= #

    2πd  A =

    2 2

    & '

    # #

     P P Q Q ρ l ρ l 

    πd πd  

     =      

     

    '

    &

    d =

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    22/89

    3.3.1 E))ect o) te!*er$ture on re#i#t$nce

    o Since te re#i#ti&it' o) $ !$teri$l de*end# on telen0t l   $nd te cro##-#ection$l $re$  A %ic $re

    $))ected $# te!*er$ture c$n0e# tu# re#i#ti&it'

    $l#o c$n0e# $# te!*er$ture c$n0e#.

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    23/89

    Su*erconductor 

    -ale shows the critical temerature for arious

    suerconductors.

    In suerconductor, as the temerature decreases, the

    resistance (or resistiity) at first decreases smoothly, li0e that

    of any metal.

    1ut then, $t $ cert$in critic$l te!*er$ture ! c   te

    re#i#t$nce ,or re#i#ti&it' #uddenl' dro*# to =ero.

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    24/89

    http://var/www/apps/conversion/tmp/scratch_5/The%20Awesome%20Levitating%20Train.flv

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    25/89

    o O&er $ #!$ll te!*er$ture r$n0e ,u* to 1°

    C te

    re#i#ti&it' o) $ !et$l c$n 8e re*re#ented

    $**ro?i!$tel' 8' to te e;u$tion:

    %ere

    re#i#ti&it' $t #o!e te!*er$ture ! ,in de0ree# Cel#iu#

    te re#i#ti&it' $t #o!e re)erence te!*er$ture ! o

    re)erence te!*er$ture

    te te!*er$ture coe))icient o) re#i#ti&it'.

    3.3.2 Te!*er$ture coe))icient o) re#i#ti&it' ,

    )in$l te!*er$ture

    ( )1   OO   T T  ρ ρ α  = + −

     ρ 

    o ρ 

    oT  

    α 

    (0 C 20 C)o oor 

    α 

    T  

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    26/89

    Te te!*er$ture coe))icient o) re#i#ti&it' ,α

      i# te

    r$tio o) te c$n0e o) re#i#ti&it' in $ !$teri$l due to $

    c$n0e o) te!*er$ture o) 1°

    C to it# re#i#ti&it' $t °

    C.

    2here:

    : the chane in resistiity in the temerature interal, 3-

    -he unit for Is OC-1 or  >1 

    1ecause resistance is roortional to resistiity, thus we can write the

    formulae of resistance as:

    ($riou# !$teri$l $&e &$riou# &$lue# o) α.

    4or e5amle : !iler α = +."% × "%−6 / 7"

    Mercury α = %.&$ × "%−6 / 7"

    T  ∆

    ∆=   ρ 

     ρ α 

    0

    1

    0 ρ  ρ  ρ    −=∆

    α 

    ( )1   OO R R T T α  = + −

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    27/89

    E?$!*le

    A *l$tinu! %ire $# $ re#i#t$nce o) ./ J $t MC. It i#

    *l$ced in $ %$ter 8$t %ere it# re#i#t$nce ri#e# to $ )in$l&$lue o) . J. 6$t i# te te!*er$ture o) te 8$t B

    Solution

    ro!: *)(1+   oo   T T  R R   −+=   α 

    )(   ooo   T T  R R R   −+=   α 

    ooo   R RT T  R   −=− )(α 

    o

    o

    o T  R

     R RT    +−=α 

    0.6 0.5 00.5(.$ 10 )−

    −= +×

    50.%$ CT  = °

    ) ,"

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    28/89

    3.+.1 Electro!oti&e orce e.!.) ,"  $nd Potenti$l

    di))erence ,V 

    e.m.f   ,"  o) $ 8$tter'  i# te !$?i!u! *.d $cro## it# ter!in$l# 

    %en it i# not connected to $ circuit#. , Refer Figure a 

    Ter!in$l &olt$0e V   i# te *.d $cro## te ter!in$l# o) $ 8$tter'

    %en tere i# $ current )lo%in0 trou0 it. , Refer Figure b 

    SI unit 9 V  : &olt , V  

    Figure a

    (

    Figure b

    3.+ Electro!oti&e orce e.!.) ,"  Intern$l

    Re#i#t$nce ,r  9 Potenti$l Di))erence ,V 

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    29/89

    3.+.2 Intern$l Re#i#t$nce o) $ 8$tter' ,r 

    o In re$lit' %en $ 8$tter' i# #u**l'in0 current it#ter!in$l &olt$0e i# le## t$n it# e.m.f , 

    o Ti# reduce# o) &olt$0e i# due to ener0' di##i*$tion

    in te 8$tter'. In e))ect te 8$tter' $# intern$l

    re#i#t$nce ,r .

    1attery (cell)

    A ,

    o Con#ider $ circuit con#i#tin0 o) $ 8$tter' ,cell t$t i#

    connected 8' %ire# to $n e?tern$l re#i#tor  R  $#

    #o%n in i0ure

     I r ε

     R

     I 

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    30/89

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    31/89

    o Te intern$l re#i#t$nce o) $ cell i# te re#i#t$nce due

    to te ce!ic$l# in te cell.

    o Te intern$l re#i#t$nce o) $ cell con#titute# *$rt o)

    te tot$l re#i#t$nce in $ circuit.

    o Te !$?i!u! current t$t c$n )lo% out )ro! $ cell i#deter!ined 8' te intern$l re#i#t$nce o) te cell.

    o Te e!) o) $ 8$tter' i# con#t$nt 8ut te intern$l

    re#i#t$nce o) te 8$tter' incre$#e# %it ti!e $# $re#ult o) ce!ic$l re$ction.

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    32/89

    E?$!*le

    A 8$tter' $# $n e.m.f. o) 12 ( $nd $n intern$l

    re#i#t$nce o) ./ J. It# ter!in$l# $re connected to $lo$d re#i#t$nce o) 3 J.

    ind te current in te circuit 9 te ter!in$l &olt$0e o)

    te 8$tter'.

    Solution

    U#in0 :   r  I  R I    +=ξ 

    )(   r  R I 

    +=  ξ 

    05.012

    +=

    .$A I 

    =

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    33/89

    Te ter!in$l &olt$0e

     Anot#er alternat$%e :

    U#in0 :

     IRV  =)($.=

    11.% VV  =

    r  I V  +=ξ r  I V    −= ξ 

    )05.0($.12 −=11.% VV  =

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    34/89

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    35/89

    3./ Electric$l Ener0' ,6 $nd Po%er ,P

    Te electric ener0' 6 i# te $!ount o) ener0' 0i&en u* 8' $ c$r0e K in *$##in0 trou0 $n electric de&ice.

    7ut K It #o :

    no%in0 t$t ( IR #o:

    3./.1 Electric$l Ener0' ,6

    V QW  =

    )1(W VIt  =

    2W I Rt  =2

    V t W 

     R

    =

    (2)L

    ()L

    3 / 2 P ,P

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    36/89

    3./.2 Po%er ,Po Po%er P i# de)ined $# te ener0' li8er$ted *er unit

    ti!e in te electric$l de&ice.

    o Te electric$l *o%er P  #u**lied to te electric$l de&icei# 0i&en 8'

    o 6en te electric current )lo%# trou0 %ire orre#i#tor ence te *otenti$l di))erence $cro## it i#

    ten te electric$l *o%er c$n 8e %ritten $#

    o It i# $ #c$l$r  ;u$ntit' $nd it# unit i# %$tt# ,!) or 2 s 1.

    OR

    VIt 

    W  P    ==   IV  P  =

     IRV  =

     R I  P  2= R

    V  P 

    2

    =

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    37/89

    ". A wire of un0nown comosition has a resistance of 6#.% Ω 

    when immersed in the water at *%.%°'. 2hen the wire islaced in the oilin water, its resistance rises to +. Ω.

    'alculate the temerature on a hot day when the wire has a

    resistance of 6.& Ω.,P'#ic#t edition Cutnell 9 on#on K1/ *.35

    ANS. : 3.4°

    C

    *. a. A attery of emf .% > is connected across a "% Ω 

    resistor. If the otential difference across the resistor is #.%

    >, determine

    i. the current in the circuit,ii. the internal resistance of the attery.

    . 2hen a ".# > dry cell is short?circuited, a current of 6.% Aflows throuh the cell. 2hat is the internal resistance of

    the cell@

    ANS. : ./ A 2.Ω

    ./Ω

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    38/89

    6. A wire #.% m lon and 6.% mm in diameter has a resistance of

    "%% Ω. A "# > of otential difference is alied across the

    wire. Determine

    a. the current in the wire,

    . the resistiity of the wire,c. the rate at which heat is ein roduced in the wire.,Colle0e P'#ic#t edition 6il#on 7u))$ 9 Lou K/ *./45

    ANS. : .1/ A 1.+1+ × 1 + Ω ! 2.2/ 6

    +. A coer wire has a resistance of *# mΩ at *% °'. 2hen the

    wire is carryin a current, heat roduced y the current

    causes the temerature of the wire to increase y * °'.

    a. 'alculate the chane in the wires resistance.

    . If its oriinal current was "%.% mA and the otential differenceacross wire remains constant, what is its final current@

    (Gien the temerature coefficient of resistiity for coer is

    .&% × "%−6 °'−")

    ANS. : ,$ +./5Q1 >3 J ,8 4.+/Q1 >3 A

    3 R i t I S i A d P ll l

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    39/89

    3..1 Re#i#tor# in #erie#

    3. Re#i#tor# In Serie# And P$r$llel

    Te #$!e current I  )lo%# trou0 e$c re#i#tor %ere

    Con#ider tree re#i#tor# $re connected in #erie# to te

    8$tter' $# #o%n in i0ure 8elo%.

    21  I  I  I  I 

      ===

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    40/89

    Te *otenti$l di))erence ,&olt$0e $**lied $cro## te

    #erie# co!8in$tion o) re#i#tor# %ill di&ide 8et%een te

    re#i#tor#.

    To re*l$ce te re#i#tor# 8' one re#i#tor %ic $# $ne;ui&$lent re#i#t$nce RE 9 !$int$in te #$!e current

    %e $&e :

    Su8#titute ,2 into ,1 :

    21   V V V V    ++=

    - (2)V IR=   L

    )1(21    IR IR IRV    ++=

    - 1 2  IR IR IR IR= + +

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    41/89

    E?tendin0 ti# re#ult to te c$#e o) n re#i#tor# connectedin #erie# co!8in$tion:

    C$ncelin0 te co!!on I"# %e 0et :

    %ere R E i# te e))ecti&e ,e;ui&$lent re#i#t$nce

    - 1 2  R R R R= + +

    - 1 2 n... R R R R R= + + + +

    3 2 R i t i ll l

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    42/89

    3..2 Re#i#tor# in *$r$llel

    S$!e *otenti$l di))erence ( $cro## te re#i#tor# %ere

    Current di&ide# into di))erent *$t $t te unction.

    21   I  I  I  I    ++=

    )1(21

     R

     R

     R

    V  I    ++=

    21   V V V V    ===

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    43/89

    Re#i#tor# connected in *$r$llel c$n 8e re*l$ced %it $n

    e;ui&$lent re#i#tor RE t$t $# te #$!e *otenti$l

    di))erence ( 9 te #$!e tot$l current I $# te $ctu$l

    re#i#tor#.

    Su8#titute ,2 into ,1 :

    C$ncelin0 te co!!on ("# %e 0et :

    -

    (2)V 

     I  R

    =   L

    - 1 2

    V V V V  

     R R R R= + +

    - 1 2

    1 1 1 1

     R R R R= + +

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    44/89

    E?tendin0 ti# re#ult to te c$#e o) n re#i#tor# connected

    in *$r$llel co!8in$tion:

    E?$!*le

    6$t i# te e;ui&$lent re#i#t$nce o) te re#i#tor# in

    )i0ure 8elo% B

    A

    7R 1

    R 2

    R 3R +

    R 1 R 2 R 3 R + 1

    - 1 2 n

    1 1 1 1 1... R R R R R

    = + + +

    S l ti

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    45/89

    Anoter &ie% o) te circuit :

    A

    7

    R1

    R2

    R3R+

    Circuit $# 8een reduced to :

    A

    7

    R1

    R2

    R3+

    R3+ 9 R2 in #erie# tu#:

    Solution

    ##

    111

     R R R+= 2

    1

    1

    1

    1=+=

    #

    2 R   = Ω

    #22#   R R R   +=

    1 1

    2 2

    = + = Ω

    Ci it 8 d d t

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    46/89

    Circuit $# 8een reduced to :

    A

    7

    R1R23+

    E?$!*le

    ind te current in 9 &olt$0e o) te 1 J re#i#tor #o%n

    in i0ure.

    - 1 2#

    1 1 1

     R R R= +

    5

    2

    1

    1=+=

     

    5 E  R   = Ω

     R

    1 R

    2 R

    S l ti

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    47/89

    Solution

    1#t )ind te RE )or te circuit 9 0et te current I )lo% in

    te circuit

     p 1 2

    1 1 1

     R R R= +

    2

    1

    10

    1+=

    10

    6=

     p 1.6" R  = Ω

    - p R R R= +0.56".1   +=

    6.6" E  R   = Ω

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    48/89

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    49/89

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    50/89

    In te #erie# c$#e te

    #$!e current )lo%#

    trou0 8ot 8ul8#.

    I) one o) te 8ul8#

    8urn# out tere %ill

    8e no current $t $ll in

    te

    circuit $nd neiter

    8ul8 %ill 0lo%

    In te *$r$llel c$#e te *otenti$l

    di))erence $cro## eiter 8ul8

    re!$in# e;u$l i) one o) te 8ul8#

    8urn# out. Tecurrent trou0 te )unction$l 8ul8

    re!$in# e;u$l $nd te *o%er

    deli&ered to t$t 8ul8 re!$in# te

    #$!e . Ti# i# $noter o) te !erit# o)

    $ *$r$llel $rr$n0e!ent o) li0t 8ul8#: I)

    one )$il# te oter 8ul8# $re

    un$))ected. Ti# *rinci*le i# u#ed in

    ou#eold %irin0 #'#te!#

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    51/89

    %'467 8  sos te arrangement of five e/ualresistors in a circuit. Calculate

    i. te e/uivalent resistance beteen point x and y.

    ii. te voltage across point b and c.

    iii. te voltage across point c and y. 

    ANS : ,i 4 ,ii 3 ( ,iii 5 (

    (")

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    52/89

    4or the circuit aoe, calculate

    a. the effectie resistance of the circuit,

    . the current asses throuh the "* Ω resistor,

    c. the otential difference across +.% Ω resistor,

    d. the ower deliered y the attery.

    -he internal resistance of the attery may e inored.

    (*)

    ANS : ,$ 1.24 ,8 ./A ,c 2 ( ,d 3 6

    Ω0.#

    Ω0.2

    V0.%

    Ω12

    3 i ))" L

    A #t$te!ent o)

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    53/89

    3. irco))"# L$%

    3..1 irco))"# 1#t L$% : unction Rule

    Te #u! o) te current# enterin0 $n' unction in $ circuit!u#t e;u$l te #u! o) te current# le$&in0 t$t unction.

    E?$!*le:

    A #t$te!ent o)

    con#er&$tion

    o) electric

    c$r0e

    1 I 

    2 I  I 

    21 III =+12 III =+

     I  2 I 1 I 

    ∑∑   = outin   I  I 

    3 2 i ))" 2 d L L R l

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    54/89

    3..2 irco))"# 2nd L$% : Loo* Rule

    Te $l0e8r$ic #u! o) te con#t$nt &olt$0e e.m.f # i#$l%$'# e;u$l to te &olt$0e dro*# $round $n' clo#ed

    electric$l loo*.

    Si0n con&ention )or 9 IR , &olt$0e dro*

    direction o) loo*

    @ >  >@

    direction o) loo*

    ollo%# )ro!

    te l$%# o)

    con#er&$tion

    o) ener0'

     IRξ  =∑ ∑

    ε−ε+

    ε   ε

    di ti ) l di ti ) l

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    55/89

    direction o) loo* direction o) loo*

    3..3 Pro8le! #ol&in0 #tr$te0' ,irco))"# L$%#

    o Coo#e $nd l$8elin0 the current at each Bunction in the

    circuit ien.o Coo#e $n' one unction in the circuit and $**l' te

    irco))"# )ir#t l$%.o Coo#e $n' t%o clo#ed loo*# in the circuit and

    desinate a direction (cloc%i#e OR $nticloc%i#e) totrael around the loo in $**l'in0 te irco))"##econd l$%.

    o Sol&in0 te #i!ult$neou# e;u$tion to determine theun0nown currents and un0nown ariales.

     IR+

     I 

     R IR−

     I 

     R

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    56/89

    or te circuit in i0ure /.24 Deter!ine te current$nd it# direction in te circuit.

    E?$!*le

    Ω1.15

    Ω.226

    Ω50.%   Ω2V1.51

    Ω#V5.01

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    57/89

    Solution :

    7' $**l'in0 te irco))"# 2nd l$% tu#

    Loo* 1

    ,$nticloc%i#e

     IRξ  =∑ ∑

    A"#.0= I  I  I  I  I  I  #50.%222.61.155.110.15   ++++=+

    Ω1.15

    Ω.226

    Ω50.%   Ω2V1.51

    Ω#V5.01 I 

     I 

     I  I 

    E l

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    58/89

    E?$!*le

    ind te &$lue o) current I  re#i#t$nce R  9 te

    e.m.f 

    D

    A

    E

    7

    C

     I  R

    Ω1

    1 1A I   =

    2 2A I   =

    12V

    Solution

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    59/89

    Con#ider unction 7 9 $**l' te irco))"# 1#t l$% :

    7re$in0 te 0i&en co!*le? circuit into #e&er$l #i!*le clo#ed

    circuit# 9 $**l' te irco))"# 2nd l$%:

    or clo#ed loo* DCED : , tr$&er#e cloc

    %i#e

    out in   I  I    Σ=Σ21   I  I  I    += 21+=

    A I  =

     I 1

     I 2 I 

     IRΣ=Σξ )(12 2 I  IR +=)(212   +=   R

    2 R = Ω

    l d l A7EA , t l i

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    60/89

    or clo#ed loo* A7EA : , tr$&er#e cloc %i#e

    * The –ve sign shows that the polarity of ξ  isactually  the reverse of that shown in

    gure.

    * If the value of current is –ve , this showsthat the actual direction of current ow is

    reverse of that shown in gure.

     IR

    Σ=Σξ 

    )()1( 21   I  I    +−=−ξ 61+−=−ξ 

    5 V

    5 V

    ξ 

    ξ 

    − == −

    E?$!*le

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    61/89

    E?$!*le

    Re)errin0 to te circuit in i0ure c$lcul$te te current

    I1I2 $ndI3 

    Solution

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    62/89

    Solution

    Loo* 1 Loo* 2

    a

    b

    c

    e

       

    At ti

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    63/89

    At unction c :

    Re)er Loo* 1 , $cd8$ > cloc%i#e

    Re)er Loo* 2 , ce)dc> cloc%i#e

    out in   I  I    Σ=Σ

    )1(21  

     I  I  I    +=

     IRΣ=Σξ 

    1121 102010100   I  I  I  I    +++= )2(10#00 21    I  I  +=

     IRΣ=Σξ 2 101020101020   I  I  I  I    −++=−

    )(10#010 2    I  I   −=

    S 8 tit t ,2 i t ,1

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    64/89

    Su8#titute ,2 into ,1:

    Sol&e ,3 9 ,+ #i!ult$neou#l' :

    -------------------------------------------------

    Su8#tituteI2 .3333 A into ,3 %e 0et :

    Su8#tituteI2 9I3 into ,1 %e 0et :

    22 10)(#00   I  I  I    ++=

    )#(#0500 2    I  I   +=

    )(10#010 2    I  I   −=

    )#(#0500 2    I  I   +=

    :)#()(   −

    26020   I −=−2 0.A I   =

    0.A I   =

    1 0.6666A I   =

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    65/89

    4or the circuit aoe, determine

    a. the currents I 1, I 2 and I ,

    . the otential difference across the . Ω resistor,c. the ower dissiated from the ".* Ω resistor.

    ,1

    ANS: ,$ I1  .2 A I21.3 A I 1./ A

      ,8 .5 (

      ,c 3.4 6

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    66/89

    ,2

    Te circuit #o%n in i0. ,$ cont$in# t%o 8$tterie# e$c

    %it $n e!) $nd $n intern$l re#i#t$nce $nd t%o re#i#tor#.

    ind

    ,$ te current in te circuit

    ,8 te *otenti$l di))erence ($8 %it re#*ect to 8 $nd

    ,c Te *o%er out*ut o) te e!) o) e$c 8$tter'

    An# : ,$ ./ A ,8 5./ ( ,c 6 >2 6

    ind.

    1attery P with e.m.f ".6 > and internal resistance * C, attery K with e.m.f ".#,3

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    67/89

    > and internal resistance %.& C and a + C resistor are connected in arallel.

    (i) !0etch the circuit diaram.

    (ii) 'alculate the current in attery P, attery K and the + C resistor.

    (iii) 'alculate the otential difference across the + resistor.

    Ans , (ii) 0.#-8A9 0.01 A9 0.31 A9 (iii) 1.# V

    Referin to the circuit in 4iure elow, calculate

    (a)-he current, I that flows in R resistor.

    ()-he resistance of R resistor.

    (c)-he alue of emf 

    (d)-he current that flows in R resistance if the circuit is cut off at oint 5.

    (Internal resistance of the emf source is neliile).

    ,+

    Ans , (a) #A 9 (b) 5: 9 (c) # V (d) 3.5 A

    (#)

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    68/89

    e internal resistance of all te batteries in %'467  

    are negligible. Calculate te current  I 1  I 2  and  I   en

    sitc is

    i. open. ii. closed.

    ( )

    Ans , (a) '1;'# ; 1.3 A '3 ; 0A 9 (ii) #.5# A 1.15A 1.38 A

    3 4 Potenti$l Di&ider

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    69/89

    3.4 Potenti$l Di&ider

    -- u#ed to o8t$in $n' de#ired #!$ller *ortion o) &olt$0e

    )ro! $ #in0le &olt$0e #ource V o

    -- 2 re#i#tor# R 1 9 R 2 $re connected to $ &olt$0e #ource

    , 8$tter' %it &olt$0e V o

    oV sourceVoltage

    1 R 2 Ra  c

    b

    1V 

    o - - 1 2  ereV IR R R R∴ = = +

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    70/89

    -- te current trou0 R1 9 R2 $re #$!e.

    Su8#titute ,1 into te e;u$tion:

    -- 8' u#in0 di))erent &$lue# o) R 1 9 R 2 di))erent

    &olt$0e c$n 8e o8t$ined )ro! $ &olt$0e #ource V o 

    ,8$tter'.

    Si!il$rl':

    o

    1 2

    (1)( )

    V  I 

     R R⇒ =

    +  K 

    1

    1 o

    1 2( ) RV V 

     R R=

    +

    11:   IRV  From   =

    2

    2 o

    1 2( )

     R

    V V  R R= +

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    71/89

    4or the circuit in 4iure elow aoe,

    a. calculate the outut oltae.. If a oltmeter of resistance +%%% Ω is connected across

    the outut, determine the readin of the oltmeter.

    E?$!*le

    Ω000#

    V21

    Ω000%

    outV 

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    72/89

    Solution :

    a. -he outut oltae is ien y

    . -he connection etween the oltmeter and +%%% Ω resistor is

    *$r$llel, thus the eEuialent resistance is

    Fence the new outut oltae is ien y

     

    -herefore the re$din0 o) te &olt!eter i# 2.+ (.

    V12#000%000 21   =Ω=Ω=   V  R R

    V  R R

     RV         += 212out

    V0.#out =V 

    #000

    1

    #000

    11

    e/

    += R

    12#000%000

    #000out         +=V 

    Ω=  2000e/ R

    V#.2out =V 122000%000

    2000out     

       

    +=V 

    3.5 Potentio!eter $nd 6e$t#tone 7rid0e

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    73/89

    0

    3.5.1 Potentio!eter

    • 'onsider a otentiometer circuit is shown in 4iure elow

    • -he otentiometer is 8$l$nced when the Boc0ey (slidin contact)

    is at such a osition on wire A1 that there is no current

    trou0 te 0$l&$no!eter . -hus

    ,Dri&er cell -$ccu!ul$tor

    oce'

    ?

    ,Unno%n &olt$0e

    ,A C

    3V 

     I    I 

     I  I 

    l t di

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    74/89

    • 2hen the otentiometer in alanced, the unno%n

    &olt$0e ,*otenti$l di))erence 8ein0 !e$#ured i#e;u$l to te &olt$0e $cro## AC.

    • otentiometer can e used to – co!*$re te e!)# of two cells.

     – !e$#ure $n unno%n e!)  of a cell.

     – !e$#ure te intern$l re#i#t$nce of a cell.

    $l&$no!eter re$din0

    ?

    AC3   V V   =

    ,AC

    3

     I    I 

     I  I 

    A**lic$tion : Co!*$re te e!)# o) t%o cell# or )indunno%n e!)

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    75/89

    unno%n e!) o In this case, a otentiometer is set u as illustrated in 4iure

    elow, in which A1 is a wire of uniform resistance and H is aslidin contact (Boc0ey) onto the wire.

    o  An accumulator 4 maintains a steady current I  throuh thewire A1.

    ,2

    ,1S

    4

    ,A I 

     I 

    2ξ 

     I  I 

    1ξ 

    C 1l 

    2l 

    o Initially, switch ! is connected to the terminal (") and the Boc0ey

    moed until the emf ! e5actly alances the otential difference ( d )

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    76/89

    o  After that, the switch ! is connected to the terminal (*) and the

     Boc0ey moed until the emf ! 2 alances the .d. from the

    accumulator at oint D. Fence

    where and

     ,1

    then

    where and

     ,2then

    moed until the emf ! 1 e5actly alances the otential difference (.d.)

    from the accumulator (alanometer readin is ero) at oint '.

    Fence

    ,2

    ,1S

    1 ACV ξ   =

    ACAC   IRV    = A

     ρl  R 1AC =

    11

     ρl  I 

     A

    ξ    =    

     

    2 A

    V ξ   =

    AA   IRV    = A

     ρl  R 2A =

    22

     ρl  I 

     A

    ξ    =    

    4

    ,A I 

     I 

    2ξ 

     I  I 

    1ξ 

    C  5

    • 1 di idi (") d (*) th

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    77/89

    • 1y diidin eE. (") and eE. (*) then

    !ince

    ;Euation aoe can e written as

    1 1

    2 2

    l ξ ξ 

    =

    1

    1

    22

     ρl  I 

     A ρl 

     I  A

    ξ ξ 

         =      

    1 ρl  R R l  A

    = ⇒ ∝

    1 1

    2 2

     R

     R

    ξ 

    ξ =

    E?$!*le

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    78/89

    Solution

    U#in0 :

    Con#ider $ *otentio!eter. I) $ #t$nd$rd 8$tter' %it $n

     e.m.f.o) 1.14 ( i# u#ed in te circuit. 6en te

    re#i#t$nce i# 3 J te 0$l&$no!eter re$d# =ero. I) te#t$nd$rd 8$tter' i# re*l$ced 8' $n unno%n  e.m.f.te

    0$l&$no!eter re$d# =ero %en te re#i#t$nce i#

    $du#ted to +4 J. 6$t i# te &$lue o) te unno%n

     e.m.f.B

    2

    1.01%6 6

    #%ξ =

    2 1.5% Vξ =

    1 1

    2 2

     R

     R

    ξ 

    ξ =

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    79/89

    ". In 4iure ", J is a uniform wire of lenth ".% m and

    resistance "%.% Ω.

    T

    i0ure 1

    ξ 1 is an accumulator of emf *.% >

    and neliile internal resistance.

     R1 is a "# Ω resistor and R2 is a #.%

    Ω resistor when !" and !* oen,

    alanometer G is alanced whenJ- is *.# cm. 2hen oth !" and

    !* are closed, the alance lenth is

    "%.% cm. 'alculate

    a. the emf of cell ξ 2

    .

    . the internal resistance of cell ξ 2.

    ANS. : ,$ ./ ( ,8 ./Ω

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    80/89

    a uniform wire O! usin Boc0eys < and K as shown in 4iure *.

    a. the otential difference across OK when OK = #.% cm,

    . the otential difference across OK when K touches ! and the

    alanometer is alanced,

    c. the internal resistance of the cell A,

    d. the emf of cell A.

    i0ure 2

     V

    -he lenth of the uniform wire O! is".%% m and its resistance is "* Ω.

    2hen OK is #.% cm, the

    alanometer does not show any

    deflection when O

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    81/89

    0 W X

    -- u#ed to o8t$in $n $ccur$te !e$#ure!ent o) $n

    unno%n re#i#t$nce R?

    ε

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    82/89

    -- Te 8rid0e i# !$de u* o) + re#i#tor $r!# R1 R2 R3 R? 

    $nd *oint# CD $re oined 8' $ center lin or Y8rid0e"

    %ic cont$in# $ 0$l&$no!eter.

    -- one o) te no%n re#i#tor , )or e?$!*le R1  i#

    &$ried until te 0$l&$no!eter re$din0 i# =ero.

    ,A

    C

    1 R2

     R

     R 3 R

    0=

     I    I 

    2 I 

    1 I 

    2 I 

    1 I 

    -- No current )lo%# trou0 C to D tu# tere %ill 8e

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    83/89

    0

    no &olt$0e di))erence 8et%een *oint# C 9 D (CD 

    -- under ti# condition te 8rid0e i# #$id to 8e

    8$l$nced.-- Tere)ore

    -- Re#i#tor# R1R2 c$rr' te #$!e current I1

    -- Re#i#tor# R3R c$rr' te #$!e current I2

     "#$# A" A$    V V V V    ==

    )1(211    R I  R I    =

    )2(221    %  R I  R I    =(2)

    :(1)

    3 2

    ) 1

     R R

     R R=

    E?$!*le

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    84/89

    A %e$t#tone 8rid0e i# u#ed to !$e $ *reci#e

    !e$#ure!ent o) te re#i#t$nce o) $ %ire connector. I)

    R  1 J 9 te 8rid0e i# 8$l$nced 8' $du#tin0 P #uct$t P 2./ K %$t i# te &$lue o) B

    Solution

    U#in0 :

    1 10

    2.5

     % 

    Q Q×=

    Ω= #00 % 

    1 R

    2 R

    ) R

     %  R

    2

    1

     %    R R

     R R=

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    85/89

    ". -he circuit shown in fiure is 0nown as a 2heatstone ride.

    Determine the alue of the resistor R such that the currentthrouh the .% Ω resistor is ero.

    ,P'#ic#3t edition $!e# S. 6$ler K53 *.31

    ANS. : ./ Ω

    4O88O2 9 ;

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    86/89

    -he alication of the 2heatstone ride is

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    87/89

    • -he metre ride is 8$l$nced when the

     Boc0ey H is at such a osition on wire A1

    that there is no current trou0 te0$l&$no!eter . -hus the current I 1 flows

    throuh the resistance R3 and R ut

    current I 2 flows in the wire A1.

    • 8et V 3 : .d. across R3 and V  : .d. across R,

    At l diti

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    88/89

     –  At alance condition,

    1y alyin Ohms law, thus

    Diidin ies

    and

    and

    where and

    A73   V V   = 7,V V  =

    A7231   R I  R I    = 7,21   R I  R I    =

     A

     ρl  R 1A7 =

    7,2

    A72

    1

    31

     R I 

     R I 

     R I 

     R I =

     A

     ρl  R 27, =

     

     

     

     

     

       

      

    =

     A

     ρl 

     A

     ρl 

     R

     R

    2

    1

    3

     Rl 

    l  R    

      

     =

    2

    13

  • 8/18/2019 Chapter 3_ Electrics & Direct Current_2016_Reviewed

    89/89

    Next Chapter… 

    CHAPTER 4 :Magnetic field