chapter 5 –interferometrylight.ece.illinois.edu/ece460/pdf/chap_17_ xvii - interferometry.pdf ·...

37
Chapter 5 – Interferometry Gabriel Popescu University of Illinois at UrbanaChampaign Beckman Institute Quantitative Light Imaging Laboratory Electrical and Computer Engineering, UIUC Principles of Optical Imaging Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu

Upload: others

Post on 14-Nov-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

Chapter 5 – Interferometry  

Gabriel Popescu

University of Illinois at Urbana‐Champaigny p gBeckman Institute

Quantitative Light Imaging Laboratory

Electrical and Computer Engineering, UIUCPrinciples of Optical Imaging

Quantitative Light Imaging Laboratoryhttp://light.ece.uiuc.edu

Page 2: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.1 Superposition of Fields

ECE 460 – Optical Imaging

Interference is the phenomenon by which electromagnetic fields interact with one another

5.1 Superposition of Fields

fields interact with one another.

Interferometry has various applications from motion sensors to spectroscopy and material characterization.

Interference is the result of the superposition principle

[ , ] [ , ]jE r t E r t (5 1)

Intensity is the measurable quantity 

[ , ] [ , ]jj (5.1)

Where stands for time (or ensemble) average

2[ , ] [ , ]I r t E r t (5.2)

Where       stands for time (or ensemble) average

2Chapter 5: Interferometry 

Page 3: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.1 Superposition of Fields

ECE 460 – Optical Imaging

Consider 2 fields 1 2and E E2 2

5.1 Superposition of Fields

Note: 

2 2 * *1 2 1 2 1 2[ , ]I r t E E E E E E (5.3)

nI 11

iA e 22

iA e the dot product

Polarization is critical

Parallel polarization offers the most interference

*1 2E E

1 2

Parallel polarization offers the most interference

Assume parallel polarization1 2 1 2 cosE E E E

2E

1E

2 [ [ ]]I I I E E is generally a random variable

For uncorrelated (incoherent) fields                                => simplest case 

(5.4)

cos[ ] 0

1 2 1 22 cos[ [ , ]]I I I E E r 2 1

is a monochromatic field because it is fully coherent.

3Chapter 5: Interferometry 

Page 4: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.2 Monochromatic Fields

ECE 460 – Optical Imaging

(5.5)1 2 1 2 02 cos[ ]I I I I I

5.2 Monochromatic Fields

( )1 2 1 2 0[ ]

Time difference In nI E

0

The phase shiftFrequency

I I Fringe contrast (visibility): max

max

min

min

I II I

(5.6)

2 1 2 ( 1) 2I I I I I I I I I I

1 2 1 2 1 2 1 2 1 2

1 2 1 2

2 1 2 ( 1) 2(0 :1)

2( )I I I I I I I I I I

I I I I

1I I 0I I 1 2 1I I

4Chapter 5: Interferometry 

2 1 0I I

Page 5: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.2 Monochromatic Fields

ECE 460 – Optical Imaging

1 2I I I For                    :4II

5.2 Monochromatic Fields

2I

4I02 (1 cos[ ])tI I

(5.7)

2 3 0

Practical Advantages of Interference:

a)  Interference term is                               so if     is too small to 1 22 cos[ ]I I 1Ibe measured directly then      can act as an amplifier.          gives a higher sensitivity

2I1 2I I

5Chapter 5: Interferometry 

Page 6: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.2 Monochromatic Fields

ECE 460 – Optical Imaging

Practical Advantages of Interference:

b) if i di id d b 100 i fI

5.2 Monochromatic Fields

b)                                        => if     is divided by 100, interference is divided by 10 => high dynamic range

1 2Interference I I 1I

c)  Imagine we frequency shift      by                             =>1E 1 2 cos[ ] cos[ ]I I t t t 1 2 1 2cos[ ] cos[ ]I I t t t

=> can tune to high frequency ( > 1 kHz) => Low Noise

6Chapter 5: Interferometry 

Page 7: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.3 Wavefront‐Division Interferometry

ECE 460 – Optical Imaging

Interference is obtained between different portions of the same wavefront (next: amplitude division)

5.3 Wavefront Division Interferometry

same wavefront (next: amplitude‐division)

limk d d

Young Interferometer0 d

The oldest interferometer

K yx

2 700 microns

S ll Sli 1 functions: [ ]; [y+ ];d dy °2d

2d

0y

K

z

1000

Small Slits  1 -functions: [ ]; [y+ ];2 2

y °

7Chapter 5: Interferometry 

Page 8: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.3 Wavefront‐Division Interferometry

ECE 460 – Optical Imaging

The field at the plane x=0d d

5.3 Wavefront Division Interferometry

Assume the observation plane is in the far zone =>

1 2 0 ( [ ] [y+ ])2 2d dE E E E y (5.8)

Assume the observation plane is in the far zone => Fraunhoffer diffraction (Fourier)

2 2[ ] [ [ ]] [ ] 2cos[ ]y yd dig ig dE q E y E e e E q

( )

Remember                   (chapter 3)

2 20 0[ ] [ [ ]] [ ] 2cos[ ]

2y yE q E y E e e E q (5.9)

yyqz

Fringes  cos[ ]2d y

z (5.10)

8Chapter 5: Interferometry 

Page 9: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.3 Wavefront‐Division Interferometry

ECE 460 – Optical Imaging

Similarity relationship again:

I

5.3 Wavefront Division Interferometry

I1d

yI

2and d

Note: using Fourier it is easy to generalize to arbitrary y

slit/particle shape; similar to scattering from ensemble of particles  => use convolution to express the arbitrary shape.

9Chapter 5: Interferometry 

Page 10: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.3 Wavefront‐Division Interferometry

ECE 460 – Optical Imaging

We can use convolution to express arbitrary shape:a

5.3 Wavefront Division Interferometry

ydd

a

=dd

y

V

a

Other Wavefront‐Division Interferometers

22

22

a) Fresnel Mirrors1S

1M S

Image S thru M1 and M2

virtual sources S1 and S2

2S2M

1 SS1 and S2 act as Young’s pinholessame equations S1 and S2 are derived from the 

10

same sources and therefore coherent

Chapter 5: Interferometry 

Page 11: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.3 Wavefront‐Division Interferometry

ECE 460 – Optical Imaging

b) Lloyd’s Mirror

5.3 Wavefront Division Interferometry

S

MS Young and S S

11Chapter 5: Interferometry 

Page 12: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.3 Wavefront‐Division Interferometry

ECE 460 – Optical Imaging

c) Thin films:

5.3 Wavefront Division Interferometry

Films of oil break the white light into colors due to interference and phase ( )f

S P

interference and phase  ( )f

d) Newton’s rings:

n

d) Newton s rings: Circular fringes = ringsk

Localized on the surface of lens

h

12Chapter 5: Interferometry 

Page 13: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.4 Amplitude‐Division Interferometry

ECE 460 – Optical Imaging

Interference is obtained by replicating the wavefront=>less amplitude in each beam

5.4 Amplitude Division Interferometry

amplitude in each beam.

Michelson Interferometer:

2M1L

L

21L

2LS

BS

Detector ( )t k L

Very sensitive to path length differences between ‘arms’

Eg. It has been used to measure pressure in rarefied ( l ll d k gases(place cell on one arm‐> produce

13Chapter 5: Interferometry 

k

Page 14: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.4 Amplitude‐Division Interferometry

ECE 460 – Optical Imaging

BS‐ beam splitter

hi f !

5.4 Amplitude Division Interferometry

assume thin for now!

Let    ,      be the lengths of the 2 areas

=> The intensity at the detector:1L 2L

=> The intensity at the detector:  

1 2 1 2I( L)=I +I +2 cos(2 )LI I

(5.11)

2 1 2 1Note: L ( )time delay cos( )

L L C t t C

We’ll come back to Michelson with low‐coherence light, temporal coherence, OCT, etc

14Chapter 5: Interferometry 

Page 15: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.4 Amplitude‐Division Interferometry

ECE 460 – Optical Imaging

Other amplitude‐division interferometry

) l ll l l fl i

5.4 Amplitude Division Interferometry

a) Plane parallel plate  reflection.S S’

point source‐ inter fringe ( ) t lf d

dn

inter‐fringe = ( , ) metrologyf n d

b) Plane parallel plate‐ transmission.

Note: With plane wave 

n

S

incident, fringes are localized at infinity => Need lens

L

n

P

L

15Chapter 5: Interferometry 

Page 16: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.4 Amplitude‐Division Interferometry

ECE 460 – Optical Imaging

c) Fizeau Interferometer:R M

5.4 Amplitude Division Interferometry( )Widrelson Cos t

k R M

Fringes

( )H Z Cos k x

k

Reference surface

P

Used to test mirrors and other surfaces.

P

d) Mach‐Zender Interferometer Very Common Very Common  Shear interferometry Tilt one mirror

( )Cos k x

Fringes  analysis of surfacesSample

16Chapter 5: Interferometry 

Page 17: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.5 Multiple Beam Interference

ECE 460 – Optical Imaging

Reflection

5.5 Multiple Beam Interference

Lens

Fabry‐Penot interferometry2

( ) sinI 2

r Fnd

( )2

( ) ( ) ( )

I 2 ;1 sin

2

i

i

I F

2

4 Finess coeff.(1 )

RFR

( ) ( ) ( ) t i rI I I

Transmission

(5.12)

0

( )2 cos one pass phase shiftk d n

Transmission

17Chapter 5: Interferometry 

Page 18: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.5 Multiple Beam Interference

ECE 460 – Optical Imaging

R1 , R2 reflectivities Transmitted Intensity

( )I r

5.5 Multiple Beam Interference

1 , 2

R increases  narrower lines i.e. More reflection orders participate in interference

2R

( )

( )

I r

iI1R

participate in interference

In practice, Fabny‐Perot gave accurate information about spectral lines(also called etalon)

2k 2 2k

about spectral lines(also called etalon) 

D Rayleigh Criterion:

1 2 li

S

1

12

2 lines are separated if:

FWHM

is fixed etalon

18Chapter 5: Interferometry 

Page 19: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.6 Interference with Partially Coherent Light

ECE 460 – Optical Imaging

So far, we assumed monochromatic light = fully coherent

5.6 Interference with Partially Coherent Light

coherent.

What happens when an arbitrary, broad‐band, extended source is used for interference?

a) Michelson interferometry

1M ( )I L

BSS

L

DL L

The contrast of the fringe is decreasingThe contrast of the fringe is decreasing

i.e. limited temporal coherence.19Chapter 5: Interferometry 

Page 20: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.6 Interference with Partially Coherent Light

ECE 460 – Optical Imaging

b) Young Interferometer :

5.6 Interference with Partially Coherent Light

A

2

Ac

d OA

k1 2I I

k

i.e. Limited Spatial Coherence

dk

20Chapter 5: Interferometry 

Page 21: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.7 Temporal Coherence

ECE 460 – Optical Imaging

Coherence defines the degree of correlation between fields:

T i l l i i i ( i l h )

5.7 Temporal Coherence  

Typical correlation at one point in space (typical coherence)

Temporal correlation between fields at two points (spatial coherence)coherence) 

Given the field at one point            , the mutual coherence function is: 

( , )E r t

t l ti f ti

( ) ( ) *( ) tE t E t

( ) *( )E t E t dt

(5.13)

autocorrelation function( ) *( )E t E t dt

21Chapter 5: Interferometry 

Page 22: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.7 Temporal Coherence

ECE 460 – Optical Imaging

Note: 2(0) ( )E t (5.14)

5.7 Temporal Coherence

So

I irradiance

E E So

Appl y again the correlation theorem (Eq 1.30)E E

22[ ] ( ) *( ) ( )E E E (5.15)

( ) Spectrum FTIRS

So, the autocorrelation function          relates to the optical spectrum of the field:

( )

Wi Ki t hi th

iw

22

Wiener‐Kintchin theorem.0

( ) ( ) iwS e d (5.16)

Chapter 5: Interferometry 

Page 23: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.7 Temporal Coherence

ECE 460 – Optical Imaging

! Compare 6.16 with 5.28

! I li h E( ) d h F i

5.7 Temporal Coherence

! It applies even when E(t) does not have a Fourier Transform

Typically, spectrum is centered on 0Typically, spectrum is centered on     

Assume spectrum is                ; apply shift theorem (Eq 1.31)0

0( )S

0( ) ( ) ie

0

( ) ( ) ,

where ( ) ( ) ;

iu

e

S u e du u (5.17b)

(5.17a)

Complex degree of coherence 

0

( ) ( ) (0 1)( )( )(0)

( ) (0;1) (5.18) (5.19)

23Chapter 5: Interferometry 

Page 24: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.7 Temporal Coherence

ECE 460 – Optical Imaging

Measuring the temporal coherence: Michelson interferometer1M 1 2t t lE E E

5.7 Temporal Coherence

2M1E

2ES

Irradiance:

A

1 2totalE E E

21 2( ) ( )I E t E t

E E(5.20)

Assume:1 2E E

1 '2' 1 2 1 2( ) *( ) * ( ) ( )2 2 Re[ ( )]

I I I E t E t E t E tI

(5 21)12 2 Re[ ( )]I

can be measured separately   access to            directly, by moving

1,2I Re( )M R [ ( )]

(5.21)

by moving  2M Re[ ( )]

S

0

24Chapter 5: Interferometry 

Page 25: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.7 Temporal Coherence

ECE 460 – Optical Imaging

The degree of coherence Spectral width( ) ( )S

5.7 Temporal Coherence

c

0 coherence time

width of ( )

c Coherence Length: 

c cl C (5.23)( )( ) [ ( )]

constant

S Rule of thumb:c c

20

cl

(6.22)

(5.24) constant c

0 20

2 2; ( ) 2

cc T c c

c

Interference occurs only if L l

(6.22)

Interference occurs only if 

Broad spectrum                      => short    ( 2 3 )cl m ( 100 )nm

cL l

25Chapter 5: Interferometry 

Page 26: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.8 Optical Domain Refractometry

ECE 460 – Optical Imaging

Low‐Coherence interferometry ( interf. with broad band light).

S SLD LED hi li h f d l

5.8 Optical Domain Refractometry

Sources: SLD, LED, white light, femtosecond laser, etc.

consider a transparent, layered  structure under investigation. 

1   2   3  4

M

S

d

a   a   a  

D cd l

26Chapter 5: Interferometry 

Page 27: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.8 Optical Domain Refractometry

ECE 460 – Optical Imaging

Scanning M, we retrieve

5.8 Optical Domain Refractometry

R The interface are resolved Reflectivity give info about refractive index

L1L 2L 3L 4L

refractive index  determine position of interfaces.

1,2,3,4L

ODR: 

Successful for quantifying lasers in waveguides, fiber q y g g ,optics, etc.

1987‐HP‐ fiber optic reflectometer.

27Chapter 5: Interferometry 

Page 28: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.9 Optical Coherence Tomography(OCT)

ECE 460 – Optical Imaging

Optical technique capable of rendering 3D images from think biological samples

5.9 Optical Coherence Tomography(OCT)

think biological samples.

Penetrates 1‐2 mm deep in tissue. 

=> Typically implemented in optical fiber configuration. Typically implemented in optical fiber configuration.

M2x2S

1991, Fujimoto’s group, MIT

CouplerD

Scan beam x‐yScan M ‐> z

Tissue = continuous superposition of interfaces.

Scanning M, a depth‐resolved reflectivity signal is retrieved 

> can resolve regions inside tissue(e g Tumors)=> can resolve regions inside tissue(e.g. Tumors).

28Chapter 5: Interferometry 

Page 29: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.9 Optical Coherence Tomography(OCT)

ECE 460 – Optical Imaging

If mirror is swept at constant speed v: z=vt

5.9 Optical Coherence Tomography(OCT)

z=vt Phase delay: (2 means back and forth) Frequency shift:  Dopler Shift

2 2kz kvt 2 kvt (5.25)

The detector is recording a high‐frequency signal Low‐noise Dynamic range can easily reach 10 orders of magnitude! i.e. 

d fl f / b ll ( d )can record reflectivities from 1 to 1/10 billion!(100 dB)

Various Technological Improvements:

Spectral domain OCT: instead of scanning M Spectral domain OCT: instead of scanning M, 

measure 

Galvo‐scanning group delay‐ fast

S( ) ( )

Galvo scanning group delay fast

Swept source OCT29Chapter 5: Interferometry 

Page 30: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.9 Optical Coherence Tomography(OCT)

ECE 460 – Optical Imaging

Various Technological Improvements:

l d d f ll

5.9 Optical Coherence Tomography(OCT)

Spectral encoding‐ instead of scanning on x, illuminate with

Spectroscopic OCT‐ trade z‐resolution for ( )S

( )x

Spectroscopic OCT trade z resolution for         information

Since 1991, ~ 5,000 OCT papers published.

( )S

Clinically applied in:  Oftalmology

Research stage: Dermathology, cardio, breast cancer, etc

R l bi d i h SHG l l i i Recently combined with SHG, molecular imaging

30Chapter 5: Interferometry 

Page 31: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

5.10 Dispersion Effects on Temporal Coherence

What happens if on one area of the Michelson interferometer, there is extra material (eg Glass)?there is extra material (eg. Glass)? 

1M

d2M

S

d

1 pass

1 pass

31Chapter 5: Interferometry 

Page 32: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

How does broad band fields propagate through dispersive materials (such as glass)? Think pulses!

5.10 Dispersion Effects on Temporal Coherence

materials (such as glass)? Think pulses! 

k

( )n 0( ) ( )k k n

d

( )n

Above resonance

( )S Incident 

0

The phase delay through a transparent 

l Taylor expansion of            ( )n

Above resonance

Below resonancespectrum

material:( ) ( )

( )k d

k d n

around the central frequency: ( )S

0 ( )k d n 0 1

(5.26)

32Chapter 5: Interferometry 

Page 33: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

221( ) ( ) ( ) ( )dn nn n

5.10 Dispersion Effects on Temporal Coherence

0

0 0 02( ) ( ) ( ) ( ) .....2

n nd

Note:

constant  not important0 0 0 0( ) ( )n n k d 2

21( ) ( ) ( )dk d kd d 0 0 02( ) ( ) ( ) ....2

d dd d

Definitions:

l itdk (5 27) = v = group velocity

= = group velocity dispersion (GVD)

d

2

2

d kd 2

(5.27)

=      = group velocity dispersion (GVD)

Different colors have different group velocities

2d 2

33Chapter 5: Interferometry 

Page 34: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

E.g. Pulse: blue redblue redv v

5.10 Dispersion Effects on Temporal Coherence

Riding with pulse (v=0)  parabolic phase: So

( ) ( )S

21( ) (5 28) So 

Cross‐Spectral density: 02( )

2

1 2( ) ( ) *( )W E E

(5.28)

(5.29)

Then, the cross‐correlation function is 1 2( ) ( ) ( )

( ) ( ) iW e d

(5.30)12

0

( ) ( )W e d (5.30)

34Chapter 5: Interferometry 

Page 35: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

is the generalization of (5.16) i.e

li d Wi Ki ili Th12

0

( ) ( ) iW e d

5.10 Dispersion Effects on Temporal Coherence

generalized Wiener‐Kinntilin Theorem.

For the “unbalanced” Michealson the cross spectral density is

0

For the  unbalanced  Michealson, the cross‐spectral density is2 2

2 21 1

* * 2 21 2 1 2( ) ( ) ( ) ( )

i iW E E E E e S e (5.32)

The cross‐correlation function:2

212( ) [ ( )] [ ( ) ]

i

W S e (5 33)Spaul

Remember convolution theorem:

12 ( ) [ ( )] [ ( ) ] W S e

21i

(5.33)2ie

SpaulFrensel

spatial frequency 2

20( ) [ ( )] [ ] ( ) ( )

iS e hv (5.34)

35

v

Chapter 5: Interferometry 

Page 36: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

212( ) [ ]

i

h e

U f l F i T f l i hi f G f i

5.10 Dispersion Effects on Temporal Coherence

Useful Fourier Transform relationship for Gauss functions:2

241

2

tb be e

b

(5.35)

2

22( ) ( ) a lso p a rab o lic

ieh

i

i

V

( )ie

cl 36Chapter 5: Interferometry 

Page 37: Chapter 5 –Interferometrylight.ece.illinois.edu/ECE460/PDF/Chap_17_ XVII - Interferometry.pdf · If mirror is swept at constant speed v: z=vt z=vt Phase delay: (2 means back and

5.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

( )ie

5.10 Dispersion Effects on Temporal Coherence

V

The coherence time is increased

Frequency is “chirped”

So, in OCT, is important to balance the interferometer=> minimum coherence length   

gives the depth resolutionl gives the depth resolutioncl

37Chapter 5: Interferometry