chilton and colburn j-factor analogy

23
Chilton and Colburn J-factor analogy The equation for heat transfer in the turbulent re Sieder-Tate Equation = 0.023 0.8 1/ 3 = ( ) 0.14 (for forced convection/ turbulent, Re > 10000 & 0.5 < Pr < 100) If we divide this by =0.023 ( ) 0.8 ( ) 1 3 ( 1 ) 0.14

Upload: clio

Post on 23-Mar-2016

607 views

Category:

Documents


6 download

DESCRIPTION

Chilton and Colburn J-factor analogy. Recall: The equation for heat transfer in the turbulent regime. Sieder -Tate Equation. (for forced convection/ turbulent, Re > 10000 & 0.5 < Pr < 100). If we divide this by . Dimensionless Groups. Chilton and Colburn J-factor analogy. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

Recall: The equation for heat transfer in the turbulent regime

Sieder-Tate Equation ๐‘๐‘ข=0.023๐‘…๐‘’0.8 ๐‘ƒ๐‘Ÿ 1 /3๐œ™๐‘ฃ

๐œ™๐‘ฃ=( ๐œ‡๐œ‡๐‘ค )0.14

(for forced convection/ turbulent, Re > 10000 & 0.5 < Pr < 100)

If we divide this by

๐‘๐‘๐‘ข

๐‘๐‘…๐‘’๐‘ ๐‘ƒ๐‘Ÿ=0.023

(๐‘๐‘…๐‘’ )0.8 (๐‘ ๐‘ƒ๐‘Ÿ )13 ( ๐œ‡๐œ‡1 )

0.14

๐‘๐‘…๐‘’๐‘ ๐‘ƒ๐‘Ÿ

Page 2: Chilton and Colburn J-factor analogy

Dimensionless Groups

Dim. Group Ratio Equation

Prandtl, Pr molecular diffusivity of momentum / molecular diffusivity of heat

Schmidt, Sc momentum diffusivity/ mass diffusivity

Lewis, Le thermal diffusivity/ mass diffusivity

Stanton, St heat transferred/ thermal capacity

Nusselt, Nu convective / conductive heat transfer across the boundary

Page 3: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

This can be rearranged as

๐‘๐‘๐‘ข

๐‘๐‘…๐‘’๐‘ ๐‘ƒ๐‘Ÿ=0.023

(๐‘๐‘…๐‘’ )0.8 (๐‘ ๐‘ƒ๐‘Ÿ )13 ( ๐œ‡๐œ‡1 )

0.14

๐‘๐‘…๐‘’๐‘ ๐‘ƒ๐‘Ÿ

๐‘ ๐‘†๐‘ก๐‘๐‘ƒ๐‘Ÿ

23 ( ๐œ‡๐œ‡1 )

โˆ’ 0.14

=0.023๐‘๐‘…๐‘’โˆ’ 0.2

๐‘“2 =0.023๐‘๐‘…๐‘’

โˆ’0.2

For the turbulent flow region, an empirical equation relating f and Re

Page 4: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

๐‘“2

=๐‘ ๐‘†๐‘ก๐‘ ๐‘ƒ๐‘Ÿ

23 ( ๐œ‡๐œ‡1 )

0.14

=0.023๐‘๐‘…๐‘’โˆ’0.2

} rsub { } ๐‘ฑ ๐‘ฏ ยฟ

This is called as the J-factor for heat transfer

Page 5: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

In a similar manner, we can relate the mass transfer and momentum transfer using

๐‘˜๐‘โ€ฒ ๐ท๐ท๐‘Ž๐‘

=0.023 (๐‘๐‘…๐‘’ )0.83 (๐‘๐‘†๐‘ )0.33

the equation for mass transfer of all liquids and gases

If we divide this by

๐‘˜๐‘โ€ฒ

๐‘ฃ(๐‘ ๐‘†๐‘

23 ) (๐‘๐‘…๐‘’ )0.03=0.023๐‘๐‘…๐‘’

โˆ’ 0.2

Page 6: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

T

๐‘˜๐‘โ€ฒ

๐‘ฃ(๐‘ ๐‘†๐‘

23 )=0.023 ๐‘๐‘…๐‘’

โˆ’0.2

๐‘˜๐‘โ€ฒ

๐‘ฃ(๐‘ ๐‘†๐‘

23 ) (๐‘๐‘…๐‘’ )0.03=0.023๐‘๐‘…๐‘’

โˆ’ 0.2

๐‘˜๐‘โ€ฒ

๐‘ฃ(๐‘ ๐‘†๐‘

23 )= ๐‘“

2

Page 7: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

๐‘“2

=๐‘˜๐‘โ€ฒ

๐‘ฃ(๐‘ ๐‘†๐‘

23 )=0.023๐‘๐‘…๐‘’

โˆ’0.2

This is called as the J-factor for mass transfer

} rsub { } ๐‘ฑ ๐‘ซ ยฟ

Page 8: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

Extends the Reynolds analogy to liquids

f2= hc p๐œŒ ๐‘ฃ

=๐‘˜๐‘โ€ฒ

๐‘ฃ

f2= hc p๐œŒ ๐‘ฃ

(๐‘ ๐‘ƒ๐‘Ÿ

23 )( ๐œ‡๐œ‡1 )

0.14

=๐‘˜๐‘โ€ฒ

๐‘ฃ (๐‘ ๐‘†๐‘

23 )

Page 9: Chilton and Colburn J-factor analogy

Chilton and Colburn J-factor analogy

If we let

f2= hc p๐œŒ ๐‘ฃ

(๐‘ ๐‘ƒ๐‘Ÿ

23 )=

๐‘˜๐‘โ€ฒ

๐‘ฃ (๐‘ ๐‘†๐‘

23 )

} rsub { } ๐‘ฑ ๐‘ฏ ยฟ } rsub { } ๐‘ฑ ๐‘ซ ยฟ

๐‘“2 = ๐ฝ ๐ป=J D

Applies to the following ranges:For heat transfer:10,000 < Re < 300,0000.6 < Pr < 100For mass transfer: 2,000 < Re < 300,0000.6 < Sc < 2,500

( ๐œ‡๐œ‡1 )0.14

=1

Page 10: Chilton and Colburn J-factor analogy

Martinelli Analogy

Reynolds Analogy demonstrates similarity of mechanism (the gradients are assumed equal) Pr = 1 and Sc = 1

Chilton-Colburn J-factor Analogy demonstrates numerical similarity(implies that the correlation equations are not faithful statements of the mechanism, but useful in predicting numerical values of coefficients wider range of Pr and Sc

Page 11: Chilton and Colburn J-factor analogy

Martinelli Analogy

Martinelli Analogy (heat and momentum transfer) applicable to the entire range of Pr number

Assumptions:1. The T driving forces between the wall and the fluid is small

enough so that ฮผ/ฮผ1 = 12. Well-developed turbulent flow exists within the test section3. Heat flux across the tube wall is constant along the test

section4. Both stress and heat flux are zero at the center of the tube

and increases linearly with radius to a maximum at the wall5. At any point ฮตq = ฮตฯ„

Page 12: Chilton and Colburn J-factor analogy

Martinelli Analogy

Assumptions:

6. The velocity profile distribution given by Figure 12.5 is valid

Page 13: Chilton and Colburn J-factor analogy

Martinelli Analogy

๐‘ž๐ด ( ๐‘Ÿ๐‘Ÿ1 )=โˆ’ (๐›ผ+๐›ผ ๐‘ก ) (๐‘‘ (๐œŒ๐‘๐‘๐‘‡ )

๐‘‘๐‘Ÿ )

๐œ ๐‘ฆ( ๐‘Ÿ๐‘Ÿ1 )=โˆ’(๐œ‡๐œŒ+๐œ€๐‘ก)( ๐‘‘ (๐‘ฃ ๐œŒ )๐‘‘๐‘Ÿ )

Both equal to zero;For cylindrical geometry

Page 14: Chilton and Colburn J-factor analogy

Martinelli Analogy

๐‘ž๐ด ( ๐‘Ÿ๐‘Ÿ1 )=โˆ’ (๐›ผ+๐›ผ ๐‘ก ) (๐‘‘ (๐œŒ๐‘๐‘๐‘‡ )

๐‘‘๐‘Ÿ )

๐œ ๐‘ฆ( ๐‘Ÿ๐‘Ÿ1 )=โˆ’(๐œ‡๐œŒ+๐œ€๐‘ก)( ๐‘‘ (๐‘ฃ ๐œŒ )๐‘‘๐‘Ÿ )

Both equal to zero;For cylindrical geometry

Integrated and expressed as function of position

Converted in the form

Page 15: Chilton and Colburn J-factor analogy

Martinelli Analogy

Page 16: Chilton and Colburn J-factor analogy

Martinelli Analogy

Martinelli Analogy (heat and momentum transfer) applicable to the entire range of Pr number

predicts Nu for liquid metals contributes to understanding of the mechanism of heat and momentum transfer

Page 17: Chilton and Colburn J-factor analogy

Martinelli Analogy

Martinelli Analogy (heat and momentum transfer) applicable to the entire range of Pr number

predicts Nu for liquid metals contributes to understanding of the mechanism of heat and momentum transfer

Page 18: Chilton and Colburn J-factor analogy

Analogies

EXAMPLECompare the value of the Nusselt number, given by the appropriate empirical equation, to that predicted by the Reynolds, Colburn and Martinelli analogies for each of the following substances at Re= 100,000 and f = 0.0046. Consider all substances at 1000F, subject to heating with the tube wall at 1500F.

Page 19: Chilton and Colburn J-factor analogy

Example

Sample CalculationFor air,

๐‘๐‘๐‘ข=0.023 (๐‘๐‘…๐‘’ )0.8 (๐‘ ๐‘ƒ๐‘Ÿ )13 ( ๐œ‡๐œ‡1 )

0.14

๐‘๐‘๐‘ข=0.023 (100,000 )0.8 (0.71 )13 ( 0.018

0.02 )0.14

๐‘๐‘๐‘ข=20 2(๐‘š๐‘œ๐‘ ๐‘ก ๐‘Ž๐‘๐‘๐‘ข๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’)

Page 20: Chilton and Colburn J-factor analogy

Example

Sample CalculationFor air, by Reynolds analogy

๐‘ ๐‘†๐‘ก=๐‘ ๐‘๐‘ข

๐‘๐‘…๐‘’๐‘ ๐‘ƒ๐‘Ÿ= f

2

๐‘๐‘๐‘ข=f2๐‘๐‘…๐‘’๐‘ ๐‘ƒ๐‘Ÿ=( 0.0046

2 ) (105 )(0.71)

๐‘๐‘๐‘ข=16 3.3

Page 21: Chilton and Colburn J-factor analogy

Example

Sample CalculationFor air, by Colburn analogy

๐‘ ๐‘†๐‘ก=๐‘ ๐‘๐‘ข

๐‘๐‘…๐‘’๐‘ ๐‘ƒ๐‘Ÿ

f2=๐‘ ๐‘†๐‘ก (๐‘ ๐‘ƒ๐‘Ÿ

23 )( ๐œ‡๐œ‡1 )

0.14

๐‘๐‘๐‘ข=๐‘๐‘…๐‘’ (๐‘ ๐‘ƒ๐‘Ÿ )13 ( ๐‘“2 )( ๐œ‡๐œ‡1 )

0.14

๐‘๐‘๐‘ข=105 (0.71 )13 ( 0.0046

2 )( 0.0180.02 )

0.14

๐‘๐‘๐‘ข=202

Page 22: Chilton and Colburn J-factor analogy

Example

Sample CalculationFor air, by Martinelli analogy

๐‘๐‘๐‘ข=170

Page 23: Chilton and Colburn J-factor analogy

FIN