chapter2-new.pdf

Upload: kantscribd

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Chapter2-new.pdf

    1/16

      1

    Chapter 2

    Conservation Laws of Fluid Motion Julaporn Benjapiyaporn

    Mechanical Engineering, KKU.

    2.1 Governing equations of fluid flow and heat transfer 

    Three fundamental physical principles

     –  Mass is conserved.

     –   Newton’s second law.

     –  Energy is conserved.

    All of CFD is based on the fundamental governing equations of fluid dynamics

     —the continuity, momentum and energy equations.

    “If you do not physically understand the meaning and significance of each term

    in these equations—then how can you even hope to properly interpret the CFD

    results obtained by numerically solving these equations?”

      analysis of fluid flows at macroscopic length scale (1μm and larger)

      macroscopic properties; velocity ( u i v j w k  = + +u

    ), pressure ( p),

    density ( ρ ), temperature (T ), their space and time derivatives ( , , , x y z t ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

     )

      all fluid properties are functions of space and time:

    ( , , , )( , , , )( , , , )( , , , )

     x y z t  p x y z t pT x y z t T  

     x y z t 

     ρ ρ ≡≡≡≡u u

     

      The element under consideration is so small that fluid properties at the faces

    can be expressed accurately enough by means of the first two terms of Taylor

    series expansion:

    2 32 31 1

    2 21 12 2 2 3

    truncation error 

    ( ) ( )( ) ( ) ( ) ...2! 3!

     x x x x x x x x x

    δ δ φ φ φ φ δ φ δ  

    ∂ ∂ ∂± = ± + ± +∂ ∂ ∂  

    Where φ   is a property of such an element.

    Models of the Flow

    1.  Choose the appropriate fundamental physical principles from the law of

     physics,

    2.  Apply these to a suitable model of the flow.

    3.  Extract the mathematical equations which embody such physical principles.

  • 8/17/2019 Chapter2-new.pdf

    2/16

      2

    • 

    Finite Control Volume

    • 

    Infinitesimal Fluid Element

    2.1.1 The Substantial Derivative

    Derive by considering an infinitesimally fluid element moving with the flow.

     zw

     y y

     xu

    t  Dt 

     D

    ∂∂

    +∂∂

    +∂∂

    +∂∂

    =  ρ  ρ  ρ  ρ  ρ 

     

    )(   ∇⋅+∂∂= u

    t  Dt  D   Substantial Derivative: the time rate of change following

    a moving fluid element 

    t ∂∂

      local derivative: the time rate of change at a fixed point

    )(   ∇⋅u

     convective derivative: the time rate of change due to the movement

    of the fluid element

    Substantial derivative is the same as the total from calculus.

    ⇒= ),,,(   t  z y x ρ  ρ   zw y y xut dt d 

    +∂

    +∂

    +∂

    =

      ρ  ρ  ρ  ρ  ρ 

     

    CV1. Finite CV fixed in space with the

    fluid moving through it (conservation

    form): fixed volume and vary mass.

    CV2. Finite CV moving with the

    fluid (non-conservation form):fixed mass and vary volume. 

    Inf1. Inf. FE fixed in space with the

    fluid moving through it (conservation

    form): fixed volume and vary mass.

    Inf2. Inf. FE moving with the

    fluid  (non-conservation form):fixed mass and vary volume. 

  • 8/17/2019 Chapter2-new.pdf

    3/16

      3

    For an arbitrary conserved property: 

    ( ) ( )( )uuu 

     ρ φ φ  ρ  ρ 

    φ φ 

     ρ  ρφ  ρφ 

    ⋅∇+⋅∇+⎟ ⎠

     ⎞⎜⎝ 

    ⎛ ∂∂

    +∂∂

    =⋅∇+∂

    t t t 

    )( 

    ( )  Dt  D

    t t 

    φ  ρ  ρ 

     ρ φ φ 

    φ  ρ    =⎥⎦

    ⎤⎢⎣

    ⎡⋅∇+∂

    ∂+⎥⎦

    ⎤⎢⎣

    ⎡⋅∇+∂

    ∂= uu

     

     

    Thus, the rate change of x-, y- and z-momentum and energy per unit volume can be

    defined by substitution φ   by u, v, w and E , respectively. 

    ( ) Dt 

     Duu

    u ρ  ρ 

     ρ =⋅∇+

    ∂∂

    u)(

      ( ) Dt 

     Dvv

    v ρ  ρ 

     ρ =⋅∇+

    ∂∂

    u)(

     

    ( ) Dt 

     Dww

    w ρ  ρ 

     ρ =⋅∇+

    ∂∂

    u)(

      and ( ) Dt 

     DE  E 

     E  ρ  ρ 

     ρ =⋅∇+

    ∂∂

    u)(

     

    2.1.2 The Divergence of the Velocity

    Derive by considering a finite control volume moving with the flow.

    The change in the volume in the CV: ( )[ ]   ( ) Sd 

    ⋅Δ=⋅Δ=∇   t dS t V  unu  

    The time rate of change of the CV: ( ) ∫∫∫∫   ⋅=⋅ΔΔ=S S 

    t t  Dt 

     DV Sd Sd 

    1   uu  

    Applying the divergence theorem: ( )∫∫   ⋅∇=V 

    dV  Dt  DV  u  

    Let the moving CV is shrunk to a very small   V δ  :( )

    ( )∫∫   ⋅∇=V 

    dV  Dt 

    V  D

    δ 

    δ u

     

    Assuming that V δ   is small enough such that u

    ⋅∇  is the same value throughout   V δ  .Then the integral, in the limit as V δ   shrinks to zero, is ( ) V δ u

    ⋅∇ :

    ( )( ) V 

     Dt 

    V  Dδ 

    δ u

    ⋅∇=  

    ( ) Dt 

    V  D

    δ 

    δ 

    1=⋅∇ u

     

    ∇ ⋅u

    : The divergence of the velocity is physically the time rate of change of the

    volume of a moving fluid element, per unit volume

    Mathematical meaning: z

    w

     y

    v

     x

    u

    ∂∂

    +∂∂

    +∂∂

    =⋅∇ u

     

    2.1.3 Continuity Equation

    Physical principle: Mass is conserved.

  • 8/17/2019 Chapter2-new.pdf

    4/16

      4

    CV1: Model of the Finite CV Fixed in Space (fixed volume and vary mass) 

     Net mass flow out  of CV through surface S  = Time rate of decrease of mass inside CV

    ∫∫∫∫∫   ∂∂

    −=⋅V S 

    dV t 

     ρ  ρ  Sd 

    u  

    0Sd   =⋅+∂∂

    ∫∫∫∫∫ 

    S V 

    dV t 

    u ρ  ρ    : The conservation form of an integral form of the

    continuity equation: fixed CV.

    CV2: Model of the Finite CV Moving with the Fluid (fixed mass and vary volume) 

    0=∫∫∫V 

    dV  Dt 

     D ρ    : The nonconservation form of an integral form of the continuity

    equation: moving CV.

    Inf1: Model of an Inf. Small Element Fixed in Space (fixed volume and vary mass) 

     Net mass flow out  of CV through surface S = Time rate of decrease of mass inside CV

    Fig. 2.1 Mass flows in and out of fluid element

    * Rate of increase of mass in fluid element : ( ) x y z x y zt t 

     ρ  ρδ δ δ δ δ δ 

    ∂ ∂=

    ∂ ∂ 

    *Rate of increase of mass in

    fluid element

    *Net rate of flow of mass

    into fluid element =

     Mass

     balance:

  • 8/17/2019 Chapter2-new.pdf

    5/16

      5

    * Net rate of flow of mass into fluid element :

    1 1 12 2 2

    1 1 1

    2 2 2

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )( )

    u u vu x y z u x y z v y x z

     x x y

    v w wv y x z w z x y w z x y

     y z z

    u v w x y z x y

    t t t 

     ρ ρ ρ  ρ δ δ δ ρ δ δ δ ρ δ δ δ 

     ρ ρ ρ  ρ δ δ δ ρ δ δ δ ρ δ δ δ 

     ρ ρ ρ δ δ δ ρ δ δ δ  

    ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠   ⎝ ⎠

    ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + − − +⎜ ⎟   ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

    ∂ ∂ ∂⎛ ⎞= − + + = −∇⎜ ⎟∂ ∂ ∂⎝ ⎠u

    i   z

     

    ( )dxdydzt 

    dxdydz z

    w

     y

    v

     x

    u

    ∂∂

    −=⎥⎦

    ⎤⎢⎣

    ⎡∂

    ∂+

    ∂∂

    +∂

    ∂   ρ  ρ  ρ  ρ  )()()( 

    ( ) 0=⋅∇+∂∂

    u

     ρ  ρ 

    t   : The conservation form of a partial differential equation of the

    continuity equation: fixed inf. small element.

    For an incompressible fluid (i.e. a liquid),  ρ  = const. and u

    ⋅∇  = 0.

    Inf2: Model of an Inf. Small Element Moving with the Fluid (fixed mass and vary volume) 

    V m   δ  ρ δ    =  

    ( ) ( )0=+=

     Dt 

    dV  D

     Dt 

     DdV 

     Dt 

    dV  D ρ 

     ρ  ρ  

    ( ) 01 =⎥⎦⎤⎢⎣

    ⎡+ Dt 

    V  DV  Dt 

     D   δ δ 

     ρ  ρ   

    0=⋅∇+ u

     ρ  ρ 

     Dt 

     D : The nonconservation form of a partial differential equation of

    the continuity equation: moving inf. small element.

    All the Equations are One

    0Sd   =⋅+∂∂

    ∫∫∫∫∫ 

    S V 

    dV t 

    u ρ  ρ    CV1, conservation form, fixed CV

    Since the CV is fixed, the limits of integration are constant:

    0Sd   =⋅+∂∂

    ∫∫∫∫∫ 

    S V 

    dV t 

    u ρ  ρ 

     

    Applying the divergence theorem: ( ) 0=⋅∇+∂∂

    ∫∫∫∫∫∫V V 

    dV dV t 

    u

     ρ  ρ 

     

    or ( ) 0=⎥⎦⎤

    ⎢⎣

    ⎡ ⋅∇+∂∂

    ∫∫∫   dV t V 

    u

     ρ  ρ 

     

    ( ) 0=⋅∇+∂∂ u ρ  ρ 

    t   Inf1, conservation form, fixed inf. small element

  • 8/17/2019 Chapter2-new.pdf

    6/16

      6

    ( )

    0=⋅∇+∇⋅+∂∂

      ⋅∇    

    u

    uu

     ρ 

     ρ  ρ  ρ 

    t  

    0=⋅∇+ u

     ρ  ρ 

     Dt 

     D  Inf2, nonconservation form, moving inf. small element.

    Integral versus Differential Form of the Equations

      The integral form of the equations allows for the presence of

    discontinuities inside the fixed CV

      The differential form of the governing equations assumes the flow

     properties are differentiable, hence continuous.

      The integral form of the equations is considered more fundamental

    than the differential form.

     

    This consideration becomes of particular importance when calculatinga flow with real discontinuities, such as shock waves.

    2.1.4 Momentum equation

    Physical principle: Newton’s second law ( aF  m= )

    * Rate of increase of x-, y- and z-momentum per unit volume: , , Du Dv Dw

     Dt Dt Dt  ρ ρ ρ   

    *Forces:

    • 

    surface forces: act directly on the surface of the fluid element

    - pressure forces, p (an inviscid fluid: the only surface force is due to the

     pressure) 

     z

     p

     y

     p

     x

     p

    ∂∂

    −∂∂

    −∂∂

    − ,,

    - viscous forces, τ ij: the stress component acts in the j-direction on a

    surface normal to the i-direction 

    * normal stress: time rate of change of volume of the fluid element

     z y x

     zz yy xx

    ∂∂

    ∂∂   τ τ τ 

    ,,

    * shear stress: time rate of change of the shearing deformation of the fluid

    element

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    ∂∂

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    ∂⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    ∂∂

     y x z x z y

     yz xz

     zy xy zx

     yx  τ τ τ τ τ τ 

    ,,,,,

    *Rate of increase of momentum of

    fluid element

    *Sum of forces on

    fluid element= Newton’s

     second law:

  • 8/17/2019 Chapter2-new.pdf

    7/16

      7

    In most viscous flow, normal stresses are much smaller than shear stresses and

    many times are neglected.

     Normal stresses become important when the normal velocity gradients are very

    large such as inside a shock wave.

    • 

     body forces: act directly on the volumetric mass of the fluid element oract at a distance

    - gravity force

    - centrifugal force

    - Cariolis force

    - electromagnetic force 

    Fig. 2.2 Stress components on three faces of fluid element

    Fig. 2.3 Stress components in the x-direction

    Example of the net surface force in the x-direction per unit volume:

    ( )   yx xx zx p

     x y z

    τ τ τ ∂∂ − + ∂+ +

    ∂ ∂ ∂ 

    Momentum equations for a viscous flow (Navier-Stokes equations) in

    nonconservation form.

    ( )  (2.2a)

     yx xx zx Mx

     p DuS 

     Dt x y z

    τ τ τ  ρ 

    ∂∂ − + ∂= + + +

    ∂ ∂ ∂ 

    include as source terms, ( ) M S    φ 

    ⎫⎪⎬⎪⎭

  • 8/17/2019 Chapter2-new.pdf

    8/16

      8

     ( )

      (2.2b) xy yy zy

     My

     p DvS 

     Dt x y z

    τ τ τ  ρ 

    ∂ ∂ − + ∂= + + +

    ∂ ∂ ∂ 

    ( )  (2.2c)

     yz xz   zz Mz

     p DwS 

     Dt x y z

    τ τ    τ  ρ 

    ∂∂   ∂ − += + + +

    ∂ ∂ ∂ 

    Example of body force: 0, 0, Mx My Mz

    S S S g ρ = = = −  

     Navier-Stokes equations in conservation form: substitution these terms in the left sideof the equations

    ( )( )u

    u

    u

     Dt 

     Du ρ 

     ρ  ρ    ⋅∇+

    ∂∂

    = ,( )

    ( )u

    vt 

    v

     Dt 

     Dv ρ 

     ρ  ρ    ⋅∇+

    ∂∂

    = ,( )

    ( )u

    wt 

    w

     Dt 

     Dw ρ 

     ρ  ρ    ⋅∇+

    ∂∂

    =  

     Newtonian fluids: the viscous stresses are proportional to the rates of

    deformation (velocity gradients) – fluid in all aerodynamic problems.

     Non-newtonian fluids – blood flow

    For newtonian fluid: τ ij is expressed as functions of the linear and volumetric

    deformation rates.

    linear deformation rate: , , xx yy zzu v w

    e e e x y z

    ∂ ∂ ∂= = =

    ∂ ∂ ∂ 

    1 1 1, ,

    2 2 2 xy yx xz zx yz zy

    u v u w v we e e e e e

     y x z x z y

    ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= = + = = + = = +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ 

    volumetric deformation rate: z

    w

     y

    v

     x

    u

    ∂+

    ∂+

    ∂=⋅∇ u

     

    Two constants of proportionality:

    the (first) dynamic viscosity, μ  -- to relate stresses to linear deformations, and

    the second viscosity, λ  -- to relate stresses to the volumetric deformation.

    u

    ⋅∇+∂∂

    =   λ μ τ  x

    u xx 2 , u

    ⋅∇+

    ∂∂

    =   λ μ τ  x

    v yy 2 , u

    ⋅∇+

    ∂∂

    =   λ μ τ  x

    w zz 2

    , , xy yx xz zx yz zyu v u w v w

     y x z x z yτ τ μ τ τ μ τ τ μ  

    ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= = + = = + = = +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠ 

    For gases, 23

    λ μ = −   For incompressible liquid: 0=⋅∇ u

     

    Substitution τ ij into the momentum equations yields the Navier-Stokes equations: 

    ( ) ( ) (2.4a) Mx

     Du p u v wu S 

     Dt x x x y x w x x ρ μ μ μ μ λ 

    ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + ∇ ⋅ ∇ + + + + ∇ ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦u

    ( ) ( ) (2.4b) My

     Dv p u v wv S 

     Dt y x y y y w y y ρ μ μ μ μ λ 

    ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − + ∇ ⋅ ∇ + + + + ∇ ⋅ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    u

     

  • 8/17/2019 Chapter2-new.pdf

    9/16

      9

    ( ) ( ) (2.4c) Mz Dw p u v w

    w S  Dt z x z y z z z z

     ρ μ μ μ μ λ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + ∇ ⋅ ∇ + + + + ∇ ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    u

     

    The complete Navier-Stokes equations in conservation form:

    2( ) ( ) ( ) ( )2

     Mx

    u u uv uw p u

    t x y z x x x

    v u u wS 

     y x y z z x

     ρ ρ ρ ρ λ μ 

    μ μ 

    ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + = − + ∇ ⋅ +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

    ⎡ ⎤⎛ ⎞   ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + + +⎢ ⎥⎜ ⎟   ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦

    u

      (2.4aa)

    2( ) ( ) ( ) ( )

    2 My

    v uv v vw p v u

    t x y z y x x y

    v w vS 

     y y z y z

     ρ ρ ρ ρ μ 

    λ μ μ 

    ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = − + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

    ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂+ ∇⋅ + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

    ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

    u

      (2.4bb) 

    2( ) ( ) ( ) ( )

    2 Mz

    w uw vw w p u w

    t x y z z x z x

    w v wS 

     y y z z z

     ρ ρ ρ ρ μ 

    μ λ μ 

    ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + = − + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

    ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + ∇ ⋅ + +⎢ ⎥⎜ ⎟   ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦u

      (2.4cc) 

    2.1.5 Energy equation

    Physical principle: Energy is conserved .

    * Rate of increase of energy of fluid particle: DE 

     Dt  ρ   

     Net rate of work done by surface forces acting on x-, y- and z-direction are:

    ( )[ ( )] ( )

    -direction:( ) [ ( )] ( )

    -direction:

    ( )( ) [ ( )]-direction:

     yx xx zx

     xy yy zy

     yz xz   zz

    uu p u

     x  x y zv v p v

     y x y z

    ww   w p z

     x y z

    τ τ τ 

    τ τ τ 

    τ τ    τ 

    ∂∂ − + ∂

    + +∂ ∂ ∂∂ ∂ − + ∂

    + +∂ ∂ ∂

    ∂∂   ∂ − ++ +

    ∂ ∂ ∂

     

    *Total rate of work done on the fluid particle by surface forces:

    ( ) ( ) ( ) ( )( ) ( )( )

    ( )( ) ( )

     

     yx xy yy zy xx zx

     yz xz   zz

    u v v vu u p

     x y z x y zww w

     x y z

    τ τ τ τ  τ τ 

    τ τ τ 

    ∂ ∂ ∂ ∂∂ ∂−∇ ⋅ + + + + + +

    ∂ ∂ ∂ ∂ ∂ ∂∂∂ ∂

    + + +∂ ∂ ∂

    u

     

     first law of

     thermod namics:

    *Rate of increase

    of energy of

    fluid

    *Net rate of heat

    added to

    fluid element+=

    *Net rate of work

    done on

    fluid element

  • 8/17/2019 Chapter2-new.pdf

    10/16

      10

    Energy flux due to heat conduction:q q q

     x y z

    ∂ ∂ ∂− − − = −∇ ⋅

    ∂ ∂ ∂q

     

    & by Fourier’s law: k T = − ∇q

     

    * Net rate of heat added to fluid particle due to heat conduction: ( )k T −∇ ⋅ = ∇ ⋅ ∇q

     

    Energy equation in nonconservation form:

    ( ) ( ) ( ) ( )( ) ( )( )

    ( )( ) ( )  ( ) (2.3a)

     yx xy yy zy xx zx

     yz xz   zz E 

    u v v vu u DE  p

     Dt x y z x y zww   w

    k T S  x y z

    τ τ τ τ  τ τ  ρ 

    τ τ τ 

    ∂ ∂ ∂ ∂∂ ∂= −∇ ⋅ + + + + + +

    ∂ ∂ ∂ ∂ ∂ ∂∂∂ ∂

    + + + + ∇ ⋅ ∇ +∂ ∂ ∂

    u

     

    Where 2 2 212( ) E i u v w= + + +  and the gravitational potential energy is included in S  E .

    Energy equation in conservation form by substitution these terms in the left side of the

    equations : ( )( ) DE E 

     E  Dt t 

     ρ 

     ρ ρ 

    ∂= + ∇ ⋅∂ u

     

    By multiplying the x-, y- and z-momentum equation (2.2a-2.2c) by u, v and w,

    Respectively, adding the results together, and subtracting from (2.3), energy equation

    in terms of internal energy only, the kinetic energy term has dropped out:

    ( )

     

    i

     xx yx zx xy yy zy

     xz yz zz E M 

     Di u u u v v v p k T 

     Dt x y z x y zw w w

    S  x y z

     ρ τ τ τ τ τ τ 

    τ τ τ 

    ∂ ∂ ∂ ∂ ∂ ∂= − ∇ ⋅ + ∇ ⋅ ∇ + + + + + +

    ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂

    + + + + − ⋅∂ ∂ ∂

    u

    u S

     

    For an incompressible fluid, i = cT   and 0∇ ⋅ =u

    .

    For Newtonian model for viscous stress, the energy equation completely in terms of

    the flow field variables by repressing the viscous stresses in terms of the velocity

    gradients:

    ( ) (2.5)i

     Di p k T S 

     Dt  ρ    = − ∇ ⋅ + ∇ ⋅ ∇ +Φ+u

     

    2 2 22 2 2

    22 ( )u v w u v u w v w

     x y z y x z x z yμ λ 

    ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + + + + + ∇ ⋅⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

    Φ

    ⎣ ⎦

    u

    Where Φ is the dissipation function, arises from irreversible viscous work, representsa source of internal energy due to deformation work on the fluid particle. 

    2.2 Conservative form of the governing equation of fluid flow 

    Incompressible -- density constant

    Compressible -- density varies

    Equations for Viscous Flow (the Navier-Stokes Equations) include the dissipative,

    transport phenomena of friction, thermal conduction, and/or mass diffusion.

  • 8/17/2019 Chapter2-new.pdf

    11/16

      11

    For an unsteady, three-dimensional, compressible viscous flow:

    mass: ( ) 0t 

     ρ  ρ 

    ∂+ ∇ =

    ∂u

    i   (2.1) 

     x-momentum:( )

    ( ) ( ) x Mx

    u pu u S S  

    t x  τ 

     ρ  ρ μ 

    ∂ ∂+ ∇ = − + ∇ ∇ + +

    ∂ ∂

    u

    i i   (2.4a) 

     y-momentum:( )

    ( ) ( ) y My

    v pv v S S  

    t y  τ 

     ρ  ρ μ 

    ∂ ∂+ ∇ = − + ∇ ∇ + +

    ∂ ∂u

    i i   (2.4b)

     z-momentum:( )

    ( ) ( ) x Mz

    w pw w S S  

    t z  τ 

     ρ  ρ μ 

    ∂ ∂+ ∇ = − + ∇ ∇ + +

    ∂ ∂u

    i i   (2.4c)

    e.g., ( ) x

    u v wS 

     x x y x w x xτ 

      μ μ μ λ  ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + ∇⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    u

    i  

    internal energy: ( )

    ( )

    ( ) ii

    i p k T S  t 

     ρ 

     ρ 

    + ∇ ⋅ = − ∇ + ∇ ∇ + +Φ∂ u u

    i i   (2.5)

    Equation of state ( , ) p p T  ρ =  and ( , )i i T  ρ = , e.g., perfect gas  p RT  ρ =  and vi C T =  

    Equations for Inviscid Flow (the Euler Equations) Exclude the dissipative, transport

     phenomena of friction, thermal conduction, and/or mass diffusion.

    For an unsteady, three-dimensional, compressible inviscid flow:

    mass: ( ) 0t 

     ρ  ρ 

    ∂+ ∇ =

    ∂u

    i   (2.1) 

     x-momentum:( )

    ( ) Mx

    u pu S 

    t x

     ρ  ρ 

    ∂ ∂+ ∇ = − +

    ∂ ∂u

    i   (2.4a’) 

     y-momentum:( )

    ( ) My

    v pv S 

    t y

     ρ  ρ 

    ∂ ∂+ ∇ = − +

    ∂ ∂u

    i   (2.4b’)

     z-momentum:( )

    ( ) Mz

    w pw S 

    t z

     ρ  ρ 

    ∂ ∂+ ∇ = − +

    ∂ ∂u

    i   (2.4c’)

    internal energy: ( )( )

    i

    ii p S 

     ρ  ρ 

    ∂+ ∇ ⋅ = − ∇ +

    ∂u u

    i   (2.5’) 

    Comments on the Governing Equations

    1. 

    Very difficulty to solve analytically a coupled system of nonlinear PDEs.2.  Difference between conservation&nonconservation forms is just the LHS. 

    3.  Conservation form called divergence form, due to ( ) ρ ∇ ⋅ u

     or ( )u ρ ∇ ⋅ u

    4. 

     Normal and shear stresses are functions of velocity gradients.

    5.  Five equations. of six unknowns ( ρ , p, u, v, w, e); use a perfect gas

    assumption in aerodynamics: p RT  ρ =   seventh unknown (T ), need the caloric equation of state (

    ve c T = )

    6.  In modern CFD, Navier-Stokes equations. means a solution of a viscous flow 

     problem using the full governing equations.

    7.  Euler equations. means a solution of a inviscid flow problem using the full

    governing equations. 

  • 8/17/2019 Chapter2-new.pdf

    12/16

      12

    2.3 Boundary and initial conditions 

    * Although the governing equations are the same, the flow fields are quite different 

    due to the boundary conditions (include initial conditions).

    * The real driver  for any particular solution is the boundary condition.

    * Any numerical solution of the governing flow equations must be made to see astrong and compelling numerical representation of the proper boundary conditions. 

    Auxiliary conditions are specified in three ways:

    1)   Dirichlet condition 

    ( , ) ( , ) or ( , ) constant x y f x y x yφ φ = =  

    2)   Neumann condition 

    , ,

    ( , ) or constant x y x y

    d d  f x y

    dn dn

    φ φ = =  

    3) Mixed condition 

    , ,

    ( , ) ( , ) or ( , ) constant x y x y

    d d c x y f x y c x y

    dn dn

    φ φ φ φ + = + =  

    Proper boundary conditions for a viscous flow:

    •   boundary layer flow – viscosity important close to surface

    •  separated flow – viscosity important everywhere 

     No-slip condition at the stationary surface with the moving flow*Velocity: 0u v w= = =  (at the surface)

    *Temperature:

    1. Fixed wall temperature;wT T =  (at the wall)

    2. Instantaneous heat flux to the wall;w

    w

    T q k 

    n

    ∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠  (at the wall)

    3. Adiabatic wall; 0w

    n

    ∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠ (at the wall)

    The no-slip conditions for a continuum viscous flow are associated with velocity and

    temperature at the wall.

    Pressure and density at the wall, fall out as part of the solution.

    Proper boundary conditions for an inviscid flow:

    There is no friction at the surface to promote its “sticking”.

    Hence, the flow velocity at the wall is nonzero value.

    For a nonporous wall (no mass flow into or out of the wall), the flow at the surface is

    tangent to the wall: n 0⋅ =u   (at the surface)

  • 8/17/2019 Chapter2-new.pdf

    13/16

      13

    The magnitude of the velocity, temperature, pressure and density at the wall, fall out

    as part of the solution.

    Various types of BCs:

    - Duct flow  inflow & outflow boundaries (Fig. 2.4)

    - Aerodynamic body  freestream conditions (upstream, downstream, above, below)

    (Fig. 2.5)

     Initial conditions for unsteady flow

    •  Everywhere in the solution region  ρ , u and T  must be given at time t  = 0

     Boundary conditions for unsteady and steady flows

    •  On solid wall, u = uw (no-slip condition)

    T  = T w

     (fixed temperature) or (fixed heat flux)w

    k T n q∂ ∂ = −  

    •  On fluid boundaries, inlet:  ρ , u and T  must be known as a function of

     position

    outlet: and (stress continuity)n n t t   p u n F u n F μ μ + ∂ ∂ = ∂ ∂ =  

    The subject of  “proper numerical implementation of the physical boundary

    conditions” in CFD is very important and is the subject of much current CFD

    research. 

    Fig. 2.4 Boundary conditions for an internal flow problem (Duct flow) 

  • 8/17/2019 Chapter2-new.pdf

    14/16

      14

     

    Fig. 2.5 Boundary conditions for an external flow problem (Aerodynamic body) 

    Special geometrical features of the solution region (Fig. 2.6):

    • 

    Symmetry boundary condition: ∂φ  /∂n = 0

    •  Cyclic boundary condition: φ 1 = φ 2 

    Fig. 2.6 Examples of flow boundaries with symmetry and cyclic conditions 

  • 8/17/2019 Chapter2-new.pdf

    15/16

      15

    2.4 Differential and integral forms of the general transport equations 

    Let φ   is a general variable, the conservative form of all fluid flow equations are

    ( )( ) ( ) (2.6)S 

      φ 

     ρφ  ρφ φ 

    ∂+ ∇ = ∇ Γ∇ +

    u

    i i   (Γ  is a diffusion coefficient)

    rate of change + convection = diffusion + source

    Finite volume method: the integration of the governing equations over a control

    volume CV : 

    ( )( ) ( )

    CV CV CV CV  

    dV dV dV S dV  t 

      φ 

     ρφ  ρφ φ 

    ∂+ ∇ = ∇ Γ∇ +

    ∂∫ ∫ ∫ ∫u

    i i  

    Using Gauss’ divergence theorem:

    CV A

    dV dA∇ =∫ ∫a n a

    i i  

    Unsteady problem:

    ( ) ( ) ( )t CV t A t A t CV  

    dV dt dAdt dAdt S dV dt  t 

      φ  ρφ ρφ φ 

    Δ Δ Δ Δ

    ⎛ ⎞∂+ = Γ∇ +⎜ ⎟

    ∂   ⎝ ⎠∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫n u n

    i i  

    Steady state problem:  ( ) ( ) A A CV 

    dA dA S dV  φ 

     ρφ φ = Γ∇ +∫ ∫ ∫n u n

    i i  

    2.5 Classification for simple partial differential equations

    Consider a general second-order PDE in 2-D co-ordinates x and y.

    2 2 2

    2 20 (2.7) A B C D E F G

     x x y y x y

    φ φ φ φ φ  φ 

    ∂ ∂ ∂ ∂ ∂+ + + + + + =

    ∂ ∂ ∂ ∂ ∂ ∂ 

    Where A to G are constant coefficients.

    Three categorised of PDE:

    2

    2

    2

    elliptic PDE: 4 0 parabolic PDE: 4 0hyperbolic PDE: 4 0

     B AC  B AC  B AC 

    ⎧   − ⎪⎩

     

    The classification depends only on the highest-order derivatives in each independent

    variable.

    Example:

    2 2 2

    2 2 2elliptic equation: steady conduction problem: (1-D) 0, (2-D) 0

    T T T 

     x x y

    ∂ ∂ ∂= + =

    ∂ ∂ ∂ 

    • 

     boundary-value problem

    2 2 2

    2 2 2 parabolic equation: unsteady conduction (1-D) , (2-D)

    T T T T T  

    t x t x yα α 

    ⎛ ⎞∂ ∂ ∂ ∂ ∂= = +⎜ ⎟∂ ∂ ∂ ∂ ∂

    ⎝ ⎠ 

    •  initial-boundary-value problem

  • 8/17/2019 Chapter2-new.pdf

    16/16

    16

    2 22

    2 2hyperbolic equation: vibration problem

    T T c

    t x

    ∂ ∂=

    ∂ ∂ 

    •  initial-boundary-value problem

    Steady inviscid compressible flow past a slender body:

    ( )2 2

    2

    2 21 0

    T T  M 

     x y

    ∂ ∂− + =

    ∂ ∂ 

    elliptic: 0 parabolic: 0hyperbolic: 0

     M  M  M 

    ⎪⎩

     

    Applications: the flow about an aerofoil or turbine

    The governing equation can change its type in different parts of the computational

    domain is one of the major complicating factors in computing transonic flow, with

    the occurrence of regions of subsonic (M < 1) and supersonic (M > 1) flow.

    2.6 Dynamic similarity 

    Two flow are dynamically similar if the non-dimensional numbers that govern the

    flows have the same value.

    Consider the wave motion generates by a ship of length L traveling at a speed U ∞,start with z-momentum equation:

    2 2 2

    2 2 2

    1w w w w p w w wu v w g

    t x y z z x y z

    μ 

     ρ ρ 

    ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = − + + + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

     

     Non-dimensional variables are introduced as: * / , * / , * ,/ x x L y y L z z L= = =  

    2* / , * / , * / , * / and * ( ) ./t U t L u u U v v U w w U p p p U   ρ ∞ ∞ ∞ ∞ ∞ ∞= = = = = −  

    2 2 2

    2 2 2 2

    * * * * ** * *

    * * * * *

    w w w w p w w w gLu v w

    t x y z z U L x y z U  

    μ 

     ρ  ∞ ∞

    ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = − + + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

     

    There are two non-dimensional groups:( )

    1/ 2Re and Fr  

    U L U 

    gL

     ρ 

    μ 

    ∞ ∞= =  

    •  Reynolds number indicates the relative magnitude of the inertia and viscous

    forces.

    • 

    Froude number provides a measure of the relative importance of inertia and

    gravity forces. 

    •  Two incompressible viscous flows involving free surfaces are dynamically

    similar if they have the same values of Re and Fr even though the values of

    U ∞ or L or μ  /  ρ  are different for the two flows.

    References

    Versteeg, H. K. and Malalasekera, W. (1995), An introduction to Computational Fluid

    Dynamics, Longman, Malaysia.

    Anderson, J. D., Jr. (1995), Computational Fluid Dynamics, The basics withapplications, International Edition, McGraw-Hill, Singapore.