chp technologies - npcc-misti.com

65
Dr. Mario Ortner Biomass CHP training 1 #5 CHP technologies and cycles, basics

Upload: others

Post on 15-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training1

#5 CHP technologies and cycles, basics

Page 2: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training2

– (4a) Temperature – Entropy Diagram

– (4b) Enthalpie – Entropie Diagram

– (4c) Carnot Efficieny

– (4d) Cogeneration

– (4e) Steam Turbine Process, types of steam turbine

– (4f) Energy Efficiency versus Exergy Efficiency

Thermodynamic basis of the water/steam cycle

Page 3: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training3

Thermodynamic basis of the water/steam cycle

• First and Second law of Thermodynamics

• Energy = Exergy + Anergy

• Carnot efficiency: ɳ = 1 – Tc/Th

Tc..lower process temperature levelTh..upper process temperature level

Page 4: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training4

Thermodynamic basis of the water/steam cycle

vapor regionliquidregion

supercritical region

saturated region

Entropy (s) [kJ/kg.K]

Tem

pera

tur (

t) [K

]

Isobar change of state

critical point

Page 5: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training5

Thermodynamic basis of the water/steam cycle

Theoretical background – Carnot Efficiency:

Preheating Evaporation Superheating

Page 6: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training6

Thermodynamic basis of the water/steam cycle

Boiler

Condenser

Steam turbine

Page 7: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training7

Thermodynamic basis of the water/steam cycle

Process 1-2: The working fluid is pumped from low to high pressure Process 2-3: The high pressure liquid enters a boiler where it is heated at constant pressure by an external heat source Process 3-4: The dry saturated vapor expands through a turbine, generating powerProcess 4-1: The wet vapor then enters a condenser where it is condensed at a constant pressure to become a saturated liquid.

Page 8: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training8

For cycles with high live steam parameter (p,T). This prevents the vapor from condensing during its expansion (limit x = 0,85) which can seriously damage the turbine blades.

Advantage: Improves the electrical efficiency of the cycle. Today for larger units with feed in tariff systems a „MUST DO“ condition

x = m_steam / m_total

Thermodynamic basis of the water/steam cycle

Page 9: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training9

– (4a) Temperature – Entropy Diagram

– (4b) Enthalpie – Entropie Diagram

– (4c) Carnot Efficieny

– (4d) Cogeneration

– (4e) Steam Turbine Process, types of steam turbine

– (4f) Energy Efficiency versus Exergy Efficiency

Thermodynamic basis of the water/steam cycle

Page 10: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training10

Thermodynamic basis of the water/steam cycle

• Enthalpy (h) is a measure of the totalenergy of a thermodynamic system.Dh = Dq + vDp

heat supply pressure change

technical work(boiler) (feed water pump)

Page 11: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training11

Thermodynamic basis of the water/steam cycle

Page 12: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training12

Thermodynamic basis of the water/steam cycle

s

h

isotherm

Page 13: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training13

Thermodynamic basis of the water/steam cycle

s

h

P_el: m x h x total

h

550°C; 70 bar

0,035 bar

m..massflow kg/sh..enthalpy diff. kJ/kgtotaltotal efficiencyP_el..power output kW

Page 14: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training14

Thermodynamic basis of the water/steam cycle (supercritical)

s

h600°C; 300 bar

0,035 bar

reheating necessary to avoid low x value

600°C „family“

Page 15: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training15

Thermodynamic basis of the water/steam cycle (hypercritical)

s

h700°C; 350 bar

0,035 bar

Page 16: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training16

BAT, different CHP solutions

Page 17: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training17

Advantages of Steam Turbines

• High number of rotations small units

• No pulsation forces lighter foundations in comparison to block engines

• High enthalpie differences + high mass flow high Power Output

• until 1400 Mwel

70% of all CHP are steam turbine cycles

Page 18: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training18

– (4a) Temperature – Entropy Diagram

– (4b) Enthalpie – Entropie Diagram

– (4c) Carnot Efficieny

– (4d) Cogeneration

– (4e) Steam Turbine Process, types of steam turbine

– (4f) Energy Efficiency versus Exergy Efficiency

Thermodynamic basis of the water/steam cycle

Page 19: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training19

Assessment of steam cycles

• Electrical Power to Heat Ratio (s)Default values- Back pressure turbine cycle: 0,45 (D.H); 0,30 (industrial) - Extration condensing turbine cycle: 0,45 (D.H); 0,30 (industrial)- (Combined Cycle Gas turbine plus heat recovery: 0,95(D.H);

0,75 (industrial)

• Operation mode: Electricity lead or Heat lead– Feed in tariff– Fuel price (electricity production costs)– Heat duration curve– Legal requirements (in EU: „Promotion of cogeneration based on a

useful heat demand in the internal energy market -PE 321.973/C1-C4 “)

– Definition of high efficient CHP

Page 20: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training20

Important parameters (at design stage)

• Boiler efficiency (Coal): state of art arround 90%– Fuel preparation– Optimum burner design– Careful control of air supply

• Live steam temperatur (super and hyper critical; standard 500-620– 620°C)– Limited by fuel specification chemical analyses– Limited by type of boiler (benson, water tube or fire tube)– Limited by steam turbine material

• Design of steam blades (improvements considerable last 10 years)• Optimization of „cold end“ of steam turbine *)

– Air cooling versus water cooling facilities (ambient conditions)– Steam exit losses at the end of turbine

• Feedwater heating (up to 10 stages) up to 250/300°C feedwaterinlet temperature

• Electricity lead or Heat lead operation optimization of steamturbine design– Depending on electricity price versus heat price

Page 21: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training21

Important parameters (at design stage)

• D.H network / heat concept (especially after FiT expires)– High total efficiency but large units sometimes far away from large heat

demand

• In countries with unbundling– RES plants have Grid Priority Load flexibility important for all other

plants

Page 22: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training22

Gasturbine process

Ambient air

Heat client

Fuel

Additional fireing

To Transformer

Exhaust Gas

HeatRecoveryBoiler

Page 23: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training23

Advantages & Disadvantages of different power generation options

T

s

max.T3-point (e.g. strategy Siemens..)Heat Input

ɳ = 1 – Tc/Th

Th…average temperature, heat is transfered to the system

Tc…average temperature, heat is transfered from the system

Gas turbine process

1

4

3

2

Page 24: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training24

Advantages & Disadvantages of different power generation options

T

s

Steam turbine process

t pinch point

Steam turbine cycle

ɳ = 1 – Tc/Th

Th…average temperature, heat is transfered to the system

Tc…average temperature, heat is transfered from the system

Page 25: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training25

Advantages & Disadvantages of different power generation options

T

s

max.T3-point (e.g. strategy Siemens..)Heat Input

Steam turbine process

t pinch point

Steam turbine cycle

ɳ = 1 – Tc/Th

Th…average temperature, heat is transfered to the system

Th…average temperature, heat is transfered to the system

Tc…average temperature, heat is transfered from the system

Tc…average temperature, heat is transfered from the system

Gas turbine process

Page 26: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training26

Advantages & Disadvantages of different power generation options

T

s

Reheating (e.g. strategy Alstom..)Heat Input

Steam turbine process

t pinch point

Steam turbine cycle

ɳ = 1 – Tc/Th

Th…average temperature, heat is transfered to the system

Th…average temperature, heat is transfered to the system

Tc…average temperature, heat is transfered from the system

Tc…average temperature, heat is transfered from the system

Gas turbine process

Page 27: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Advantages & Disadvantages of different power generation options

0

200

400

600

800

1000

1200

Steam turbinecycle

gas turbinecycle

combined cycle

ThTc

27

Page 28: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Biomass Cogeneration

Pressurised Circulating Fluid Bed Gasification (Sweden 1996)- 6 MWel; 9 MWth ; eta_el: 34%;

28

Page 29: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Biomass Cogeneration

Circulating Fluid Bed Gasification (Demonstration England)- 8 MWel; 14 MWth ; eta_el: 31%;

29

Page 30: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Co- Gasification of Biomass in a Coal fired Plant (Zeltweg 1998)- 4,2 MWel; 10 MWth ; eta_el: 42%;

Biomass Cogeneration

30

Page 31: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Steam Turbine Cycle, Theory

31

Page 32: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Typical Cogen Plant with Combustions Technology in Denmark - 9 MWel; 20 MWth ; eta_el: 26%;

Biomass Cogeneration

32

Page 33: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Organic Rankine Cycle (e.g. Klosterneuburg) - 250 kW; ca. 1,8 MWth ; eta_el: 10%;

Biomass Cogeneration

33

Page 34: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training34

FBC example 20 MWel

Page 35: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training35

Agenda

Fundamentals of Water Steam Cycle / Steam turbine processes

– (4a) Temperature – Entropy Diagram

– (4b) Enthalpie – Entropie Diagram

– (4c) Carnot Efficieny

– (4d) Cogeneration

– (4e) Steam Turbine Process, types of steam turbine

– (4f) Energy Efficiency versus Exergy Efficiency

Page 36: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training36

Cogeneration

What is Co-generation (Combined Heat and Power)?

-On site generation and utilization of energy in different forms simultaneously- Utilising fuel energy at optimum efficiency, cost effective and environmentally-several types of Cogenerations, primarily generate electricity and best practise use of heat- CHP reduce network losses, because situated close to client

Page 37: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training37

Convential energy generation versus CHP:

Energy efficiency calculation

Heat

100 units fuel

80 units heat100 unitsfuel

Electricity

Combined heat an power

40 units electricity

100 unitsfuel

40 units electricity

40 units heat

ɳ_th = (40 + 80) / 200 = 60% ɳ_th = (40 + 40) / 100 = 80%

Page 38: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training38

Agenda

Fundamentals of Water Steam Cycle / Steam turbine processes

– (4a) Temperature – Entropy Diagram

– (4b) Enthalpie – Entropie Diagram

– (4c) Carnot Efficieny

– (4d) Cogeneration

– (4e) Steam Turbine Process, types of steam turbine

– (4f) Energy Efficiency versus Exergy Efficiency

Page 39: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training39

Thermodynamic basis of the water/steam cycle

s

totalm x gen x gearbox x stuffingbox

m.. Mechanical efficiency 0,98-0,985…gen.. Efficiency generator 0,97-0,98….gearbox Efficiency gearbox 0,98-0,99….._stuffingbox Efficiency stuffing box 0,99 – 0,995…..

Efficiency Benchmarks Steam Turbine

Page 40: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training40

Different water/steam cycle designs

Two basic types:

1. Back pressure steam turbinecycle(steam pressure after turbine > 1bar)

2. Condensing steam turbine cycle(with or without turbine tap point)(steam pressure after turbine << 1bar)

Page 41: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training41

Back pressure turbine

Page 42: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training42

Condensing turbine

Page 43: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training43

Different water/steam cycle designs

Hybrids of back pressure or condensing types:

1. Extraction turbine

2. Induction turbine

Page 44: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training44

Different water/steam cycle designs

1. Back pressure steam turbine cycleP_el 50 MW

eta_el 23.2 %

eta_sum 89.4 %

mass[kg/s] h[kJ/kg]p[bar] t[°C]

251.25 58.55 1.3 60

2683.5 58.55 1.2 105

503.78 64.74 1.987 120

2752.9 1.561 2.087 142.53 515.56 64.74

80 121.49

2702.2 63.18 1.434 115.28

3507.6 64.74 70 540

Page 45: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training45

Different water/steam cycle designs

2. Condensing steam turbine cycle (with or without turbine tap point)P_el 50 MW

eta_el 32.8 %

mass[kg/s] h[kJ/kg]p[bar] t[°C]

84.031 4104 1.2 20

63.116 4104 1.4 15

503.78 45.9 1.987 120

2752.9 7.009 2.087 142.53

515.56 45.9 80 121.49

2305 38.890.04247 30

3507.6 45.9 70 540

Page 46: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training46

Different water/steam cycle designs

3. Extraction condensing turbineP_el 50 MW

Q_heat 10 MW

eta_el 31.1 %

eta_sum 37.3 %

mass[kg/s] h[kJ/kg]p[bar] t[°C]

2683.5 4.111 1.2 105

251.25 4.111 1.3 60

84.031 3976 1.2 20

63.116 3976 1.4 15

450.13 47.31 80 105.97

2324 37.360.04247 30

3507.6 47.31 70 540

Page 47: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training47

Balance of Heat

Page 48: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training48

Different water/steam cycle designs (extraction steam map)

Page 49: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training49

Operation mode of steam turbines

Steam control-Controlled by steam control valves- 4 controlling methods-(1) Throtteling control

-All valves simultaneous in operation, steam pressure constant, high losses only for 15% to 30% load

-(2) Governing control-Valves opens in series; higher efficiency then (1)

-(3) Variable pressure control-Steam control valves in fixed position; control only by main steam advantages : steam temperature remains constant; poorer performance and limited load capability

-(4) Hybrid variable pressure control-Low loads varaible pressure-Increasing steam pressure increases steam turbine load governing control

Page 50: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training50

Tasks of Steam Shaft Sealing System

• Avoids the steam exit (emergency issue)

• Protects bearings of hot steam and contamination of bearing oil(damage through water-oil mix)

• Avoids air break (condensor pressure!)

• Heating up the Rotor of the steam turbine with steam

Page 51: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training51

Turbine oil system for slide seal ring

Page 52: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training52

Steam Shaft Sealing system

Page 53: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training53

Plant start up

Steam Shaft Sealing system

Page 54: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training54

Steam Shaft Sealing system

Operation mode

Page 55: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training55

Steam Shaft Sealing system

Operation mode

Page 56: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training56

Cooling Systems

Page 57: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training57

Cooling Systems

Page 58: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training58

Agenda

(3) Fundamentals of Water Steam Cycle / Steam turbine processes

– (3a) Temperature – Entropy Diagram

– (3b) Enthalpie – Entropie Diagram

– (3c) Carnot Efficieny

– (3d) Cogeneration

– (3e) Steam Turbine Process, types of steam turbine

– (3f) Energy Efficiency versus Exergy Efficiency

Page 59: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training59

Exergy Efficiency

Exer

gy c

onte

nt o

f hea

t in

%

• Electricity and Work: quality factor = 1• For Heat must be calculated

_ex = ex / (h1-h2)

ex = (h1-h2) – Tu (s1-s2)

s1s2

Page 60: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training60

Methodology calculating the exergetic efficiency

Exergy Efficiency

*)

*)..depends on quality of heat (p;t)

Page 61: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training61

Exergy Efficiency

• Example: Exergy calculation of water with t1=100°Cand 1 bar; ambient temperature (t_amb) is 15°Cex = (h1-h_amb) – Tu (s1-s2)= cp(t1-t_amb) – t_amb(s1-s2)For isobar process cp(t1-t_amb) – t_amb x cp x ln(t1/t_amb) == 4,19 (373-288) – 288 x 4,19 x ln(373/288) = 44 kJ/kg

To heat the water e.g. electrical energy = 100% exergy is necessary = h1- h_amp = cp (t1-t_amp) = 355 kJ/kg

Exergy loss = 355 – 44 = 311 kJ/kgExergy efficiency = 44/355 = 12,4% !!!!

Page 62: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training62

• Comparison condensing mode and back pressure mode (steam turbine process) and heatingplant:

• (1) Condensing mode:– E = 45%– H = 0%– Exergy efficiencyx = 0,45 x 1 + 0 = 45%– Energy efficiencyth = 45%

• (2) Back pressure mode:– E = 35%– H= 50% (hotwater 100°C)– Exergy efficiency x = 0,35 x 1 + 0,50 x 0,124 = 41%– Energy efficiencyth = 35% + 50% = 85%

• (3) Heating plant:– H=90%– Exergy efficiency x = 0,90 x 0,124 = 11%– Energy efficiencyth = 90%

Exergy Efficiency

Page 63: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training63

Conclusion:Which heat and power generation technologies are most suitable?

• Energy efficiency does not include the usability of the convertedenergy

• Exergy efficiency includes the quality level of the convertedenergy

• The exergy output should be maximized• Heat losses should be minimized by using CHP technologies

and waste heat utilization• High exergetic energy carriers (e.g. natural gas) should not be

used to produce low exergetic heat• the quality of the requested energy should correspond to the

quality of the used energy (if only low temperature heat, e.g. forspace heating is requested, the energy supply should beappropriate)

Exergy Efficiency

Page 64: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training64

NOTE:

• EXERGY efficiency is most importantvalue not Energy efficiency Exergyefficiency has to be optimized

Exergy Efficiency

Page 65: CHP technologies - npcc-misti.com

Dr. Mario Ortner Biomass CHP training

Kapitel – 1 Einführung

Biomass CHP

Biomass

65