chiral symmetries and low energy searches for new physics m.j. ramsey-musolf caltech...

31
Chiral Symmetries and Low Energy Searches for New Physics M.J. Ramsey- Musolf Caltech Wisconsin-Madison QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Upload: moses-russell

Post on 13-Dec-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Chiral Symmetries and Low Energy Searches for New Physics

M.J. Ramsey-Musolf

CaltechWisconsin-Madison

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Fundamental Symmetries & Cosmic History

• What were the fundamental symmetries that governed the microphysics of the early universe?

• Were there additional (broken) chiral symmetries?

• What insights can low energy (E << MZ) precision electroweak studies provide?

• How does the approximate chiral symmetry of QCD the affect low energy search for newsymmetries?

Fundamental Symmetries & Cosmic History

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Fundamental Symmetries & Cosmic History

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Puzzles the Standard Model can’t solve

1. Origin of matter2. Unification & gravity

3. Weak scale stability4. Neutrinos

What are the symmetries (forces) of the early universe beyond those of the SM?

What are the new fundamental symmetries?

Two frontiers in the search

Collider experiments (pp, e+e-, etc) at higher energies (E >> MZ)

Indirect searches at lower energies (E < MZ) but high precision

High energy physics

Particle, nuclear & atomic physics

CERN

Ultra cold neutronsLarge Hadron Collider

LANSCE, NIST, SNS, ILL

What are the new fundamental symmetries?

• Why is there more matter than antimatter in the present universe?

• What are the unseen forces that disappeared from view as the universe cooled?

• What are the masses of neutrinos and how have they shaped the evolution of the universe?

Electric dipole moment & dark matter searches

Precision electroweak: weak decays & e- scattering

Neutrino interactions & 0-decayTribble report

Fundamental Symmetries & Cosmic History

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Cosmic Energy Budget

?

Baryogenesis: When? SUSY? Neutrinos? CPV?

WIMPy D.M.: Related to baryogenesis?

“New gravity”? Grav baryogenesis?

Weak scale baryogenesis can be tested experimentally

What is the origin of baryonic matter ?

Cosmic Energy Budget

Baryons

Dark Matter

Dark Energy

Searches for permanent electric dipole moments (EDMs) of the neutron, electron, and neutral atoms probe new CP-violation

rE

rd = d

r S

EDM = −d

r S ⋅

r E

h

T-odd , CP-odd by CPT theorem

What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ?

YB =ρ B

=(7.3± 2.5) ×10−11

(9.2 ±1.1) ×10−11

BBN

WMAP

Chiral odd SU(2)L x U(1)Y invariant for >> Mweak

SM CPV Yukawa suppressedBeyond SM CPV may not be (e.g., SUSY)

EDM Probes of New CP Violation

f dSM dexp dfuture

e−

n199Hg

μ

< 10−40

< 10−30

< 10−33

< 10−28

< 1.6 ×10−27

< 3.0 ×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

CKM

If new EWK CP violation is responsible for abundance of matter, will these experiments see an EDM?

Also 225Ra, 129Xe, d

Baryogenesis: New Electroweak Physics

Weak Scale Baryogenesis

• B violation

• C & CP violation

• Nonequilibrium dynamics

Sakharov, 1967

?

ϕ new

?

φ(x)

Unbroken phase

Broken phaseCP Violation

Topological transitions

1st order phase transition

?

γ

?

e -?

ψnew• Is it viable?• Can experiment constrain it?• How reliably can we compute it?

?

ϕ new

?

ϕ new

90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok

Theoretical Issues:Transport at phase boundary (non-eq QFT)Bubble dynamics (numerical)Strength of phase transition (Higgs sector)EDMs: many-body physics & QCD

Scale Hierarchy: Expand in energy & time scale ratios

Cirigliano, Lee, R-M

Baryogenesis & Dark Matter: SUSY

Supersymmetry

eL,R , qL,R

W,Z,γ,g

˜ W , ˜ Z ,˜ γ , ˜ H u,d ⇒ ˜ χ ±, ˜ χ 0Charginos, neutralinos

Fermions Bosons

˜ e L,R , ˜ q L,R sfermions

˜ W , ˜ Z ,˜ γ , ˜ g gauginos

˜ H u,˜ H dHiggsinos

Hu,Hd

Baryogenesis & Dark Matter: SUSY

Neutralino Mass Matrix

M1

-

M2

-mZ cos sin W mZ cos cos W

mZ sin sin W -mZ sin sin W 0

0

0

0

-

-mZ cos sin W mZ cos cos W

mZ sin sin W -mZ sin sin WMN =

Chargino Mass Matrix

M2

MC =

cos2mW

sin2mWT << TEW : mixing

of H,W to ~ ~ ~ ~

T ~TEW : scattering

of H,W from

background field

~~

?

ϕ new

?

φ(x)

q , ˜ W , ˜ B , ˜ H u,d

T ~ TEW

CPV

B W Hd Hu

BINO WINO HIGGSINO

T << TEW

EDM constraints & SUSY CPV

AMSB: M1 ~ 3M2

Neutralino-driven baryogenesis

Baryogenesis

LEP II Exclusion

Two loop de

Cirigliano, Profumo, R-M

SUGRA: M2 ~ 2M1

| sin ϕ | > 0.02

| de , dn | > 10-28 e-cm

M < 1 TeV

Dark Matter: Future Experiments

Cirigliano, Profumo, R-M

Assuming CD

M

Precision Ewk Probes of New Symmetries

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Unseen Forces: Supersymmetry ?

1. Unification & gravity2. Weak scale stability

3. Origin of matter4. Neutrinos

˜ χ 0

˜ μ −

˜ ν μ

e

W −

e−

Weak decays & new physics

u c t( )

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

d

s

b

⎜ ⎜ ⎜

⎟ ⎟ ⎟

n → p e− ν e

A(Z,N) → A(Z −1,N +1) e+ ν e

π + → π 0 e+ ν e

-decay €

d → u e− ν e

s → u e− ν e

b → u e− ν e

GFβ

GFμ

= Vud 1+ Δrβ − Δrμ( )

New physics

˜ χ 0

˜ μ −

˜ ν μ

e

W −

e−

− €

e

e−

˜ χ 0

˜ χ −

˜ ν μ

˜ ν e

+L

+LSUSY€

δOSUSY

OSM~ 0.001

Flavor-blind SUSY-breaking

CKM, (g-2) MW, Mt ,…

M˜ μ L >M˜ q LKurylov, R-M

+L

+LRPV

μ−

ν e e−

νμ

˜ e Rk

12k 12k

e−

d e−

d

˜ q Lj

1j1

1j1

No long-lived LSP or SUSY DM

MW

R Parity Violation

CKM Unitarity

APV

l2

Kurylov, R-M, Su

CKM unitarity ?

See Moulson, Cirigliano

Weak decays & SUSY

u c t( )

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

d

s

b

⎜ ⎜ ⎜

⎟ ⎟ ⎟

d → u e− ν e

s → u e− ν e

b → u e− ν e

˜ χ 0

˜ μ −

˜ ν μ

e

W −

e−

u

d€

e

e−

˜ χ 0

˜ χ −€

˜ u

˜ ν e

+L

+LSUSY€

δOSUSY

OSM~ 0.001

Correlations

dW ∝1 + ar p e ⋅

r p ν

Ee Eν

+ Ar σ n ⋅

r p eEe

+ L

Non (V-A) x (V-A) interactions: me/E

-decay at SNS,“RIAcino”?

B me Ee( )r σ n ⋅

r p νEν

+ L

Weak decays & SUSY : Correlations

SUSY loop-induced operators

with mixing between L,R chiral supermultiplets

Yukawa suppressed L-R mixing: “alignment” models

Large L-R mixing: New models for SUSY-breaking

Future exp’t ?

Profumo, R-M, Tulin

Pion leptonic decay & SUSY

A non-zero NEW would shift F

SM radiative corrections important for precise F Holstein, Marciano & Sirlin

γ

l

+L

RPV SUSY

Pion leptonic decay & SUSY

γ

l

+LLeading QCD uncertainty:

Marciano & Sirlin

Probing Slepton Universality

u

d€

e

e−

˜ χ 0

˜ χ −€

˜ u

˜ ν e€

u

d€

˜ χ 0

˜ χ −€

˜ u

˜ ν μvs

New TRIUMF, PSI

Min (GeV)

Tulin, Su, R-M Prelim

Can we do better on ?

Lepton Scattering & New Symmetries

Parity-Violating electron scattering

ALR =GFQ2

4 2παQW + F(Q2,θ)[ ]

re −€

e−

e−, p€

e−, p

Z 0

re −€

e−

e−, p€

e−, p

γ

“Weak Charge” ~ 1 - 4 sin2 W ~ 0.1

Probing SUSY with PV eN Interactions

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

SUSY loops

Kurylov, Su, MR-M

is Majorana

RPV 95% CL fit to weak decays, MW, etc.

˜ e −

˜ e +

+L

+

e−

f€

Z 0

γ

˜ χ −

˜ χ +€

e−

e−€

e−

f

f€

f

γ

Z 0

δQWe,SUSY QW

e,SMμ−

ν e e−

νμ

˜ e Rk

12k 12k

δQWp,SUSY QW

p,SM

SUSY dark matter

Probing SUSY with PV eN Interactions

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

SUSY dark matter

Kurylov, R-M, Su

SUSY loops

RPV 95% CL€

δQWp,SUSY QW

p,SM

δQWe,SUSY QW

e,SM

E158 &Q-Weak

JLab Moller

Linear collider

“DIS Parity”

SUSY dark matter

Fundamental Symmetries & Cosmic History

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Neutrinos ?

Are they their own antiparticles?

Why are their masses so small?

Can they have magnetic moments?

Implications of m for neutrino interactions ?

LFV & LNV ?

Neutrino Mass & Magnetic Moments

How large is ?

Experiment: < (10-10 - 10-12) B

e scattering, astro limits

Radiatively-induced m

< 10-14 B Dirac

e < 10-9-10-12 B Majorana

Bell, Cirigliano, Gorshteyn,R-M, Vogel, Wang, Wise Davidson, Gorbahn, Santamaria

Both operators chiral odd

Muon Decay & Neutrino Mass

3/4

0

3/4

1

TWIST (TRIUMF)

Correlations in Muon Decay & m

Model Independent Analysis

constrained by m

Model Dependent Analysis

e

W1,2−

e−

MWR (GeV )

Pμξ

Pμξδ

ρ€

TWIST ρ

TWIST Pμξ

First row CKM

2005 Global fit: Gagliardi et al.

H 0

H 0

H 0

Z,W

H 0

Prezeau, Kurylov 05 Erwin, Kile, Peng, R-M 06 m

MPs

Also -decay, Higgs production

e−

e+€

Constraints on non-SM Higgs production at ILC:

m , and decay corr

Neutrino Mass & - decay

e−

e−

M

W −

W −

u

u

d

d

e−

e−

0

˜ e −

u

u

d

d

˜ e −

How do we compute & separate heavy particle exchange effects?

Light M : 0-decay rate may yield scale of m

EFF= Uek

2mk e2iδ

k

e−

e−

A Z,N( )

A Z + 2,N − 2( )

Neutrino Mass & - decay

e−

e−

M

W −

W −

u

u

d

d

e−

e−

0

˜ e −

u

u

d

d

˜ e −

e−

e−

A Z,N( )

A Z + 2,N − 2( )€

u

d€

u

d

e−

e−

4 quark operator: low energy EFT

How do we compute & separate heavy particle exchange effects?

Neutrino Mass & - decay

N

N€

e−

e−

N

N€

e−

e−

N

N

e−

e−

KNNNN p0

KπNN p−1

Kππ p−2

Prezeau, R-M, & VogelL(q,e) =

GF2

Λββ

C j (μ) ˆ O j++ e Γ je

c + h.c.j=1

14

Chiral properties of Oj++

determine p-dependence of K KNN , KNNNN

ˆ O 1+++ ∈ (3L , 3R ) K ~ O (p0)

ˆ O 3+++ ∈ (5, 1)⊕ (1, 5) K ~ O (p2)

e−

e−

0

˜ e −

u

u

d

d

˜ e −

ˆ O 1+++ ∈ (3L , 3R )

ˆ O 3+++ ∈ (5L , 1R )⊕ (1L , 5R )

ˆ O 1+++ ∈ (3L , 3R )

No WR - WL

mixing

WR - WL mix

RPV SUSY

M

W −

W −

u

u

d

d

e−

e−

Conclusions

• Low energy probes of physics beyond the SM give us a unique window on the fundamental symmetries of the early universe that complements direct searches for new physics at colliders

•These symmetries - including broken chiral symmetries - are needed to explain the origin of matter, provide for stability of the electroweak scale, incorporate new forces implied by unification, and account for the properties of neutrinos

• The broken chiral symmetry of QCD also provides an important tool for sharpening Standard Model predictions for low energy observables and making any deviations interpretable in terms of new symmetries