chlorine determination

34
RESEARCH AND DEVELOPMENT BULLETIN RD082T Coal Characterization by X-Ray Spectrometry \ by J. L. Bernardi PORTLAND CEMENT ASSOCIATION Research and Development/Construction Technology Laboraforres

Upload: luanbici

Post on 08-Aug-2015

74 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chlorine Determination

RESEARCH AND DEVELOPMENT BULLETIN RD082T

Coal Characterization by X-Ray Spectrometry

\ by J. L. Bernardi

PORTLAND CEMENT ASSOCIATION Research and Development/Construction Technology Laboraforres

Page 2: Chlorine Determination

- Coal Characterizationby X-Ray Spectrometry

certified analysis. Chloride, sulfur, ash,and caloriflc values were determined onthe whole coal samples. Mineral analy-ses of the ash were also carried out onfour of the coals. Following is a discus-sion of the results.

by J. L. Bernarcji’PROCEDURES

BACKGROUND

Coal as a kiln fuel was used in 86% oftotal production in the U.S. cementindustry in 1980, and its use is still in-creasing. Kiln system buildups andquality control problems have becomemore prevalent as this rapid conversionto coal-fired cement kilns has takenplace.

Chlorides are frequently present incement feed materials in an amount thatgenerally does not exceed 0.01% to0.02Y0. This concentration usually doesnot cause buildup problems in preheaterkiln systems. Many coals, however,have much higher chloride contents andsuch coals can contribute to preheater

n problems. In fact, coal may often beconsidered the predominant source ofchloride during clinker production;thus, it is highly desirable to develop arapid, accurate method 10 determine thechloride content of coal.

The composition of tlhe coal ash alsomust be known since most of the ash isincorporated into the cement clinker. Inorder to produce a material of consist-ent high quality, adjustments must bemade continually in th[: feed materialsas a function of both the amount andthe chemical composition of the ash.Therefore, it is important to develop arapid, accurate method to determine themajor oxide contents of whole coal.

Analysis of whole coal for majoroxides by wet methods or atomic ab-sorption is a lengthy procedure thatcould require several days. Using X-rayfluorescence spectrometry, the wholecoal sample can be ground, pressed, andanalyzed for 10 oxides and chloride inless than two hours.

EQUIPMENTm

Samples were analyzed with a memory-controlled, automatic sequentialRigaku Model 3064 X-ray vacuum

spectrometer. The spectrometer’s cen-tral controller memorizes and controlsa large number of optimized measure-ment conditions. The analyzing cham-ber contains a vertically mounted, rho-dium-target, end-window X-ray tubewith the target face parallel to the sam-ple surface. This close coupling of thetarget with the sample surface and theuse of a very thin beryllium window inthe X-ray tube provide optimum excita-tion of the elements above atomic num-ber 8 with a single tube.

During each X-ray fluorescence run,the X-ray intensities of five sampleswere measured by the spectrometer andrelated to a standard for a sequence of10 elements: silicon (Si), aluminum (Al),iron (Fe), calcium (Ca), magnesium(Mg), sulfur (S), sodium (Na), potas-sium (K), phosphorus (P), and titanium(Ti). No background corrections weremade. The instrumental parametersare listed in Table 1. Chloride intensitieswere measured separately as only 10elements can be analyzed sequentiallyon the Rigaku X-ray spectrometer.

SAMPLES

Samples used in this study were ob-tained from Alpha Resources, Inc.(’)**Each sample was prepared in accord-ance with American Society for Testingand Materials (ASTM) Designation:D2013 and sealed in amber bottlesunder an inert atmosphere. Each sam-ple was supplied with a certified analy-sis that stated the proximate analysis,ultimate analysis, sulfur forms, mineralanalysis of the ash, and ash fusion tem-peratures. A total of 22 samples wereused to prepare the X-ray fluorescencecalibration curves for whole coal. Typesof whole coals studied are listed in Table2A and certified analyses of these wholecoals are summarized in Table 2B.

Several of the 22 samples were ana-lyzed to determine the reliability of the

Chloride

Chloride analyses were made for ninesamples per ASTM procedure D2361and are summarized in Table 3. In theASTM method the sample was mixedwith an Eschka mixture (two parts mag-nesia and one part sodium carbonate)and ignited in a Parr adiabatic calorim-eter. The fused product was dissolvedin hot water, acidified, and analyzed byeither the Volhard method or poten-tiometric titration. The Volhard meth-od was used by most of the laboratoriesanalyzing these samples for certifica-tion, but it can give rise to significanterrors at these low concentrations. Apotentiometric titration using a silversulfide ion-selective electrode is usuallyan extremely accurate method to deter-mine low levels of chloride.

The analytical laboratory at PCA hasdeveloped a potentiometric method todetermine chloride ‘7) in cement, lime-stone, clay, and so forth, usually withan accuracy of plus or minus 0.00290 to0.003qo. Nine coal samples were repeat-ed two to five times each, and the aver-age value for each sample was used tomake up the X-ray fluorescence calibra-tion cu~ve. Table-3 shows that the certi-fied values for samples AR 219 and AR774 had significant errors. A later certi-fication sheet, received after this analy-tical work was completed, reduced thechloride level from 0.06% to 0.0570 forAR 774, and this corrected value (O.05%)is the one listed in Table 3.

Sulfur

Sulfur analyses were determined induplicate or triplicate on 10 of the whole

*Former Senior Research Chemist, ProcessDevelopment Section, Chemical/ Physical Re-search Department, Portland Cement Associa-tion, Skokie, Illinois.

**Superscript numbers ,n parentheses denote

references at the end of this text.

@ portland cerne~t Association 1982

Page 3: Chlorine Determination

2 Coal Characterization b-y X-Ray Spectrometry

coals, according to ASTM procedureD3177. In this method, the sample wasignited in a Parr bomb and sulfur wasdetermined gravimetrically as sulfatefrom the bomb washin{;s. Results aresummarized in Table 4. These valuesagreed well with the certified results;therefore, the certified values were usedfor the calibration curve. (Certifiedvalues for sulfur were converted to sul-fur trioxide by multiplying by a factorof 2.5.)

Calorific Value

Calorific values were determined on 12samples following ASTM methodD2015 and are summarized in Table 5.Samples AR 114, 216, 217, 218, 219,and 220 were run two weeks to twomonths after the bottles containingthem were opened. Seve~-al members ofASTM Committee D5 recommendedthat heating value determinations berun within a week of preparation (grind-ing), otherwise low results could be ex-pected; in fact, low results were obtainedfor each of these samples. Later sam-ples (AR 213, 774, 778, 779, 780, and782) were analyzed immediately aftersealed bottles were opened, and all re-sults were within ASTM limits.

Ash

Ash analyses were run on 10 coal sam-ples according to ASTMIMethodD3174with some modifications. Instead ofusing a l-g sample in a porcelain cruci-ble, a 10- to 20-g sample of each wholecoal in a porcelain evaporating dish wasused. Approximately 2 g of ash wereproduced by this proceclure, so that acomplete chemical anallysis could becarried out on the ash. The sample washeated to 500° C in abolut one hour toexpel the volatiles from the coal, thentaken up to 750° C and kield there for aminimum of one to two hours. The re-sults, listed in Table 6, are all withinASTM limits.

Lignites and subbituminous coals aresometimes high in lime and may retainmuch of the sulfur in the coal. Most ofthe sulfur in whole coal is evolved as sul-fur dioxide when heatt:d to between250° C and 350° C. A rapid tt?mperaturerise in this range will result in sulfur di-oxide loss and the combined calciumsulfate will be low. For these samples itis especially important to follow pre-

cisely the ASTM ashing procedures toobtain the correct ash value.

Ash Analyses

A complete ash analysis was carried outon four ash samples (AR] 14, AR 218,AR 219, and AR 220) by PCA’S analy-tical staff. Each ash was fused withlithium metaborate (L.iBOZ) and ana-lyzed by atomic absorption spectrom-etry, following the same meth(~~ds usedat PCA to analyze cement. “ Phos-phorus pentoxide was determined col-orimetrically(~) by a PCA molybdenumblue method. Ash analyses were con-verted to a whole coal basis and aresummarized in Table ‘7.

In most cases the agreement was suf-ficient to justify using the certified anal-ysis to determine oxide concentrationsfor the calibration curves. Results forsodium oxide and potassium oxide wereslightly higher than the certified results.ASTM method D3682 uses a lithiumtetraborate (LiB,O,) fusion at 1000° Cwhile PCA’S cement method uses a lith-ium metaborate (Li BO~) fusion at900° C. The higher ASTM fusion tem-perature may volatilize more of theNa~O and KzO and give lower results.PCA results for Na~O averaged about0.0 1% higher and for KzO about 0.02%higher. However, these differences werenot considered significant enough towarrant correcting. l-he phosphoruspentoxide results were much lower andare discussed below.

The percentages for silica (SiOz),alumina (AljO~), ferric oxide (FejO~),lime (CaO), magnesia (MgO), sodiumoxide (Na~O), potassium oxide (KZO),phosphorus pentoxide (P~Os), andtitania (TiO~) used in the calibrationcurves were determined by multiplyingthe decimal percentage of the oxide inthe mineral analysis by the percentageof ash in the sample.

Phosphorus Pentoxide

Phosphorus pentoxide was measured in10 of the whole coal samples using thePCA method(~) for determining its con-tent in cement. Iron does not interferewith this method but does interfere withthe ASTM D3682 method for Pz05 incoal. Initial plots using the certifiedvalues for Pz05 gave an elliptical curveinstead of a straight line. Alpha Re-sources confirmed that their PZOS re-

sults were not reliable and that they _were trying to develop a better method.

At the October 1980 ASTM Commit-tee D 5 meeting, it was brought out thatthe coal ash fusion melt samples shouldbe digested in 10% nitric acid (HNO~)instead of 5~0 hydrochloric acid (HC1).Chloride forms the ferric chloride(FeCl~ ) complex with the ferric ion,which is bright yellow in color; this ironcomplex enhances the P?O~ concentra-tion in the calorimetric determination.

During 1980, Alpha Resources re-ceived results from another laboratoryusing several independent methods fordetermining PzO~ that were in goodagreement with PCA’S results. There-fore, PCA’S results listed in Table 8 wereused for the P~O~ calibration curve.

SAMPLE PREPARATION

Reagents and Apparatus

1. Somar mix’X} or Chemplex X-raymix”]

2. Tungsten carbide grinding cell andBleuler mill

3. 30-mm-diameter aluminum cup z(Chemplex Cat. No. 500)

4. Evacuable X-ray die (Spex. Cat.No. 3623)

5. Compression machine capable of41,000-lb load

6. Vacuum pump

Procedure

1.

2.

3.

4.

5.

Four and one-half grams of driedcoal or coal char and 1Ag of Somarmix were ground for 4 minutes in atungsten carbide cell of the Bleulermill.The ground material was brushedout of the cell onto a clean piece ofsmooth-surfaced paper. An alumi-num cup was filled with the powderand placed inside the bore of thebriquetting die assembly. The re-maining powder was poured intothe bore on top of the aluminumcup.The sample on the surface of thecup was uniformly distributed bycarefully inserting the plunger andholding it against the sample.The plunger was slowly withdrawnso as not to disturb the distribution ~of the sample.A steel pellet was placed in the bore

Page 4: Chlorine Determination

PCA Research and Development Bulletin 3

6.

7.

8.

9.

10.

11.

I2.

with its polished side downwardand then gently pressed down withthe plunger.The die assembly was completedby placing the top O-ring aroundthe plunger.The assembly was brought to thecompression machine and thevacuum line connected to the pipeprotruding from the die. The vacu-um pump was then started.Slowly a load was applied on theassembly, bringing the load to 3000lb. This load was hf:ld for M minuteto remove entrapped air.The load was gradually increasedto 40,000 lb, maintained there for1 minute, brought up to 41,000 lb,and then released.The vacuum line wi~s disconnected,the assembly inverted, and its baselifted off.The Perspex ring supplied with thedie assembly was placed on top ofthe cylinder and tlhe assembly re-placed in the press.A load was applied to the assem-bly for the plunger to lift the pelletsand sample briquet out of the bore.

Notes on Procedurf:

1. Four minutes of grinding in theBleuler mill eliminated the influ-ence of the particle size of the coalsample on X-ray intensity.

2. It was also found tlhat a pelletizingpressure of 40,000 lb assured ob-taining stable and reproducibleX-ray intensities.

3. Somar mix is a pure organic com-pound that is used as a binder. Afew coals and coal chars cannot bepelletized without using a binder.Chemplex X-ray mix may be usedinstead of Somar mix.

MATHEMATICAL TREATMENTOF DATA

Linear regression was carried out ondata for each oxide, using measured rel-ative intensities and cah:ulated percent-ages of oxide on the whole coal basis.The correlation factor (r). slope, andintercept were calculated for each oxideand are summarized in ‘Table 9. Results

n for MgO, NaZO, PzO~, TiO~, and KzOwere generally acceptable. Results forSiO~, AIzOS, and CaO were acceptable

only if one or more lignite and sub-bituminous samples were eliminatedfrom the linear regression.

Linear regression proved unsatisfac-tory for Fe,O, and SOS. These oxideswere run by the multiple regressionequation developed by Lucas-Toothand Pyne. (4 s) This eql~ationmade cor-

rections for absorption and enhance-ment effects and used X-ray fluorescentintensities, which can be measured ex-perimentally, rather than oxide con-centrations, which must be known orestimated in other formulations such asthat of Heinrich. The Lucas-Tooth andPyne equation requires a large numberof standards. In this approach, ninevariables (~11- ~g) have to be determinedfrom a series of simultaneous equa-tions (one for each standard) and abouttwice that number of standards (15 to20) are required to evaluate these vari-ables. P() is a constant and ~1 through 6Xare influence coefficients of one elementon another element. For FeZOS theequation has the form:

where Cp.zoj is the weight percentageof Fe~O~ in the sample and [F’?201 is the

intensity of iron, IS,(J7is the intensity ofsilicon, and so forth.- All intensities arein counts per second.

This equation contains nine variablesthat were evaluated using an IBM step-wise linear regression program(c] on aDigital Scientific computer. Equationssimilar to that above can be written andevaluated for each of the oxides. Thecoefficients for the equations are sum-marized in Table 10. ~iOl, Al~O~, KzO,and TiO~ were also evaluated using thisprocedure.

The intensity of each oxide was deter-mined by dividing the total X-ray countsby the count time. The counts per sec-ond ranged from several hundred forCaO to sixty thousand for Fe,O~ andSO,. For computing purposes, all countswere coded by dividing by 1000. Allnumbers were rounded to the nearesthundredth. The raw data for the multi-ple regression are summarized in theAppendix.

DISCUSSION OF RESULTS

Sulfur Trioxide

Sulfur trioxide (S0,) is the most diffi-cult of the 10 oxides to analyze by X-rayfluorescence. Linear regression using all22 samples gave a standard deviation of0.5590 and multiple regression gave astandard deviation of 0.38’% (see Tables11 and 12). These standard deviationsare much too high for acceptable analy-tical results.

Examination of the sulfur concentra-tion showed that 15 of the coals had lessthan 5. 15% SOI. A second set of multi-ple regression coefficients was generat-ed using these 15 samples (see Table 10).It gave a correlation factor of 0.9892, astandard deviation of O.17Y0, and anaverage error of O. 14Y0. Nine of thesesamples were within ASTM limits (seeTable 13). For samples with under 2%sulfur, ASTM calls for a repeatabilityof 0.05Y0, which corresponds to O.13%for samples containing less than 570SO~. The coefficients for all 22 coals (seeTables 10 and 12) gave an average errorof 0.28Yo; for the 15 samples with SOJcontents less than 5. 15%, only four (AR771, 774, 775, and 778) are withinASTM limit of O.13Y0.Coefficients list-ed in Table 10 for S07 (low) should givereasonably good analytical data forsamples containing less than 5.1570 SOI(or 2.06% sulfur). Multiple regressionanalysis was not made for high SO~levels (greater than 5. 1570) because sev-eral more samples would be required todetermine the regression coefficients.

Silica and Alumina

Both silica (SiOZ) and alumina (AIzOS)were evaluated by linear and multipleregressions (see Tables 14 through 17).In both cases the multiple regressionresults for whole coal analysis were ac-ceptable. Linear regression results wereacceptable for silica when the lignite(AR 777) and two subbituminous sam-ples (AR 215 and AR 773) were not in-cluded in the regression analysis, andfor alumina when the lignite sample(AR 777) was not included.

Ferric Oxide

Linear regression for ferric oxide(FezO~) was unsatisfactory. The lignitesample (AR 777) and the two subbitumi-

Page 5: Chlorine Determination

4 Coal Characterization by X-Ray Spectrometry

nous samples (AR 215 and AR 773)were not used. The linlear regressiongave a standard deviation o10.28% andan average error of 0.229.; more thanhalf the samples had errors exceeding0.20%. Multiple regression using all 22samples gave a standard deviation of0.1 IYo, an average error of 0.08%, andonly one sample error exceeding 0.20T0(see Tables 18 and 19).

Lime

Linear regression could be used for lime(CaO) if the lignite sample (AR 777) andtwo subbituminous samples (AR 215and AR 773) are not used, but it is notvery satisfactory. It gave both an aver-age error and a standard deviation of0.05%. Multiple regression using all 22samples gave a more accurate analysis,reducing both values to 0.02% (see Ta-bles 20 and 21).

Magnesium Oxide

Linear regression results for magne-sium oxide (MgO) were not particularlysatisfactory, but the errors were not sig-nificant in that only one sample con-tained more than O.18% ltigo (see Table22). Results may be improved if the twosubbituminous samples are not includ-ed in the linear regression computation.

Potassium Oxide andTitanium Dioxide

Potassium oxide (KJC~) and titania(TiO~) could be analyzed by eitherlinear or multiple regression. For bothoxides, multiple regression gave a moreaccurate analysis (see Talbles 23 through26). Improved results may be obtainedif the lignite sample is eliminated fromthe linear regression for both K,O andTiOZ.

Sodium Oxide

Linear regression results for sodiumoxide (NaqO) were acceptable eventhough there is a difference of 0.3% be-tween the two subbituminous samples(AR 215 and 773) and the 20 other sam-ples (see Table 27).

Phosphorus Pentoxide

Linear regression gave satisfactory re-sults for phosphorus pentoxide (PzOS)on the 10 samples that were analyzed(see Table 28). The Pz05 concentrations

were all less than 0.06q0 and no errorexceeded 0.0 Ioz,.

Chloride

Linear regression data for chloride inwhole coal (Table 29) showed that thecorrelation factor was very close to one,the standard deviation 0.004Y0, and theaverage error 0.003Y0. Therefore, chlo-ride can be determined very accuratelyby X-ray fluorescence. Extreme caremust be exercised not to touch the sur-face of the pellets, as salt deposited onthe pellets will increase chloride resultssignificantly.

Coal Samples

Table 2B shows that four cokes and 13bituminous, one anthracite, one lignite,and three subbituminous coals wereused in this study. The subbituminous(AR 215, AR 510, and AR 773) and lig-nite (AR 777) samples often gave un-satisfactory results. Other analysts havealso reported problems with these typesof samples, apparently because thesecoals have a different matrix, moisturecontent, and density. This may explainsome of the difficulty in utilizing thesesamples in linear regression analyses.

CONCLUSIONS

1. This study has shown that it is pos-sible to determine the 10 major oxidesin whole coal rapidly and accuratelyby X-ray fluorescence.

2. Bituminous coals and cokes gave ac-ceptable results. Unsatisfactory re-sults were often obtained for linearregression calculations using the lig-nite sample from Texas (AR 777) andthe two subbituminous samples fromWyoming (AR 215 and AR 773);however, multiple regression resultsusing these samples were acceptable.A third subbituminous coal (AR 5 10)from the Texas-Oklahoma bordergave satisfactory results. Only oneanthracite sample (AR 776) wasavailable for inclusion in this studyand it also gave satisfactory results.

3. Chloride also can be determined ac-curately and rapidly by X-ray fluo-rescence.

4. Matrix corrections are required forsulfur trioxide (SO~) and ferric oxide(Fe~O~). Even with matrix correc-

5.

tions, the SO, results were not very _satisfactory. However, acceptableresults were obtained when matrixcorrections were applied only to thosecoal samples that contained less than5. 15% SO,. More coal samples wouldbe needed to determine if acceptableresults could also be obtained forthose coals with SO? levels greaterthan 5. 15Y0.

Matrix corrections may also improveresults for silica (SiOz), alumina(A1,O,), lime (CaO), potassium oxide(KzO), and titania (TiO~), especiallyif lignite and subbituminous samplesare used.

REFERENCES

1. Alpha Resources, Inc., P.O. BOX199, Stevensville, Michigan 49127,(616) 465-5559.

2. Crow, R. F., “Atomic AbsorptionAnalysis of Portland Cement, Clink-er. and Raw Mix Using Lithium

3.

4.

5.

6.

7.

M’etaborate Fusion,” Tes~ !dethodsof the PCA Analytical ChemistrvLaboratories, Portland CementAssociation, 1980, pages 2.1-21. nMivelaz, W. F., and LaBonde, E. G.,“Determination of Percent Phos-phorus and Titanium in PortlandCement, Clinker, Kiln Feed, andRaw Materials by Means of the GoldCrucible and Sodium Hydroxide (orLithium Metaborate) Fusion Meth-od.” Unpublished PCA procedure.E. P. Bertin, Principles and Practicesof X-Ray Spectrometric Anal.vsis,2nd Edition, New York-London,Plenum Press, 1975, page 685.Lucas-Tooth, J., and Pyne, C., “TheAccurate Determination of MajorConstituents by X-Ray FluorescentAnalysis in the Presence of LargeInterelement Effects,” Advances inX-Ray Analysis, Vol. 7, New York,Plenum Press, 1964, pages 523-541.IBM Application Program 1130 Sta-tistical System (11 30-CA-06X).Bernardi, J. L., and LaBonde, E. G.,“Determination of Chloride in Ce-ment Fuels and Raw Materials,”PCA R&D Ser. 1668 (198 1). To bepublished.

8. Somar Laboratories, 54 East 1IthStreet, New York, New York 10003.

9. Chemplex X-Ray Mix, Chemplex nIndustries, Inc., 34 Bradley Road,Scarsdale, New York 10583.

Page 6: Chlorine Determination

)TA

BLE1.

X-Ra

yPa

rame

ters

forWh

oleCo

alAn

alys

is

E1eme

nt

Sili

con

(Si)

Alum

inum

(Al)

Iron (Fe)

Calc

ium

(Ca)

Mane

sium

?)Mg

Sulf

ur(s

)

Sodi

um(N

a)

Pota

ssiu

m(K

)

Phos

phor

us(P

)

Tita

nium

(Ti)

Chlo

rine

(cl)

Anal

yte

Crys

tal

line

EDDT

Ku

EDDT

K~

LiF(

200)

Ka

LiF(

200)

‘B

AOP

Ka

GeKa

TAP

Ka

LiF(

200j

Ka

GeKa

LiF(

200)

Ka

GeKa

Dete

ctor

FPC

FPC

Sc FPC

FPC

FPC

FPC

FPC

FPC

FPC

FPC

PHS

wind

ow

1-1

I-T

1-1

2-2

1-1

1-1

2-2

i-i

1-1

1-1

2-2

Coun

ting

time

(see

)

40 40 20 40 200 20 200 ?0 40 40 40

Abso

rber

1 ~ 1/2

1 1 1 1 i 1 1 1

Othe

rpa

rame

ters

were

:40

kV,70

ma,Rh

tube

,va

cuum

,1s

tor

der,

25-n

mIco

pper

mask

over

samp

le,sp

in,an

d0.

05sc

fhP-

10ga

sfl

owfo

rFP

C.

Slit

s

3s 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s

)TA

BLE2A

.Co

alSa

mple

s

Samp

le

AR11

4AR

213

AR21

5AR

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

Desc

ript

ion

Coke

Coke

Subb

itum

inou

sfr

omWy

omin

gWe

stVi

rgin

iabi

tumi

nous

West

Virg

inia

bitu

mino

us

West

Virg

inia

bitu

mino

usAm

axbi

tumi

nous

Sout

hern

Amax

bitu

mino

usSo

uthe

rnIl

lino

is/I

ndia

naIl

lino

is/I

ndia

naSo

uthe

rnIl

lino

isbi

tumi

nous

Subb

itum

inou

sOk

laho

ma-T

exas

bord

er

Coke

Coke

Subb

itum

inou

sfr

omWy

omin

gKe

ntuc

kybi

tumi

nous

Kent

ucky

bitu

mino

us

Penn

sylv

ania

anth

raci

teLi

gnit

efr

omTe

xas

Nort

hwes

tVi

rgin

iabi

tumi

nous

Ohio

bitu

mino

usSo

uthe

rnIn

dian

abi

tumi

nous

Sout

hern

Illi

nois

bitu

mino

usSo

uthe

rnIl

lino

isbi

tumi

nous

Page 7: Chlorine Determination

TABL

E2B

.Ce

rtif

iedVa

lues

forSt

anda

rdWh

oleCo

alSa

mple

sm

(Sou

rce:

Alph

aRe

sour

ces,

Inc.

)

Thefo

llow

ingAS

TMpr

oced

ures

were

empl

oyed

inth

ean

alys

isof

allsa

mple

s:

Prep

arat

ion

ASTM

D201

3-72

(78)

Vola

tile

Matt

erAS

TMD3

175-

77

Ash,

%Vo

lati

le,%

Fixe

dca

rbon

,%

Btupe

rpo

und

Sulf

ur,%

Chlo

ride

,%

Phos

phor

uspe

ntox

ide

(P~o

~)Si

lica

(Si0

2)Fe

rric

oxid

e(F

e203

)Al

umin

a(A

1203

)Li

me(C

aO)

Magn

esia

(MgO

)Su

lfur

trio

xide

(S03

)Po

tass

iumox

ide(K

20)

Sodi

umox

ide(N

a20)

Tita

nia(T

i02)

Unde

term

ined

Coke

AR11

4

9.85

1.86

88.2

913

,024

0.91

0.05

0.44

52.6

09.

7929

.10

2.46

0.79

0.86

1.70

0.39

1.44

0.43

Sulf

urAS

TMAs

hCo

nten

tAS

TM

Coke

AR21

3

6,88

3.57

89.5

512

,622

0.60

0.04

0.71

50,2

914

.63

26.0

01.

450,

920.

052.

340.

371.

611.

63

Coal

~21

5

5.66

40.3

753

.97

12,3

770.

460.

03

D317

7-75

AshAn

alys

isAS

TMD3

682-

78D3

174-

73(79)

Chlo

rine

ASTM

D236

1-66

(78)

Prox

imat

ean

alys

is(d

ried

basi

s)

Coal

Coal

Coal

AR21

6AR

217

AR21

8

7.51

10.4

78.

2625

.08

36.5

938

.81

67.4

152

.94

52.9

314

,439

12,8

6913

,513

0.99

1.23

2.56

0.20

0.03

0.20

Mine

ralan

alys

is(w

eigh

t,%,

igni

tedba

sis)

0.75

0.46

30.0

050

.20

6.19

9.07

16.4

030

.00

15.6

42.

653.

220.

6616

.40

2.33

0.42

1.53

7.92

0.51

1.12

1.58

1.94

1.01

0.63

55.8

09.

1426

.60

1.11

0.68

0.67

1.98

0.24

1.24

1.91

0.78

39.2

025

.42

21.4

03.

411.

164.

021.

920.

361.

261.

07

Coal

AR21

9

14.1

037

.60

48.3

012

,233

3.70

0.02

0.72

44.3

025

.32

18.9

03.

260.

623.

471.

470.

290.

990.

66

Coal

AR22

0

lo.m

43.0

346

.97

12,8

764.

320.

01

0.87

44.5

029

.59

18.8

00.

930.

740.

682.(

?00.

140.

990.

76

Btu

Coal

AR38

0

12.8

439

.00

48.1

612

,412

3.62

0.03

0.61

38.7

021

.91

17.7

97.

980.

829.

011.

810.

380.

760.

23

Coal

AR51

0

10.6

738

.69

50.6

412

,421

5.08

0.04

0.29

29.9

549

.M16

.25

0.75

0.41

1.01

1.24

0.30

0.73

0.03

6.82

* fb2.

82n T

90.3

6;

13,5

522

0.59

k

0.03

0.52

49.1

514

.62

26.0

81.

530.

930.

882.

400.

471.

621.

80

)

Page 8: Chlorine Determination

))

TABL

E2B

.(C

onti

nued

)

Ash,

%Vo

iati

ie,%

Fixe

dca

rbon

,%

Btupe

rpo

und

Sulf

ur,%

Chlo

ride

,%

Phos

phor

uspe

ntox

ide

(p20

5)Si

lica

(Si0

2)Fe

rric

oxid

e(F

e203

)

Alum

ina(A

1203

)Li

me(C

aO)

Magn

esia

(MgO

)Su

lfur

trio

xide

(S03

)Po

tass

iumox

ide(K

20)

Sodi

umox

ide(N

a20)

Tita

nia(T

i02)

Unde

term

ined

Coke

AR7?

2

8.B8

.1.

1.11

90=(

!112

,737

0.83

0.04

0.49

49.8

712

.46

27.4

22.

840.

882.

121.

820.

571.

350.

18

Coal

M77

3

5.47

.,A,

-41

.Y3

52,5

8

12,1

830.

390.

01

0.59

27.6

85.

9115

.94

14.2

33.

0723

.38

0.51

7.56

1.01

0.12

Coal

m77

4

7.21

5.n,

-J>

.YD

56

.83

13

,97

0

0.6

3

0.0

5

0.20

57.6

210

.62

19.9

23.

421.

292.

372.

420.

761.

000.

38

Prox

imat

ean

alys

is(d

ried

basi

s)

Coal

Coal

Coal

AR77

5AR

776

m77

7

6.55

11.0

123

.91

“r..

L3.DL

Fn.r

3C.4

3“n

““*U

.ZJ

~7

=8

336

.54

35,~

~

14,6

1614

,512

9,37

90.

891.

291.

410.

140.

070.

01

Mine

ralan

alys

is(w

eigh

t,%,

igni

tedba

sis)

0.42

0.21

0.29

48.2

842

.45

11.5

611

.14

29.1

924

.93

3.33

6.89

0.68

1.82

3.01

7.63

1.43

1.87

0.21

1.07

1.64

1.13

0.25

0.86

51.0

18.

8318

.30

8.42

1.96

8.74

0.92

0.23

1.06

0.24

Coal

AR77

8

7.74

.6..

J3.3

L56

,74

13,8

581.

430.

12

0.48

50.9

814

.47

24.6

82.

760.

762.

121.

630.

551.

170.

40

Coal

AR77

9

7.47

-C>.

-Jo

.13

56,3

814

,118

1.60

0.01

0.18

47.4

321

.78

22.0

11.

580.

991.

292.

740.

470.

800.

73

Coal

~78

0

8.22

mfi“r

JO.*

>53

.33

12,6

942.

060.

03

0.45

40.8

931

.92

19.2

51.

260.

791.

102.

050.

300.

971.

02

Coal

AR78

1

12.5

8.-

.,-.

JY.

>Y

47.8

3

12,5

232.

900.

01

0.32

53.9

516

.93

20.2

11.

351.

081.

182.

950.

571.

080.

38

COal

AR78

2

6.03

.-.-

+3.LU

48,6

9

13,6

253.

180.

01

0.39

34.9

236

.85

20.4

02.

500.

502.

180.

980,

310.

710.

26

Page 9: Chlorine Determination

TABL

E3.

Chlo

ride

inWh

oleCo

alCo

mpar

ison

ofPC

Ave

rsus

Alph

aRe

sour

cesAn

alys

es

Samp

le

AR11

4

AR21

3

AR21

6

AR21

7

AR21

8

AR21

9

AR22

0

AR77

4

AR77

8

(wei

ght,

%)

PCAAn

alys

es

PerAS

TMD2

361*

Aver

age

n,Q

45,

0.04

80.

046

0.04

6

0.03

7,0.

038

0.03

8

0.19

6,0.

195,

0.19

60.

198,

0.19

5,0.

195

0.02

8,0.

030

0.02

9

0.19

8,0.

201,

0.20

00.

200

0.02

9,0.

038,

0.03

20.

032,

0.03

0

0.01

3,0.

009

0.01

1

0.04

620.

044

0.04

60.

047

0.11

7,0.

117

0.11

60.

116,

0.11

4

Cert

ifie

d(A

lpha

Reso

urce

s)

0.05

0.04

0.20

~o.0

5

0.03

~o.o

l

0.20

:0.0

4

0.02

:0.0

1

0.01

:0.0

05

0.05

**

0.12

TABL

E4.

Sulf

ur(a

sS)

inWh

oleCo

alw

Comp

aris

onof

PCAve

rsus

Alph

aRe

sour

cesAn

alys

esQ

Samp

le

AR11

4

~~p~

~

AR21

6

AR21

7

AR21

8

AR21

9

AR22

0

AR77

4

AR77

8

AR77

9

(wei

ght,

%)

PCAAn

alys

es

PerAS

TMD3

177

0.88

,0.

89

0.50

,0.

59

0.96

,0.

97,

0.98

,0.

99

1.23

,1.

24

2.49

,2.

46,

2.51

3.69

,3.

73

4.28

,4.

25

0.60

,0.

60

1.43

,1.

45

1.54

,1.

55

Aver

age

0.89

0.60

0.98

1.24

2.49

3.71

4.27

0.60

1.44

1.55

Cert

ifie

d(A

lpha

Reso

urce

s)

0.91

0.50

0.99

~o.0

4

4.32

~0.D

7

0.63

1.43

1.60

*Usi

ngpo

tent

iome

tric

titr

atio

npr

oced

ure.

**Co

rrec

tedva

lue;

earl

ierce

rtif

icat

ionli

sted

as0.

06%.

)

Page 10: Chlorine Determination

)TA

BLE5.

Calo

rifi

cVa

lues

forWh

oleCo

alCo

mt)a

riso

nofPC

Ave

rsus

Alph

aRe

sour

cesAn

alys

es

)TA

BLE6.

Ash

inWh

oleCo

alCo

mpar

ison

ofPC

Ave

rsus

Alph

aRe

sour

cesAn

alys

es

Sam

ple

AR11

4

AR21

3*

AR21

6

AR21

7

AR21

8

AR21

9

AR22

0

AR77

4*

AR77

8*

AR77

9*

AR78

0*

AR78

2*

(Bri

tish

ther

malun

itspe

r

PCAAn

alys

es

PerAS

TMD2

015

Aver

age

12,8

95;12

,895

12,8

95

13,6

18;13

,588

13,6

03

14,3

7114

,371

12,7

7512

,775

13,4

43;13

,428

13,4

35

12,1

60;12

,170

;12

,155

12,1

34

12,7

4512

,745

13,9

19;13

,931

13,9

25

13,8

74;13

,862

13,8

68

14,1

22;14

,088

14,1

05

12,6

8812

,688

13,6

5413

,654

poun

d)(w

eigh

t,%)

Cert

ifie

d(A

lpha

Reso

urce

s)

13,0

24

13,6

22

14,4

3935

5

12,8

69~6

3

13,5

1326

2

12,2

3324

4

12,8

76~3

8

13,9

70

13,8

58

14,1

18

12,6

94

13,6

25

Samp

le

AR11

4

AR21

3

AR21

6

AR21

7

AR21

8

AR21

9

AR22

0

AR77

4

AR77

8

AR77

9

PC

AA

nal

yses

Per

AS

TM

D31

74Mo

difi

ed

9.70

,9.

63

6.87

7.52

10.4

7,10

.51

8.21

,8.

13

14.2

2,14

.17

10.0

9,10

.00

7.18

7.67

7.42

Cert

ifie

d(A

lpha

Reso

urce

s)

9.85

6.88

7.51

~0.2

8

10.4

7:0.

33

8.26

~0.2

9

14.1

0:0.

41

10.0

0:0.

30

7.21

7.74

7.47

~res

hly

open

edbo

ttle

s.

Page 11: Chlorine Determination

TABL

E7.

AshAn

alys

isCo

nver

tedto

Whol

eCo

alBa

sis

Comp

aris

onof

PC

Ave

rsu

sA

lph

aR

eso

urc

esA

nal

yses

Si02

AlO

23

FeO 23

CaO

MgO

Na20

K20

P205

Ti02

PCAAn

alys

es~e

r~~f

~e~

PCAAn

alys

esCe

rtif

ied

PCAAn

alys

esCe

rtif

ied

PCAAn

alys

esCe

rtif

ied

PCAAn

alys

esCe

rtif

ied

PCAAn

alys

esCe

rtif

ied

PCAAn

alys

esCe

rtif

ied

PCAAn

alys

es(C

erti

fied

)*Re

vise

dAR

**

PCAAn

alys

esCe

rtif

ied

(wei

ght,

%)

AR11

4

5.10

KIQ

Q.r

2.80

2.87

0.98

0.96

0.24

0.24

0.07

50.

078

0.04

80.

038

0.18

0.16

0.03

3

AR21

8

3.17

29a

“---

i.84

1.77

2.10

2.10

0.27

0.28

0.09

70.

096

0.04

00.

030

0.18

0.16

0.01

6(0

.043

)(0

.059

)

0.06

4

0.14

0.10

0.14

0.10

*Cer

tifi

edva

lues

forPO

arein

erro

r.25

AR21

9

6.24

6.7K

“.-”

2.81

2.66

3.60

3.57

0.45

0.46

0.09

10.

087

0.05

30.

041

0.24

0.21

0.03

8

AR22

0

4.42

aaA~

.A.

1.Y

3

1.88

2.96

2.96

0.09

0.09

0.07

10.

074

0.01

90.

014

0.21

0.20

0.01

1(0

.102

)(0

.087

)

0.14

0.09

0.14

0.10

TABL

E8.

P05

fnAs

h6

Cmpa

riso

nof

PCAve

rsus

lpha

Reso

urce

sAn

alys

es

Samp

le

AR11

4

AR21

3

AR21

6

AR21

7

AR21

8

AR21

9

AR22

0

AR77

4

AR77

8

AR77

9

(wei

ght,

%)

Cer

tifi

ed*

PC

A(A

lph

aR

eso

urc

es)

0.34

0.44

0.39

0.71

0.22

0.46

0.50

0.63

0.19

0.78

0.27

0.72

0.11

0.87

0.16

0.20

0.46

0.48

0.10

0.18

*Ori

gina

lva

lues

foun

dto

bein

erro

r;re

vise

dva

lues

ente

red

here

.

**La

terce

rtif

iedva

lues

rece

ived

from

Alph

aRe

sour

cesre

pre-

sent

ingre

sult

sfr

omagr

eate

rnu

mber

ofpa

rtic

ipat

ing

labo

rato

ries

.

Page 12: Chlorine Determination

)T

A6L

E9.

Lin

ear

Reg

ress

ion

Dat

afo

r5e

vera

lO

xid

esan

dC

hlo

rid

ein

whol

eCo

al

)

sio2

A120

3‘e

2Q3

CaO

Mgo

S03

Na20

K20

Ti02

‘2°5

cl-

Corr

eiat

ionfa

ctor

-..

.AU

.Y03

Yn

“n””

U.Y

U*O

0.97

190.

9760

0.91

$2G

.987

~~.

~~~~

~.~~

~~n

on

lcV

.OU

IUn

n>n

nU

.7JU

Vn

nn

oc

V.3

YO

J

S1op

e4.

3018

1.28

623.

1859

0.47

350.

1396

0.15

990.

0751

o.i9

340*

Q972

(3.0

710

0.22

48

Inte

rcep

t-0

.852

2-0

.116

4-0

,889

8-0

.122

4-0

,120

1-1

.208

7-0

.058

0-0

.013

9-0

.022

80.

0099

-0.0

166

Stan

dard

devi

atio

n,%

0.20

0.11

0.28

0.05

0.04

0.55

0.01

20.

030.

030.

006

0.00

4

Aver

age

erro

r,%

0.16

0.08

0.22

0.05

0.03

0.44

0.00

90.

020.

020.

004

0.00

3

Numb

erof

samp

les

1921

1919

2222

2222

2210

13

Page 13: Chlorine Determination

TABL

E10

.Mu

ltip

leRe

gres

sion

Coef

fici

ents

forSe

lect

edO

xid

esin

Whol

eC

oal

Si02

“2°3

‘e20

3Ca

OS0

3S0

3K2

0Ti

02

(All

)(L

ow)

Corr

elat

ionfa

ctor

Stan

dard

deviat

ion,

%

Aver

age

erro

r,%

Inte

rcep

t

x — X2

— Si02

A12

03

Fe20

3

CaO

S03

K20

Ti02

0.99

80

0.14

0.12

0.44

4919

0.44

0835

0.05

1240

-0.0

4211

1

-0.0

0042

8

0.00

7096

0.00

0354

-0.0

0591

2

---

0.99

42

0.08

0.06

0.15

736

0.35

579

-0.0

1096

8

0.02

4456

.

0.00

1232

0.01

1426

---

-0.0

0781

7

0.01

0949

0.99

59

0.11

0.08

-0.0

1771

4

0.03

5487

0.00

0259

0.00

5010

0.00

2309

0.00

0746

0.00

0360

-0.0

0208

7

-0.0

0609

5

0.99

86

0.02

0.02

-0.0

3845

5

0.22

6151

0.02

5597

0.01

6752

0.01

2354

0.00

1971

-0.0

0045

3

-0.0

1012

1

-0.0

2940

0

0.99

39

0.38

0.28

-0.3

1241

1

0.11

0916

---

0.00

4766

0.01

7776

0.00

0931

..-

.

-0.0

0137

2

-0.0

2021

8

0.98

92

0.17

0.14

0.07

581

0.14

524

---

0.01

0012

0.01

8700

0.00

0258

-0.0

0318

2

-0.0

0359

4

-0.0

3666

8

0.99

50

<().

01

0.01

0.00

7959

0.00

8172

---

0.00

2205

-0.0

0159

1

0.00

0136

0.00

0899

0.00

0074

0.00

0507

0.99

30

<0.0

1

0.01

-0.0

1720

9

0.02

5449

-0.0

0241

6

0.00

2623

-0.0

0044

4

0.00

0052

0.00

1223

0.00

0118

-0.0

0048

8

~an

d~z

areth

ere

gres

sion

coef

fici

ents

ofth

ean

alyt

e.

---te

rmre

ject

edby

prog

ram.

repe

atof

X2te

rm.

——

))

Page 14: Chlorine Determination

)TA

BLE11

.Li

near

Regr

essi

onDa

tafo

rS0

3

Samp

le

AR11

4AR

213

/InO

lcn

Kcl

>

AR21

6

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

172

AR77

3AR

774

AR17

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

‘I26

.62

20.1

8~~

.~~

22.7

923

.77

45.0

457

.51

79.5

064

.90

83.1

8

18.1

024

.42

11.9

316

.70

24.4

0

27.2

122

.72

32.0

931

.02

41.2

8

55.1

460

.66

(wei

ght,

%)

Cert

ifie

d

2.28

1.50

1lK

,.I.

J2.

483.

08

6.40

9.25

10.8

09.

0512

.70

1.48

2.08

0.98

1.58

2.23

3.23

3.53

3.58

4.00

5.15

7.25

7.95

Corr

elat

ionfa

ctor

S1op

eIn

terc

ept

Stan

dard

devi

atio

nAv

erag

eer

ror

XRF

3.05

2.02

nah

“..7 2.44

2.59

5.99

7.99

11.5

09.

1712

.09

1.69

2.70

0.70

1.46

2.69

3.14

2.43

3.92

3.75

5.39

7.61

8.49

0.98

710.

1599

-1.2

087

0.55

0.44

A

*.77

+0.5

2n

71

–.”.

.!

-0.0

4-0

.49

-0.4

1-1

.26

*.70

W.12

-0.6

1

4.21

G.62

-0.2

8-0

.12

*.46

-0.0

9-1

.10

m.34

-0.2

5~.

24

u3.3

6@.

54

)TA

BLE12

.Mu

ltip

leRe

gres

sion

Data

forS0

3

Samp

le

AR11

4AR

213

AR21

5AR

216

AR21

7

AR21

8

AR21

9AR

220

AR38

0AR

510

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6

AR77

7AR

778

AR

779

AR

780

AR78

1AR

782

(wei

ght,

%)

Cert

ifie

d

2.28

1.50

1.15

2.48

3.08

6.40

9.25

10.8

09.

0512

.70

1.48

2.08

0.98

1.58

2.23

3.23

3.53

3.58

4.00

5.15

7.25

7.95

XRF

2.82

1.66

0.90

2.30

2.79

5.22

8.93

10.6

39.

1812

.68

1.57

2.67

0.75

1.58

2.25

3.53

3.37

3.61

3.80

5.63

7.57

8.31

Stan

dard

devi

atio

n0.

38Av

erag

eer

ror

0.28

A

+0.54

+o.1

6

-0.2

5-0

.18

-0.2

9

-1.1

8

-0.3

2-0

.17

+0.1

3-0

.02

+0.0

9+0

.59

-0.2

30.

00M

.02

+0.3

0-0

.16

@.0

3-0

.20

+0.4

8

+0.3

24.

36

Page 15: Chlorine Determination

TABL

E13

.Mu

ltip

leRe

gres

sion

Data

forS0

3

(Inc

lude

son

lysa

mple

swi

thle

ssth

an5.

15%S0

3)

(wei

ght,

%)

Samp

le

AR11

4.r

.Q’l

-/i

KLIJ

AR21

5AR

216

AR21

7

AR77

1

AR77

2AR

773

AR77

4AR

775

AR77

6AR

777

AR77

8AR

779

AR78

0

Cert

ifie

d

2.28

.rn

1.3U

1,15

2.48

3.08

1.48

2.08

0.98

1.58

2.23

3.23

3.57

3.58

4.00

5.15

XRF

2.57

1“,

1.+

1

~=

17

2.23

2.91

1.29

2.39

1.01

1.83

2.10

3.27

3.47

3.66

3.92

5.12

Stan

dard

devi

atio

n0.

17Av

erag

eer

ror

0.14

A

+o.2

9A.-

-U,U

Y+

Q*o

~

-0.2

5-0

.17

-0.1

9+0

.31

+0.0

3+0

.25

-0.1

3

+0,04

-0,1

0+0

.08

-0.0

8-0

.03

))

Page 16: Chlorine Determination

)TA

BLE14

.Li

near

Regr

essi

onDa

tafo

rSi

02

Samp

le

AR11

4AR

213

AR21

5*AR

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3*

AR77

4AR

775

AR77

6AR

777*

AR77

8AR

779

AR78

0

AR78

1

AR78

2

‘I

1.38

871.

0219

0.41

211.

1480

1.53

97

0.95

241.

6330

1.19

581.

2981

0.87

56

1.04

241.

2330

0.40

13

1.08

300.

9989

1.35

562.

4864

1.11

911.

0588

0.97

01

1.76

480.

6497

(wei

ght,

%)

Cert

ifie

d

5.18

3.46

1.70

3.77

5.84

3.24

6.25

4.45

4.97

3.20

3.35

4.43

1.51

4.15

3.16

4.67

12.2

03.

953.

543.

36

6.79

2.10

Corr

elat

ionfa

ctor

Slop

eIn

terc

ept

Stan

dard

devi

atio

nAv

erag

eer

ror

XRF

5.12

3.54

4.09

5.77

3.24

6.17

4.29

4.73

2.91

3.63

4.45

3.81

3.44

4.98

3.96

3.70

3.32

6.74

1.94

0.98

594,

3018

-0.8

522

0.20

0.16

A

-0.0

6+o

.08

+0.3

Z-0

.07

0.00

-0.0

8-0

.16

-0.2

4-0

.29

+o,2

8

+0.0

2

-0.3

4+0

.28

+0.3

1

+0.0

1+o

016

-0,0

4

-0.0

5-0

.16

TABL

E15

.Mu

ltip

leRe

gres

sion

Data

forSi

Op

Samp

le

AR11

4AR

213

AR21

5AR

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6

AR77

7AR

778

AR77

9AR

780

AR78

1AR

782

(wei

ght,

%)

Cert

ifie

d

5.18

3.46

1.70

~.~~

5.84

3.24

6.25

4.45

4.97

3.20

3.35

4.43

1.51

4.15

3.16

4.67

12.2

03.

953.

54

3.36

6.79

2.10

XRF

4.97

3.49

1.54

3.94

5.63

3.25

6.36

4.39

4.85

3.02

3.54

4.29

1.51

3.95

3,35

4.74

12.2

14.

013.

67

3.37

6.89

2.28

Stan

dard

devi

atio

n0.

14Av

erag

eer

ror

0.12

A -0.2

1m.

03-0

.16

+0.?

7-0

.21

@.ol

+().

11

-0.0

6-0

.12

-0.1

8

+().

19

-0.1

40.

00-0

.20

+().

19

+0.0

7

+0.0

1+0

.06

+0.1

3

@.ol

+0.1

0

+o.1

8

mot

used

inli

near

regr

essi

on.

Page 17: Chlorine Determination

TABL

E16

.Li

near

Regr

essi

onDa

tafo

rA1

203

Samp

le

AR11

4AR

213

AR21

5AR

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777*

AR77

8AR

779

AR78

0

AR78

1AR

782

‘I2.

1517

1.53

330.

7747

~.g:

~~

2.22

14

1.47

492.

1371

1.51

601.

7322

1.30

07

1.54

871.

9696

0.81

061.

2165

1.73

46

2.27

652.

7067

1.58

041.

3828

1.29

54

2.05

781.

0535

(wei

ght,

%)

Cert

ifie

d

2.87

1.79

0.93

2.25

2.79

1.77

2.66

1.88

2.28

1.73

1.78

2.32

0.87

1.44

1.91

2.74

4.38

1.91

1.64

1.58

2.54

1.23

Corr

elat

ionfa

ctor

Slop

eIn

terc

ept

Stan

dard

devi

atio

nAv

erag

eer

ror

XRF

2.65

1.86

0.88

2.38

2.74

1.78

2.63

1.83

2.11

1.56

1.88

2.42

0.93

1.45

2.11

2.81

1.92

1.66

1.55

2.53

1.24

0.98

461.

2862

-0.1

164

0.11

0.08

A

-0.2

2W.

07-0

.05

%.13

-0.0

5

W.ol

-0.0

3-0

.05

-0.1

7-0

.17

@lo

+0.1

0~.

06+0

,01

W.20

N.07

+0.0

1*.

02-0

.03

-0.0

1+0

.01

TA

BL

E17

.M

ult

iple

Reg

ress

ion

Dat

afo

rA

1203

Samp

le

AR11

4AR

213

AR21

5AR

2i6

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

(wei

ght,

%)

Cert

ifie

d

2.87

1.79

0.93

~.25

2.79

7.77

2.66

1.88

2.28

1.73

1.78

2.32

0.87

1.44

1.91

2.74

4.38

1.91

1.64

1.58

2.54

1.23

XRF

2.68

1.82

0.92

2.31

2.71

1.75

2.88

1.86

2.22

1.63

1.79

2.32

0.95

1.45

2.03

2.77

4.35

1.92

1.59

1.55

2.60

1.22

Stan

dard

devi

atio

n0.

08Av

erag

eer

ror

0.06

A

-0.1

9+0

.03

-0.0

1+0

.06

-0.0

8

-0.0

2

*.22

-0.0

2-0

.06

-0.1

0

+0.0

10,

00+0

.08

W.ol

+0.1

2

+0.0

3

-0.0

3+O

.O1

-0.0

5-0

.03

fl.0

6-0

.01

*Not

used

inli

near

regr

essi

on.

)

Page 18: Chlorine Determination

)TA

BLE18

.Li

near

Regr

essi

onDa

tafo

rFe

203

Samp

le

AR11

4A

D91

2n

,.L

,.J

AR21

5*AR

216

AR21

7

AR21

8

AR21

9AR

220

AR38

0AR

510

AR77

1AR

772

AR77

3*AR

774

AR77

5

AR77

6AR

777*

AR77

8AR

779

AR78

0

AR78

1AR

782

‘I

0.61

44n

7nK

l“.

,””.

0.22

310.

4206

0.48

44

0.93

151.

2633

1.11

951.

0735

1.87

39

0.70

910.

7184

0.22

900.

4928

0.46

54

0.67

190.

7281

0.60

820.

8521

1.31

12

0.88

831.

0134

(wei

ght,

%)

Cert

ifie

d

0.96

1nl

..”.

0.35

0.68

0.96

2.10

3.57

2.96

2.81

5.23

1.00

1.11

0.32

0.75

0.76

1.24

2.11

1.12

1.62

2.62

2.04

2.22

Corr

elat

ionfa

ctor

Slop

eIn

terc

ept

Stan

dard

devi

atio

nAv

erag

eer

ror

XRF

1.07

~.~~

0.45

0.65

2.08

3.13

2.68

2.53

5.08

1.37

1.40

0.68

0.59

1.25

1.05

1.82

3.29

1.94

2.34

0.97

193.

1849

;.~;

98

0:22

A

+0.11

+o=~

~

-0.2

3-0

.31

-0.0

2

-0.4

4-0

.28

-0.2

8-0

.15

*.37

*.29

-0.0

7-0

.17

4.01

-0.0

7a.

20*.

67

-0.1

0@.

12

TA8L

E19

.Wl

tipl

eRe

gres

sion

Data

forFe

203

Sam

ple

AR11

4AR

213

AR21

5AR

216

AR21

7

AR21

8

AR21

9AR

220

AR38

0AR

510

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

(wei

ght,

%)

Cert

ifie

d

0.96

1.01

0.35

0.68

0.96

2.10

3.57

2.96

2.81

5.23

1.00

1.11

0.32

0.75

0.76

1.24

2.11

1.12

1.62

2.62

2.04

2.22

XRF

1.13

0.97

0.29

0.69

0.93

1.78

3.47

2.85

2.75

5.25

0.96

1.24

0.28

0.78

0.75

1.31

2.16

1.15

1.58

2.76

2.10

2.37

Stan

dard

devi

atio

n0.

11Av

erag

eer

ror

0.08

A

io.1

7-0

.04

-0.0

6U3

.ol

-0.0

3

-0.3

2-0

.10

-0.1

1-0

.06

a.02

-0.0

4W.

13-0

.04

a.03

-0.0

1

a.07

W.05

W.03

-0.0

4@.

14

@.06

W.15

*Not

used

inli

near

regr

essi

on.

Page 19: Chlorine Determination

TABL

E20

.Li

near

Regr

essi

onDa

tafo

rCa

O

Samp

le

AR11

4AR

213

..-7

,*n

ficl

a-

AR

21

6

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

JAR

772

AR77

3*AR

774

AR77

5

AR77

6AR

777*

AR77

8AR

779

AR78

0

AR78

1AR

782

RI

0.84

230.

5578

Q91

cnC

.ala

u

0.81

630.

4276

0.90

930.

9945

0.35

192.

2490

0.28

07

0.48

100.

8945

2.27

800.

9229

0.85

90

1.92

67

3.27

860.

7489

0.59

850.

4090

0.52

340.

5316

(wei

ght,

%)

Cert

ifie

d

0.24

0.10

nQ

Ov.

”, 0.20

0.12

0.28

0.46

0.09

1.02

0.08

0.10

0.25

0.78

0.26

0.22

0.76

2.01

0.21

0.12

0.10

0.17

0.15

Corr

elat

ionfa

ctor

S1op

eIn

terc

ept

Stan

dard

devi

atio

nAv

erag

eer

ror

XR

F

0.28

0.14

0.26

0.08

0.31

0.35

0.04

0.94

0.01

0.10

0.30

0.31

0.28

0.79

0.23

0.16

0.07

0.12

0.13

0.97

600.

4735

-0.1

224

0.05

0.05

A

W.04

a.04

@.06

-0.0

4

M.0

3-0

.11

-0.0

5-0

.08

-0.0

7

0.00

m.0

5

M.0

5ti

.06

4.03

M.0

2M

.04

-0.0

3

-0.0

5-0

.02

TABL

E21

.Mu

ltip

leR

egre

ssio

nDa

tafo

rCa

O

Samp

le

AR11

4AR

213

AR~~

~

AR21

6AR

217

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

(wei

ght,

%)

Cert

ifie

d

0.24

0.10

~=~g

0.20

0.12

0.28

0.46

0.09

1.02

0.O

B

0.10

0.25

0.78

0.26

0.22

0.76

2.01

0.21

0.12

0.10

0.17

0.15

XRF

0.26

0.12

~.~

g

0.21

0.08

0.27

0.42

0.09

1.03

0.09

0.10

0.20

0.81

0.27

0.25

0.77

2.01

0.23

0.13

0.12

0.15

0.17

Stan

dard

devi

atio

n0.

02Av

erag

eer

ror

0.02

A

@.02

4.02

-~.~

~

W.ol

-0.0

4

-0.0

1-0

.04

0.00

@.ol

W.ol

0.00

-0.0

5w.0

3M

.01

w.0

3

@.0

10.

00w

.02

W.ol

@.0

2

-0.0

2M

.02

*Not

used

inli

near

regr

essi

on.

))

,)

Page 20: Chlorine Determination

)TA

BLE22

.Li

near

Regr

essi

onDa

tafo

rMg

O

Samp

le

AR11

4AR

213

flQ

91C.

“,.

L.”

AR21

6AR

217

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6

AR77

7AR

778

AR77

9AR

780

AR78

1AR

782

RI

1.30

801.

1731

g.fi

~~~

1.09

301.

2621

1.78

621.

8002

1.80

351.

8494

1.75

86

1.16

861.

3445

1.62

461.

3446

1.07

88

2.29

503.

9168

1.20

641.

3606

1.45

87

2.06

601.

3261

(wel

gnt,

%)

Cert

ifie

d

0.08

0.06

0=18

0.05

0.07

0.10

0.09

0.07

0.11

0.04

0.06

0.08

0.17

0.09

0.05

0.20

0.47

0.06

0.07

0.07

0.14

0.03

~O~l

atio

nfa

ctor

Inte

rcep

tSt

anda

rdde

viat

ion

Aver

ageer

ror

XR

F

0.06

0.04

n.11

0.03

0.06

0.13

0.13

0.13

0.14

0.12

0004

0.07

0.11

0.07

0.03

0.20

0.43

0.05

0.07

0.08

0.17

0.07

0.91

420.

1396

-0.1

201

0.04

0.03

A

-0.0

2-0

.02

-0.0

7-0

.02

-0.0

1

a.03

N.04

@.06

W*O3

u3.0

8

-0.0

2-0

.01

-0.0

6-0

.02

-0.0

2

0.00

-0.0

4-0

.01

0.00

a.0

1

w.0

34.

04

Page 21: Chlorine Determination

TABL

E23

.Li

near

Regr

essi

onD

ata

for

K20

Sai

np

le

AR11

4AR

213

AR21

5AR

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR7B

0

AR78

1AR

782

‘I

1.00

211.

0847

0.19

070.

7937

1.23

98

0.97

561.

0829

1.04

531.

1315

0.60

03

1.07

820.

9594

0.20

831.

1306

0.64

87

1.19

460.

8138

0.77

631.

2930

0.90

17

1.74

380.

3557

(wei

ght,

%)

Cer

tifi

ed

0.17

0.16

0.02

0.12

0.21

0.16

0.21

0.20

0.23

0.13

0.16

0.16

0.03

0.17

0.09

0.21

0.22

0.13

0.20

0.17

0.37

0.06

Corr

elat

ionfa

ctor

Slop

eIn

terc

ept

Stan

dard

devi

atio

nAv

erag

eer

ror

XRF

0.18

0.20

0.02

0.14

0.23

0.17

0.20

0.19

0.20

0.10

0.19

0.17

0.03

0.20

0.11

0.21

0.14

0.14

0.24

0.16

0.32

0.05

0.93

340.

1934

-0.0

139

0.03

0.02

A

tool

+0 .04

---

u.U

u%

.02

a*02

+0.

01-0

.01

-0.0

1-0

.03

-0.0

3

+0.0

3io

.ol

0.00

a.03

a.02

0.00

-0.0

8W.

olW.

04-0

.01

-0.0

5-0

.01

TABL

E24

.M

ult

iple

Reg

ress

ion

Dat

afO

rK

20

Sam

ple

AR11

4AR

213

..a.

,.N

K<1

3AR

~~~

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

(wei

ght,

%)

Cert

ifie

d

0.17

0.16

-..

U.U

L0

81

Z

0.21

0.16

0.21

0.20

0.23

0.13

0.16

0.16

0.03

0.17

0.09

0.21

0.22

0.13

0.20

0.17

0.37

0.06

XRF

0.17

0.16

...

U.U3

0=12

0.21

0.16

0.23

0.20

0.23

0.12

0.16

0.16

0.03

0.17

0.09

0.21

0.22

0.12

0.20

0.16

0.36

0.06

A 0.00

0.00

.,-.n.

W.ul

0:00

0.00

0.00

W*O2

0.00

0.00

-0.0

1

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.0

10.

00-0

.01

-0.0

1

0.00

0.01

Stan

dard

devi

atio

n.

Aver

ageer

ror

<0.0

1

N o

))

Page 22: Chlorine Determination

)TA

BLE25

.Li

near

Regr

essi

onDa

tafo

rTi

02

Sam

ple

AR11

4AR

~~~

AR21

5AR

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

‘I

1.78

981.~~

~u

0.93

601.

6516

1.54

40

1.26

021.

3699

1.06

981.

0667

0.86

50

1.76

841.

6943

0.99

131.

0889

1.56

21

1.52

861.

9443

1.26

480.

8897

1.06

55

1.40

97

0.68

48

(wei

ght,

%)

Cer

tifi

ed

0.14

0.11

0.06

0.12

0.13

0.10

0.14

0.10

0.10

0.08

0.11

0.12

0.06

0.07

0.11

0.12

0.25

0.09

0.06

0.08

0.14

0.04

~O~l

atio

nfa

ctor

Inte

rcep

tSt

anda

rdde

viat

ion

Aver

ageer

ror

XRF

0.15

0.14

0.07

0.14

0.13

0.10

0.11

0.08

0.08

0006

0.15

0.14

0.07

0.08

0.13

0.13

0.17

0.10

0.06

0.08

0.11

0.04

0.80

160.

0972

-0.0

228

0.03

0.02

A

@.ol

a.0

3@.

ol@

.02

0.00

0.00

-0.0

3-0

.02

-0.0

2-0

.02

@.0

4+0

.02

+0.

01N

.01

+0.0

2

@.0

1-0

.08

+0.0

10.

000.

00

-0.0

3

0.00

)TA

BLE26

.Wl

tipl

eRe

gres

sion

Data

for

Ti02

Samp

le

AR11

4AR

213

AR21

5AR

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR77

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

(wei

ght,

%)

Cert

ifie

d

0.14

0.11

0.06

0.12

0.13

0.10

0.14

0.10

0.10

0.08

0.11

0.12

0.06

0.07

0.11

0.12

0.25

0.09

0.06

0.08

0.14

0.04

Stan

dard

devi

atio

nXRF

0.14

0.11

0.06

0.1.

20.

13

0.10

0.14

0.10

0.10

0.08

0.11

0.13

0.06

0.08

0.11

0.13

0.25

0.10

0.05

0.08

0.14

0.05

A 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

4.01 0.00

+0.

010.

00

+0.

010.

00+

0.01

-0.0

10.

00

0.00

+0.

01

0.01

Aver

ageer

ror

<0.0

1

Page 23: Chlorine Determination

TABL

E27

.Li

near

Regr

essi

onDa

tafo

rNa

20

Sam

ple

AR11

4AR

213

.n*1

Cm

zla

A!?

216

AR21

7

AR21

8AR

219

AR22

0AR

380

AR51

0

AR77

1AR

772

AR77

3AR

774

AR71

5

AR77

6AR

777

AR77

8AR

779

AR78

0

AR78

1AR

782

‘I

1.44

241.

2430

cC

CA

9O

.ao

yc

1.26

411.

1452

1.30

981.

3406

0.97

221.

5751

0.91

86

1.20

221.

6709

6.38

731.

5409

1.11

94

2.32

081.

3477

1.44

660.

9246

0.97

75

1.61

130.

9628

(wei

ght%)

Cert

ifie

d

0.03

80.

025

~,Q

~

0.03

80.

025

0.03

00.

041

0.01

40.

049

0.03

2

0.03

20.

051

0.41

0.05

50.

014

0.11

80.

055

0.04

30.

035

0.02

5

0.07

20.

019

~O~l

atio

nfa

ctor

Inte

rcep

tSt

anda

rdde

viat

ion

Aver

ageer

ror

XRF

0.05

00.

035

g.~~

0.03

70.

028

0●04

00.

043

0.01

50.

060

0.01

1

0.03

20.

067

0.42

0.05

80.

026

0.11

60.

043

0.05

10.

011

0.01

5

0.06

30.

014

:.;;

;:

::;;

;0

0:00

9

A

@.o1

2W.

olo

4.!!

20-0

.001

W.00

3

W.ol

o@.

oo2

Wool

to.o

ll-0

.021

0.00

0@.

016

M.ol

oN

.003

4.01

2

-0.0

02-0

.012

@.0

08-0

.024

-0.0

10

-0.0

09-0

.005

TABL

E28

.Li

near

Regr

essi

onOa

tafo

rP2

05

Samp

le

AR11

4AR

213

AD

716

.“.

-,.,

AR21

7AR

218

AR21

9

AR22

0AR

774

AR71

8AR

779

(wei

ght,

%)

‘IPC

A

0.67

50.

033

0.65

90.

027

n?G

l“.

””,

nn1

7w.”,

,0.

752

0.05

20.

334

0.01

6

0.57

50.

038

0.30

60.

011

0.30

10.

011

0.67

00.

036

0.26

50.

007

Corr

elat

ionfa

ctor

Slop

eIn

terc

ept

Stan

dard

devi

atio

nAv

erag

eer

ror

XR

F

0.03

8

0.03

7n

nl~

“.”,-

0.04

30.

014

0.03

1

0.01

20.

011

0.03

80.

009

0.93

040.

0710

0.00

990.

006

0.00

4

A

+0.0

05+(

).01

0_~

.g~~

-0.0

09-0

.002

-0.0

07+0

.001

0.00

0W.

002

U3.0

02

)

Page 24: Chlorine Determination

PCA X!esearch and Development Bulletin 23

3 “-6sg $8--O- . . . . do000

w Tt-f”)‘Dhcu

$

--c-v I-NNNN

Z%ZZ%

c + *

Page 25: Chlorine Determination

24 Coal Charac~erization b.v X-Ray Speclrometry

(IJ

Page 26: Chlorine Determination

I Si02

*

7.58

5.60

6.27

8.40

5.20

8.91

6.53

5.77

5.91

6.11

5.38

9.51

7.06

4.76

5.65

5.26

3.52

6.69

7.40

13.4

2

2.20

2.17

[2Si

02

57.4

631

.36

39.3

170

.56

27.0

4

79.3

942

.64

33.2

934

.93

37.3

3

28.9

290

.36

49.8

322

.70

31.8

7

27.6

212

.38

44.7

854

.70

180.

10

4.84

4.71

)TA

BLEA-

1.Mu

ltip

leRe

gres

sion

Data

forSi

lica

(Si0

2)

(Based

onLucas-Tooth

andPy

neeq

uati

on)

[1Si

02”1

A120

3)

36.2

319

.04

27.0

941

.66

17.1

1

42

.32

21

.94

17

.71

15

.96

21

.51

20.5

243

.40

26.8

413

.63

18.8

8

14.7

08.

0028

.14

37.0

578

.91

3.73

3.82

*ISi

02=co

unts

perse

cond

/100

0

I1Si

02“1

Fe20

3)

154.

0313

0.54

87.3

413

5.07

160.

52

371.

9024

0.83

161.

9696

.04

123.

06

82.8

227

9.39

250.

7129

5.36

132.

19

227,

5511

7.77

157.

6216

4.19

321.

41

16.29

16.34

(1S

i02*

1CaO

)

8.34

3.86

6.14

2.69

6.08

11.6

72.

943.

587.

095.

87

6.13

6.60

21.0

61.

773.

60

2.85

2.48

6.20

18.9

058

.38

6.82

6.55

(1S

i02e

1S03

)

161.

0891

.06

120.

2616

1.28

195.

00

423.

0542

0.20

147.

6583

.04

162.

28

105.

6942

8.33

374.

4332

3.89

90.5

8

192,

2918

9.22

141.

0517

2.30

257.

40

25.1

521

.85

[1Si

02”1

K20)

48.9

739

.26

32.0

467

.45

32.8

1

62.2

844

.01

48.1

843

.20

30.5

5

22.4

610

6.73

51.4

318

.42

38.9

8

30.3

58.

0240

.96

57.2

070

.32

2.73

2.91

(1Si

02”1

Ti02

)

35

.47

24

.64

27

.15

33

.94

17

.16

31

.99

18

.35

8.2

51

6.8

42

0.2

2

21

.96

35

.02

19

.68

10

.77

25

.81

14

.48

6.2

32

9.6

12

9.3

86

8.1

7

5.4

45

.62

5.18

3.46

3.77

5.84

3.24

6.25

4.45

3.54

4.15

3.95

3.16

6.79

4.97

3.20

3,35

3.36

2.10

4.43

4.67

12.2

0

1.70

1.51

Page 27: Chlorine Determination

TABL

EA-

2.hl

tipl

eRe

gres

sion

Dat

afo

rA

lum

ina

(A12

03)

1A12

03*

4.78

3.40

4.32

4.96

3.29

4.75

3.36

3.07

2.70

3.52

3.82

4.57

3.80

2.86

3.34

2.80

2.27

4.21

5.01

5.88

1.68

1.76

2 “2°3

22.8

511

.56

18.6

624

.60

10.8

2

22.5

611

.29

9.42

7.29

12.3

9

14.5

620

.85

14.4

68.

1811

.18

7.82

5.17

17.6

825

.09

34.5

7

2.82

3.10

1A12

03”1

Si02

)

36.2

319

.04

27.0

9;;

.;:

.

42.3

221

.94

17.7

115

.96

21.5

1

20.5

243

.40

26.8

413

.63

18.8

8

14.7

08.

0028

.14

;:.;

;.

3.73

3.82

(Bas

edon

Luca

s-To

othan

dP~

eeq

uati

on)

1A12

03”1

Fe20

3)

97.1

379

.25

60.1

879

.76

101.

56

198.

2712

3.92

86.1

743

.88

70.8

9

58.7

713

4.20

135.

041;

:.;;

.

121.

1176

.11

99.0

411

1.20

140.

83

12.3

313

.25

[1A

1203

*1C

aO)

5.26

2.97

4.23

2.83

3.85

6.22

1.51

1.90

3.24

3.38

4.35

3.17

11.35

1.06

2.13

1.52

1.60

3.90

12.8

025

.58

5.16

5.32

[*A1

203”

1S03

)

101.

5855

.28

82.8

695

.23

123.

38

225.

5321

6.22

78.5

637

.94

93.4

9

75.0

020

5.74

201.

6719

4.44

53.6

6

102.

3512

2.28

88.6

311

6.70

112.

78

19.0

317

.72

[‘A1

203*1K

20)

30.8

823

.83

22.0

839

.83

20.7

6

33.2

022

.65

25.6

319

.74

17.6

0

15.9

451

.27

;<.;

:

23:0

9

16.1

55.

1825

.73

:1.:

!.

2.07

2.36

[1A1

203*

1Ti0

2)

22.3

714

.96

18.7

119

.96

10.8

6

17.0

59.

447.

157*

7O11

.65

;;.;:

10:6

06.

4715

.29

7.71

4.03

18.6

119

.90

29.8

7

4.12

4.56

‘A12

03

2.87

1.79

2.25

2.79

1.77

2.66

1.88

1.64

1.44

1.91

1.91

2.54

2.28

1.73

1.78

1.58

1.23

2.32

2.74

4.38

0.93

0.87

*IA1

203=co

unts

per

seco

nd/1

000

)

Page 28: Chlorine Determination

)

1Fe2

03*

20.3

223

.31

13.9

316

.08

30.8

7

41.7

436

.88

28.0

716

.25

20.1

4

15.4

029

.39

35.5

262

.00

23.4

2

43.3

033

.47

23.5

522

.20

23.9

5

7.34

7.53

12

‘e20

3

412.

9054

3.36

194.

0525

8.57

952.

96

1742

.23

1360

.13

787.

9226

4.06

405.

62

237.

1686

3.83

1261

.46

3;::

.:;

.

1874

.98

1120

.11

554.

7449

2.88

573.

60

53.8

856

.70

TA

BL

EA-3

.ti

ltip

leRe

gres

sion

Data

forFe

rric

Oxid

e(F

e203)

1Fe2

0301

Si0

2)

154.

0313

0.54

87.3

413

5.07

160.

52

371.

9024

0.83

161.

9696

.04

123.

06

82.8

227

9.39

250.

7129

5.36

132.

19

227.

5511

7.77

157.

6216

4.19

321.

41

16.2

916

,34

*IFe

203=co

unts

perse

cond

/100

0

:1Fe

203”

1A12

03)

97.1

379

.25

60.1

879

.76

101.

56

198.

2712

3.92

86.1

7;;

.::

.

58.7

713

4.20

135.

0417

7.32

78.3

1

121.

1176

.11

99.0

411

1.20

140.

83

12.3

313

.25

1Fe2

03”1

CaO)

22.3

516

.08

1;.:

;

36:1

2

54.6

816

.60

17.4

019

.50

19.3

3

17.5

620

.40

105.

9823

.06

14.9

2

23.4

723

.56

21.8

356

.75

104.

18

22.5

322

.74

:1F

e203

“1S

03)

431.

8037

9.02

267.

1830

8.74

1157

.63

1981

.82

2373

.23

718.

3122

8.31

534.

92

302.

6613

24.3

318

83.9

342

15.1

337

5.77

1584

,47

1799

.64

496.

4351

7.26

459.

36

83.1

675

.83

‘Fe2

03”1

K20

)

i3i.

2i16

3.40

71.1

812

9.12

194.

79

291.

7624

8.57

234.

3811

8.79

100.

70

64.3

333

0.00

258.

7523

9.69

161.

70

250.

0676

.27

144.

1417

1.70

125.

50

9.03

10.0

9

~1Fe

203”

1Ti0

2)

95.1

010

2.56

60.3

264

.96

101,

87

149.

8510

3.63

65.4

046

.31

66.6

6

62

.88

10

8.2

899

.02

140.

1810

7.09

119.

3459

.27

104.

2288

.20

121.

67

17.9

819

.50

cFe2

03

:.:;

0:68

0.96

2.10

3.57

2.96

1.62

0.75

1.12

0.76

2.04

2.81

5.23

1.00

2.62

:.;;

1:24

2.11

0.35

0.32

Page 29: Chlorine Determination

TABL

EA-

4.Mu

ltip

leRe

gres

sion

Data

forLi

me(C

aO)

N Oa

I CaO

*

1.10

0.69

0.98

0.57

1.17

1.31

0.45

0.62

1.20

0.96

1.14

0.69

2.98

0.37

0.64

0.54

0.70

0.93

2.56

4.35

3.07

3.02

2Ca

O

1.21

0.48

0.96

0.32

1.37

1.72

0.20

0.39

1.44

0.92

1.30

0.48

8.9C

0.14

0.41

0.25

0.5C

0.86

6.5:

18.9

2

9.4;

9.1;

*CaO

”]Si

02)

8.34

3.86

6.14

2.69

6.08

11.6

72.

943.

587.

095.

87

6.13

6.60

21.0

61.

773.

60

2.85

2.48

6.20

18.9

058

.38

6.82

6.55

~ lC

aO”1A1

203)

5.26

2.97

4.23

2.83

3.85

q.:;

1:90

3.24

3.38

4.35

3.17

11.3

51.

062.

13

1.52

1.60

3.90

12.8

025

.58

5.16

5.32

:1Ca

O”1F

e203)

22.3

516

.08

13.6

59.

1736

.12

54.6

816

.60

17.4

019

.50

19.3

3

17.5

620

.40

105.

9823

.06

14.9

2

23.4

723

.56

21.8

356

.75

104.

18

22.5

322

.74

[1Ca

O*1S

03)

23.3

811

.22

18.8

010

.94

43.8

8

62.2

028

.96

15.8

716

.86

25.5

0

22.4

031

.27

158.

28:;

.;;

.

19.8

337

.86

19.5

459

.55

83.4

3

34.7

830

.41

:1Ca

O”]K

20)

7.11

4.84

5.01

4.58

7.3a

9.16

3*O3

5.18

8.77

4.80

4.76

7.79

21.8

41.

444.

40

3.13

1.60

5.67

19.7

722

.79

3.78

4.05

(1Ca

O”1T

i02)

5.15

3.04

4.24

2.30

3.86

4.70

1.26

1.44

3.42

3.18

4.65

2.56

8.32

0.84

2.91

1.49

1.25

4.10

10.1

522

.10

7.52

7.82

c CaO

0.24

0.10

D.2

00.

120.

28

0.46

0.09

0.12

0.26

0.21

0.22

0.17

1.02

0.08

0.10

0.10

0.15

0.25

0.76

2.01

0.89

0.78

*1~a

o=

cou

nts

per

seco

nd/1

000

Page 30: Chlorine Determination

PCA Rt?search and Development Bulletin 29

,’--

al

l-l I

I -m I

.-

1

\uK00mm

Page 31: Chlorine Determination

TABL

EA-

6.Mu

ltip

leRe

gres

sion

Data

forPo

tass

iumOx

ide(K

20)

1K20

*I

6.46

7.01

5.11

8.03

6.31

6.99

6.74

8.35

7.31

5.00

4.18

1;.;: 3:87

6.91

5.78

2.28

6.12

7.73

5.24

1.23

1.34

12K2

0~

41.7

349

.14

26.1

164

.48

39.8

2

48.8

645

.48

69.7

253

.44

25.0

0

17.4

526

.07

53.0

914

.95

47.6

8

33.3

55.

1937

.45

59.8

127

.46

1.51

1.80

(1K2

0”1S

i02)

48.9

739

.26

32.0

467

.45

32.8

1

62.2

844

.01

48.1

843

.20

30.5

5

22.4

61::.;;

18:4

238

.98

30.3

58.

0240

.96

57.2

070

.32

2.73

2.91

1K20

”1A1

203)

30.8

823

.83

22.0

839

.83

20.7

6

33.2

022

.65

25.6

319

.74

17.6

0

15.9

451

.27

27.7

011

.06

23.0

9

16.1

55.

1825

.73

38.7

430

.81

2.07

2.36

~1K2

0*1F

e203

)

131.

2716

3.40

71.1

812

9.12

194.

79

291.

7624

8.57

234.

3811

8.79

100.

70

64.3

333

0.00

258.

7823

9.69

161.

70

250.

0676

.27

144.

1417

1.70

125.

50

9.03

10.0

9

:1K2

0”lC

aO)

7.11

4.84

5.01

4.58

7.38

9.16

3.03

5.18

8.77

4.80

4.16

7.79

21.8

41.

444.

40

3.13

1.60

5.67

19.7

722

.79

3.78

4.05

:1K2

0”1S

03)

137.

2811

3.98

98.0

115

4.18

236.

63

331.

8943

3.72

213.

6810

2.71

132.

80

82.0

950

5.92

386.

4726

2.84

110.

80

211.

3212

2.55

128.

9918

0.19

100.

50

13.9

413

.49

1K20

”1T

i02)

30.2

330

.84

22.1

332

.44

20.8

2

25.0

918

.93

19.4

620

.83

16.5

5

17.0

441

.36

20.3

18.

7431

.58

15.9

24.

0427

.08

30.7

326

.62

3.01

3.47

CK20

0.17

0.16

0.12

0.21

0.16

0.21

0.20

0.20

0.17

0.13

0.09

0.37

0.23

0.13

0.16

0.17

0.06

0.16

0.21

0.22

0.02

0.03

*IK2

0=co

unts

perse

cond

/100

0

)

Page 32: Chlorine Determination

‘) })

1Tf0

2*

4.68

4.40

4.33

4.04

3.30

3.59

2.81

2.33

;.;: .

4.08

3.68

2.79

2.26

4.57

2.76

1.77

:.::

5:08

2.45

2.59

[2Ti

02

21.9

019

.36

18.7

516

.32

10.8

9

12.8

97.

905.

438.

1210

.96

16.6

713

.57

7.77

5.11

20.9

1

7.60

3.14

19.5

815

.78

25.8

1

6000

6.71

TABL

EA-

7.~l

tipl

eRe

gres

sion

Data

forTi

tani

a(T

i02)

(1T

i02”

1Si0

2)

35.4

724

.64

27.1

5;:

.::

31.9

918

.35

8.25

16.8

420

.22

21.9

635

.02

19.6

810

.77

25.8

1

14.4

86.

2329

.61

29.3

868

.17

5.44

5.62

*ITi

O.=

cou

nts

per

seco

nd

/100

0

1Ti0

2”]A

1203

)

22.3

7;:

.;;

19:9

610

.86

17.0

59.

447.

157.

7011

.65

15.5

816

.82

10.6

26.

4715

.29

7.71

4.03

18.6

119

.90

29.8

7

4.12

4.56

[1T

i02”

1Fe2

03)

95.1

010

2.56

60.3

264

.96

101.

87

149.

8510

3.63

65.4

046

.31

66.6

6

62.8

810

8.24

99.0

214

0.18

107.

09

119.

3459

.27

104.

2288

.20

121.

67

17.9

819

.50

[1T

i02”

1CaO

)

5.15

3.04

4.24

2.30

3.86

4.70

1.26

1.44

3.42

3.18

4.65

2.56

8.32

0.84

2.91

1.49

1.25

4.10

10.1

522

.10

7.52

7.82

:1T

i02-

[S03

)

99.4

571

.54

83.0

477

.57

123.

75

170.

4518

0.82

59.6

240

.44

87.9

1

80.2

416

6.00

147.

8815

3.72

73.3

8

100.

85;:

.;;

92:5

797

.43

27.7

626

.08

(IT

i02*

*K20

)

30.2

330

.84

22.1

332

.44

20.8

2

25.0

918

.93

19.4

620

.83

16.5

5

17.0

4;:

.;;

8:74

31.5

8

15.9

24.

0427

.08

30.7

326

.62

3.01

3.47

‘Ti0

2

0.14

0.11

0.12

0.13

0.10

0.14

0.10

0.06

0.07

0.09

0.11

0.14

0.10

0.08

0.11

0.08

0.04

0.12

0.12

0.25

0.06

0.06

Page 33: Chlorine Determination

This publication is based on the facts, tests, and authorities stated herein.It is intended for the use of professional personnel competent to evaluate thesignificance and limitations of the reported findings and who will acceptresponsibility for the application <~fthe material it contains. The PortlandCement Association disclaims any and all responsibility for application ofthe stated principles or for the accuracy of any of the sources other than workperformed or information developed by the Association.

I______ ---. -__ —— — ---------------- -- ——----— — --------— ~---- --—- 1

uIII

KEYWORDS: analytical methods, chemical :analysis, chlorides, coal, coal analy- 1I

sis, spectrometry, X-ray fluorescence. II

ABSTRACT: Report of results of X-ray fluorescence procedure used formulti- 1I

element analysis of whole coal. Certified whole coal samples were ground, II

pressed, and analyzed in a vacuum with a Rigaku Model 3064X-ray spectrometer. 1Quantitative results ofadequate accuracy were obtained forthe oxides of 10ele- ~ments and for chlorine. Interelement corrections were necessary for ferric oxide 1

and sulfur trioxide—and for silica, alumina, and calcium oxide when lignite andII

subbituminous coals were used. Interelement corrections may also improve theII

accuracy for potassium oxide and titanium oxide. II

REFERENCE: J. L. Bernardi,(RD082.OIT), Portland Cement

Coal Characterization by X-Ray SpectrometryII

Association, 1983. IIII

—------------------ ----------- ------------------------- -- J

PCA R&D Ser. 1666

Page 34: Chlorine Determination

PORTLAND CEMENT mII ASSOCIATION

An organization of cement manufacturers to Improve and extend the uses of portland cement and <oncrete through ~cient, fic research, engineeric>g field work, and market development

Printed In U S.A.5420 Olcj Or(l).]rcj Kod(j, Skok((>, Illinois 60077-4121 RD082. OIT