chris basso apec seminar 2011

Upload: anonymous-rlouxgnmsw

Post on 02-Jun-2018

312 views

Category:

Documents


10 download

TRANSCRIPT

  • 8/10/2019 Chris Basso APEC Seminar 2011

    1/165

    1 Chris Basso APEC 2011

    The Dark Side of FlybackConverters

    Presented by Christophe Basso

    Senior ScientistIEEE Senior Member

  • 8/10/2019 Chris Basso APEC Seminar 2011

    2/165

    2 Chris Basso APEC 2011

    Course Agenda

    The Flyback Converter

    The Parasitic ElementsHow These Parasitics Affect your Design?

    Current-Mode is the Most Popular Scheme

    Fixed or Variable Frequency?More Power than Needed

    The Frequency Response

    Compensating With the TL431

  • 8/10/2019 Chris Basso APEC Seminar 2011

    3/165

    3 Chris Basso APEC 2011

    What is the Subject?

    There has been numerous seminars on Flyback converters

    Seminars are usually highly theoretical link to the market?

    Industrial requirements usually not covered

    This 3-hour seminar will shed lights on less covered topics:

    Why the converter delivers more power than expected? Solutions?Books talk about compensation with op amps, I have a TL431!

    The origin of the Right-Half Plane Zero, how do I deal with it?

    Quasi-resonant converters presence increases, how do they work?

    In a 3-hour course, we are just scratching the surface!

  • 8/10/2019 Chris Basso APEC Seminar 2011

    4/165

    4 Chris Basso APEC 2011

    The Flyback, a Popular Structure

    The flyback converter is widely used in consumer productsEase of design, low-cost, well-known structurePoor EMI signature, bulky transformer, practical up to 150 W

    flyback 40 180 W Notebook

    flyback 3 5 WCharger

    flyback 10 35 W DVD player

    Set-top box

    Netbook

  • 8/10/2019 Chris Basso APEC Seminar 2011

    5/165

    5 Chris Basso APEC 2011

    1

    2

    4

    drv

    7

    5

    drv

    8

    9 12

    11

    drvVout

    VoutVout

    gnd gnd

    buck-boostground referenced

    buck-boostinput referenced

    flybackisolated ground referenced

    a b c

    VinD

    C

    SW1

    L

    1 N

    Vin

    D

    C

    SW1

    L

    Vin

    SW1

    D

    C

    An Isolated Buck-Boost

    The flyback converter is derived from the buck-boost cell

    The addition of a transformer brings:

    V in -k.V in

    +

    Up or down scale V in

    Isolation Polarity change

    More than 1 output

  • 8/10/2019 Chris Basso APEC Seminar 2011

    6/165

    6 Chris Basso APEC 2011

    ..

    in

    on p

    V

    S L=

    The current increases in the inductor in relationship to V in and L pThe output capacitor supplies the load on its own

    in peak valley on

    p

    V I I t

    L= +

    CCM

    in peak on

    p

    V I t

    L=

    DCM

    PIV in out V N V = +Reverse voltage on the diode

    Simplified, no leakage

    The Turn-on EventThe power switch turns on: current ramps up in L p, D is blocked

    inV

    SW

    p I

    sec 0 I =

    in NV out V

    p L

    s p N N N =0 V

    ont

    ont

    peak I

    peak I

    valley I C I

    inV

    ( ) p I t

  • 8/10/2019 Chris Basso APEC Seminar 2011

    7/165

    7 Chris Basso APEC 2011

    ..

    ,out

    DS off in in r

    V V V V V

    N = + = +

    Reflectedvoltage

    ( )1 1out on sw

    in off sw

    V Nt NDT NDV t D T D

    = = =

    V Lp(t)

    t on = DT sw t off = (1-D )T sw

    V in

    V out /N

    Apply volt-second balance

    dc transfer function in CCM

    Applying Volt-Second Balance, CCMThe power switch turns off: D conducts, V out "flies" back

    inV

    p L

    out V

    out V N

    p I N C I

  • 8/10/2019 Chris Basso APEC Seminar 2011

    8/165

    8 Chris Basso APEC 2011

    ..

    V Lp(t)

    t on = DT sw t off = (1-D)T sw

    V out /N

    V in

    DT

    2out load

    in p sw

    V R D

    V L F =

    N no longer plays a role Rload , L p and F sw do

    , DS off inV V =

    Applying Volt-Second Balance, DCM

    Apply volt-second balance

    In DCM, when L p is fully depleted D opens: V out reflection is lost

    dc transfer function in DCM

    inV

    p L0V

    sec 0 I = C I

  • 8/10/2019 Chris Basso APEC Seminar 2011

    9/165

    9 Chris Basso APEC 2011

    24 X1PSW1RON = 10mROFF = 1Meg

    3 Cout470uIC = 10

    V2 4 0 PULSE 0 5 0 10n 10n 3u 10u

    Rload2

    5

    Vin100

    V2

    Vout6 1

    X2XFMRRATIO = -0.1

    Ls

    VdsIIn

    .

    .Lp2.2m

    D1

    D

    S

    Flyback, Typical WaveformsBelow is a simple flyback converter, without parasitics

    It will run open loop for simplicity, V out 8 VNo parasitics

  • 8/10/2019 Chris Basso APEC Seminar 2011

    10/165

    10 Chris Basso APEC 2011

    Flyback, Typical Waveforms, CCM

    0

    400m

    800m

    1.20

    1.60

    i i n i n a m p e r e s

    p l o t

    1

    1

    750m

    850m

    950m

    1.05

    1.15

    i ( l p )

    i n a m p e r e s

    p l o t

    2

    2

    10.070.0

    130

    190

    250

    v d s i n v o

    l t s

    p l o t

    33

    8.81

    8.83

    8.85

    8.87

    8.89

    v o u t

    i n v o

    l t s

    p l o t

    44

    3.002m 3.006m 3.010m 3.014m 3.018mtime in seconds

    0

    4.00

    8.00

    12.016.0

    i d ( d 1 ) i n a m p e r e s

    p l o t

    55

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    L I

    I peak

    V inout V N out inV N V +

    Output cap.refueling

    Output capacitorsupplies the load

    Diode blocks

    I d (t) I peak / N

    0

    400m

    800m

    1.20

    1.60

    i i n i n a m p e r e s

    p l o t

    1

    1

    750m

    850m

    950m

    1.05

    1.15

    i ( l p )

    i n a m p e r e s

    p l o t

    2

    2

    10.070.0

    130

    190

    250

    v d s i n v o

    l t s

    p l o t

    33

    8.81

    8.83

    8.85

    8.87

    8.89

    v o u t

    i n v o

    l t s

    p l o t

    44

    3.002m 3.006m 3.010m 3.014m 3.018mtime in seconds

    0

    4.00

    8.00

    12.016.0

    i d ( d 1 ) i n a m p e r e s

    p l o t

    55

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    L I

    I peak

    V inout V N out inV N V +

    Output cap.refueling

    Output capacitorsupplies the load

    Diode blocks

    I d (t) I peak / N

    CCM flyback no parasitics

    Input currentI valley

    E valley

    E peak

    Inductor current

    Drain voltage

    Output voltage

    Diode current

  • 8/10/2019 Chris Basso APEC Seminar 2011

    11/165

    11 Chris Basso APEC 2011

    0

    100m

    200m

    300m

    400m

    i i n i n a m p e r e s

    P l o t 1

    1

    0

    100m

    200m

    300m

    400m

    i ( l p )

    i n a m p e r e s

    P l o t 2

    2

    0

    100

    200

    300

    400

    v d s i n v o

    l t s

    P l o t 3

    3

    12.632

    12.636

    12.640

    12.644

    12.648

    v o u t

    i n v o

    l t s

    P l o t 4

    4

    3.002m 3.006m 3.010m 3.014m 3.018mtime in seconds

    -1.00

    0

    1.00

    2.00

    3.00

    i d ( d 1 ) i n a m p e r e s

    P l o t 5

    5

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    L I

    I peak

    V inout V N out inV N V +

    DCM (core reset)

    Output cap.refueling

    Output capacitorsupplies the load

    Diode blocks

    I d (t) I peak / N

    0

    100m

    200m

    300m

    400m

    i i n i n a m p e r e s

    P l o t 1

    1

    0

    100m

    200m

    300m

    400m

    i ( l p )

    i n a m p e r e s

    P l o t 2

    2

    0

    100

    200

    300

    400

    v d s i n v o

    l t s

    P l o t 3

    3

    12.632

    12.636

    12.640

    12.644

    12.648

    v o u t

    i n v o

    l t s

    P l o t 4

    4

    3.002m 3.006m 3.010m 3.014m 3.018mtime in seconds

    -1.00

    0

    1.00

    2.00

    3.00

    i d ( d 1 ) i n a m p e r e s

    P l o t 5

    5

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    L I

    I peak

    V inout V N out inV N V +

    DCM (core reset)

    Output cap.refueling

    Output capacitorsupplies the load

    Diode blocks

    I d (t) I peak / N

    E valley = 0 E peak

    Flyback, Typical Waveforms, DCM

    Input current

    Inductor current

    Drain voltage

    Output voltage

    Diode current

    DCM flyback no parasitics

  • 8/10/2019 Chris Basso APEC Seminar 2011

    12/165

    12 Chris Basso APEC 2011

    2,

    12 p L valley p valley

    E L I =

    2, 12 p L peak p peak

    E L I =

    Initially stored energy

    Stored energy at t on

    ( )2 2 2 2, 1 1 12 2 2 p L trans p peak p valley p peak valley E L I L I L I I = = Transmitted energy at T sw

    ( )2 212

    out peak valley p swP I I L F = CCM

    DCM, I valley = 0

    Energy Transfer in CCM and DCM

    Eta, the efficiency

    The primary inductance, L p, stores and releases energy

    Power (W) is energy (J) averaged over time (s):

    212out peak p sw

    P I L F =

  • 8/10/2019 Chris Basso APEC Seminar 2011

    13/165

    13 Chris Basso APEC 2011

    Course Agenda

    The Flyback Converter

    The Parasitic ElementsHow These Parasitics Affect your Design?

    Current-Mode is the Most Popular Scheme

    Fixed or Variable Frequency?More Power than Needed

    The Frequency Response

    Compensating With the TL431

  • 8/10/2019 Chris Basso APEC Seminar 2011

    14/165

    14 Chris Basso APEC 2011

    84

    X1PSW1RON = 10mROFF = 1Meg

    3

    7

    Cout470uIC = 10

    V2 4 0 PULSE 0 5 0 10n 10n 3u 10u

    Rload2

    5

    Vin100

    V2

    Vout6

    2

    1

    X2XFMRRATIO = -0.1

    Ls

    Vds

    9

    IIn.

    .Lp{Lp}

    Lleak{Leak}

    parameters

    Lp=2.2mk=0.02Leak=Lp*k

    Clump100p

    D1

    1n5819

    Resr150m

    rLf250m

    Dbody

    Considering Parasitic ElementsThe transformer and the MOSFET include parasitics

    With parasitics

  • 8/10/2019 Chris Basso APEC Seminar 2011

    15/165

    15 Chris Basso APEC 2011

    CCM mode with parasitics

    Considering Parasitic Elements, CCM

    -800m

    -400m

    0

    400m

    800m

    i i n i n a m p e r e s

    p l o t

    11

    550m

    650m

    750m

    850m

    950m

    i ( l p )

    i n a m p e r e s

    p l o t

    2

    2

    -30.0170

    370

    570

    770

    v d s i n v o

    l t s

    p l o t

    3

    3

    7.20

    7.80

    8.40

    9.00

    9.60

    v o u t

    i n v o

    l t s

    p l o t

    4

    4

    3.002m 3.006m 3.010m 3.014m 3.018mtime in seconds

    0

    4.00

    8.00

    12.016.0

    i d ( d 1 ) i n a m p e r e s

    p l o t

    5

    5

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    I peak

    V in( )out in leak V Vf N V V + + +

    I d (t)

    Leakageinductancecontribution

    -800m

    -400m

    0

    400m

    800m

    i i n i n a m p e r e s

    p l o t

    11

    550m

    650m

    750m

    850m

    950m

    i ( l p )

    i n a m p e r e s

    p l o t

    2

    2

    -30.0170

    370

    570

    770

    v d s i n v o

    l t s

    p l o t

    3

    3

    7.20

    7.80

    8.40

    9.00

    9.60

    v o u t

    i n v o

    l t s

    p l o t

    4

    4

    3.002m 3.006m 3.010m 3.014m 3.018mtime in seconds

    0

    4.00

    8.00

    12.016.0

    i d ( d 1 ) i n a m p e r e s

    p l o t

    5

    5

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    I peak

    V in( )out in leak V Vf N V V + + +

    I d (t)

    Leakageinductancecontribution

    Input current

    Inductor current

    Drain voltage

    Output voltage

    Diode current

  • 8/10/2019 Chris Basso APEC Seminar 2011

    16/165

    16 Chris Basso APEC 2011

    Considering Parasitic Elements, DCM

    -100m

    0

    100m

    200m

    300m

    i i n i n a m p e r e s

    p l o t

    1

    1

    -100m

    0

    100m

    200m

    300m

    i ( l p )

    i n a m p e r e s

    p l o t

    2

    2

    -30.070.0

    170

    270

    370

    v d s i n v o

    l t s

    p l o t

    3

    3

    12.2

    12.4

    12.6

    12.8

    13.0

    v o u t

    i n v o

    l t s

    p l o t

    4

    4

    3.002m 3.007m 3.012m 3.017m 3.022mtime in seconds

    0

    1.00

    2.00

    3.004.00

    i d ( d 1 ) i n a m p e r e s

    p l o t

    5

    5

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    I peak

    V in( )out in leak V Vf N V V + + +

    I d (t)

    Leakageinductancecontribution

    DCM (core reset)

    Diode blocks here

    -100m

    0

    100m

    200m

    300m

    i i n i n a m p e r e s

    p l o t

    1

    1

    -100m

    0

    100m

    200m

    300m

    i ( l p )

    i n a m p e r e s

    p l o t

    2

    2

    -30.070.0

    170

    270

    370

    v d s i n v o

    l t s

    p l o t

    3

    3

    12.2

    12.4

    12.6

    12.8

    13.0

    v o u t

    i n v o

    l t s

    p l o t

    4

    4

    3.002m 3.007m 3.012m 3.017m 3.022mtime in seconds

    0

    1.00

    2.00

    3.004.00

    i d ( d 1 ) i n a m p e r e s

    p l o t

    5

    5

    I in(t)

    I Lp(t)

    V DS (t)

    V out (t)

    I peak

    V in( )out in leak V Vf N V V + + +

    I d (t)

    Leakageinductancecontribution

    DCM (core reset)

    Diode blocks here

    Input current

    Inductor current

    Drain voltage

    Output voltage

    Diode current

    DCM mode with parasitics

  • 8/10/2019 Chris Basso APEC Seminar 2011

    17/165

    17 Chris Basso APEC 2011

    Who Are the Stray Elements?The study of the drain node reveals a LC network

    ..

    ..

    L p

    l leak

    C oss

    L p primary inductorlleak leakage inductorC oss output capacitance

    Simplified view

    V bulk V bulk

  • 8/10/2019 Chris Basso APEC Seminar 2011

    18/165

    18 Chris Basso APEC 2011

    212 OSS DS

    W C V =

    The MOSFET C OSS is a Non-Linear DeviceThe capacitor value changes with its bias voltage

    ( ) 0

    0

    1

    DOSS DS

    DS

    C C V

    V V

    =

    +

    C D0 is the cap. for V DS = V 0

    Since bias affects the capacitor value:

  • 8/10/2019 Chris Basso APEC Seminar 2011

    19/165

    19 Chris Basso APEC 2011

    As the Voltage Decreases, C OSS Value ChangesThe brutal discharge generates switching losses

    OSS C

    OSFET

    D

    S

    C I ( ) ( )0t

    C C W I t V t dt =

    C V

    ( ) ( )C

    C

    dV t

    I t C dt =

    ( )( ) ( )

    0 0

    DS t V DS DS DS DS DS

    dV t W C V t dt C V V dV

    dt = =

    ( ) 0 0 DOSS DS DS

    C V C V

    V 3 2 0 0

    23 DS D

    W V C V =

    The lost energy is smaller than with the non-linear variation!

    At turn-off

  • 8/10/2019 Chris Basso APEC Seminar 2011

    20/165

    20 Chris Basso APEC 2011

    Using the Raw C OSS is an OverkillRe-compute the capacitor from the MOSFET data-sheet

    2 21 0.5 400 100 2 J2 OSS DS

    W C V p= = =

    The classical equation gives:

    or 200 mW @ 100 kHz

    The updated equation gives:

    3 2 3 20 0

    2 2100 400 10 843 nJ

    3 3 DS DW V C V p= = =

    or 84 mW @ 100 kHz = 58% reduction

    0 DC 0 DV

    Overkill

  • 8/10/2019 Chris Basso APEC Seminar 2011

    21/165

    21 Chris Basso APEC 2011

    The Leakage Inductance

    The coupling in a transformer is not perfect

    Closed path

    in the air

    Closed pathin the airLeakage flux

    Leakage flux

    Some induction lines couple in the air: leakage flux

  • 8/10/2019 Chris Basso APEC Seminar 2011

    22/165

    22 Chris Basso APEC 2011

    An Equivalent Transformer Model

    For a two-winding transformer, the model is simple:Two leakage inductorsOne magnetizing inductor

    lleak 1 l leak 2

    L p

    1:N

    primary secondary

    This is commonly known as the "PI" model

  • 8/10/2019 Chris Basso APEC Seminar 2011

    23/165

    23 Chris Basso APEC 2011

    The Transformer Scales the Primary Current

    . .

    In a perfect transformer, we have:

    p I sec

    p I I N

    =

    Primary Secondary

    The turns ratio is usually normalized to the primary

    1: N

    : p s N N : p s

    p p

    N N

    N 1: N

    Divide by N p

    100

    25 p

    s

    N

    N

    =

    =1: 0.25

    . .1 250m

  • 8/10/2019 Chris Basso APEC Seminar 2011

    24/165

    24 Chris Basso APEC 2011

    The Leakage Term also Stores EnergyAt turn-on, the primary current flows in both lleak and L p

    ( ) p I t

    p L

    leak l

    inon

    p leak

    V S

    L l

    =

    + N = 1

    During the on-time, both L p and lleak store energy

    212leak leak p

    W l I =

    ( ) p I t

    inV

  • 8/10/2019 Chris Basso APEC Seminar 2011

    25/165

    25 Chris Basso APEC 2011

    Where does the Current Flow?At turn-off, the energy stored in L p is dumped in the output cap.

    The leakage inductor current fills up the drain lump capacitor

    p L

    ( )leak l

    I t

    ( ) ( ) p leak L l

    I t I t

    ( ) p L I t ( )out V t

    ( )leak l

    I t

    leak l

    lumpC

    inV

  • 8/10/2019 Chris Basso APEC Seminar 2011

    26/165

    26 Chris Basso APEC 2011

    Watch out for the Maximum Excursion!

    The voltage on the drain increases dangerously!

    As the diode conducts, V out reflects over L p

    leak l

    lumpC

    out f V V

    N

    +

    ( )out f leak DS ,max in peak lump

    V V lV V I N C

    += + +

    Characteristicimpedance

    inV

    Flybackvoltage

    ( )leak l

    I t

    ( )leak l

    I t 0

    200400600800

    ( ) DS V t

  • 8/10/2019 Chris Basso APEC Seminar 2011

    27/165

    27 Chris Basso APEC 2011

    We Need to Clamp that VoltageMOSFETs have a voltage limit they can fly up to: BV DSS A clamping circuit has been installed to respect amargin

    out f V V N

    +clampV clampV

    p L

    D Dleak l

    in clampV V +

    600V DSS BV =

  • 8/10/2019 Chris Basso APEC Seminar 2011

    28/165

    28 Chris Basso APEC 2011

    Resetting the Leakage InductanceBecause of the clamp action, a voltage appears across lleak

    clampV p L

    leak l

    ( )leak l

    I t

    ( ) ( ) p leak L l

    I t I t

    ( ) p L

    I t

    ( )leak l

    I t

    ( )out V t

    ( )leak clamp out f lleak

    V V V S

    l

    +=

    This voltage forces a reset of the leakage inductance

    ( )leak l clamp out f

    V V V V = +

    leak lV

    reset

  • 8/10/2019 Chris Basso APEC Seminar 2011

    29/165

    29 Chris Basso APEC 2011

    Do we Need a Quick Reset?When current flows in lleak , it is diverted from the secondary

    ( )leak l

    I t

    ( ) ( ) p leak L l

    I t I t

    ( ) p L

    I t

    ( )leak l

    I t

    ( )leak l

    I t

    The leakage current delays the occurrence of the sec. current

    At the switch opening:

    ( ) ( ) p leak L l

    I t I t =

    ( )sec 0 I t =

    p L

    leak l

  • 8/10/2019 Chris Basso APEC Seminar 2011

    30/165

    30 Chris Basso APEC 2011

    l leak Delays the Secondary CurrentThe leakage inductor reduces the peak secondary

    current( ) I t

    t

    ont t off t t

    peak I

    valley I

    , p leak L l

    I I

    leak l I

    sec I

    Primary andsecondarycurrents.

    ( )sec I t

    ( ) p I t

    The "stolen" energy is dissipated in heat in the clampingnetwork

    Less energy is transmitted to the secondary side efficiencysuffers

    p I

  • 8/10/2019 Chris Basso APEC Seminar 2011

    31/165

    31 Chris Basso APEC 2011

    A Reduced Secondary-Side CurrentWe can calculate the leakage inductor reset time

    t

    sec sec

    11

    1

    peak peak leak

    clamp p

    out f

    I I l I S t

    NV N N LV V

    = =

    +

    ( )leak peak leak peak

    l clamp out f

    I l I t

    S V V V = =

    +

    ( )leak peak leak peak

    l clamp out f

    I Nl I t

    S NV V V = =

    +

    N 1

    ( ) I t

    t

    peak I

    sec I

    ( ) p I t

    t

    ( )leak

    clamp out f

    lleak

    V V V S

    l

    +=

    ( )leak l I t

    ( )( )

    0.25 4.8 3)205ns

    0.25 150 19 1

    ut

    = =

    +

    0.25

    4.8 H

    150 V

    V 19 V

    I 3 A

    leak

    clamp

    out

    peak

    N

    l

    V

    =

    =

    =

    =

    =

  • 8/10/2019 Chris Basso APEC Seminar 2011

    32/165

    32 Chris Basso APEC 2011

    -60.0m

    20.0m

    100m

    180m

    260m

    i l p i n a m p e r e s

    p l o t

    1

    2

    -60.0m

    20.0m

    100m

    180m

    260m

    i l l e a

    k i n a m p e r e s

    P l o t 3

    3

    100m

    700m

    1.30

    1.90

    2.50

    i d 1 i n a m p e r e s

    p l o t

    2

    4

    3.011m 3.015m 3.019m 3.023m 3.027mtime in seconds

    -40.0

    40.0

    120

    200

    280

    v d s

    i n v o

    l t s

    P l o t 4

    1

    I Lp(t)

    I d (t)

    V DS (t)

    I leak (t)

    I peak = 236 mA I peak = 210 mA

    0

    I d,peak =2.1 A

    t rr

    t = 480 ns-60.0m

    20.0m

    100m

    180m

    260m

    i l p i n a m p e r e s

    p l o t

    1

    2

    -60.0m

    20.0m

    100m

    180m

    260m

    i l l e a

    k i n a m p e r e s

    P l o t 3

    3

    100m

    700m

    1.30

    1.90

    2.50

    i d 1 i n a m p e r e s

    p l o t

    2

    4

    3.011m 3.015m 3.019m 3.023m 3.027mtime in seconds

    -40.0

    40.0

    120

    200

    280

    v d s

    i n v o

    l t s

    P l o t 4

    1

    I Lp(t)

    I d (t)

    V DS (t)

    I leak (t)

    I peak = 236 mA I peak = 210 mA

    0

    I d,peak =2.1 A

    t rr

    t = 480 ns

    Typical Example Simulation Results

    Primary current

    Leakage inductorcurrent

    Sec. current

    Drain voltage

    11% decrease!

  • 8/10/2019 Chris Basso APEC Seminar 2011

    33/165

    33 Chris Basso APEC 2011

    . .

    A Ringing Appears as the Diode Blocks

    ( ) 0leak l

    I t =

    in clamp r V V V + +

    r V

    leak l

    As the clamp diode blocks, the drain returns toV in

    out f in

    V V V N

    ++

    An oscillationtakes place

    1

    2 leak lump f

    l C =

    out V

    lumpC

    lleak is resett

    1: N

    in clamp r V V V + +

    0 V

    D

    D clamp

    D clamp blocks

  • 8/10/2019 Chris Basso APEC Seminar 2011

    34/165

    34 Chris Basso APEC 2011

    V DS (t )

    V os = 14 V

    The clamp diode forward transit time delays the clamping action

    The Clamp Circuit Overshoots

    This spike can be lethal to the power MOSFET include margin!

  • 8/10/2019 Chris Basso APEC Seminar 2011

    35/165

    35 Chris Basso APEC 2011

    The Primary Inductor also Rings in DCMWhen L p is reset, the capacitor voltage returns

    to V in

    . .0 V

    leak l

    lumpC in r V V +

    An oscillationtakes place

    ( )1

    2 p leak lump f

    L l C =

    +

    L p is reset

    V in

    V in

    1: N

    D D blocks

    D clamp

  • 8/10/2019 Chris Basso APEC Seminar 2011

    36/165

    36 Chris Basso APEC 2011

    Course Agenda

    The Flyback Converter

    The Parasitic Elements

    How These Parasitics Affect your Design?

    Current-Mode is the Most Popular Scheme

    Fixed or Variable Frequency?More Power than Needed

    The Frequency Response

    Compensating With the TL431

  • 8/10/2019 Chris Basso APEC Seminar 2011

    37/165

    37 Chris Basso APEC 2011

    The leakage inductor induces a large spike at turn-offThis voltage excursion must be kept under control

    How these Parasitics Affect your Design?

    BV DSS

    clampV 15%

    V

    t

    The lump capacitor on the drain brings switching lossesIs there a way to switch on again when discharged?

    Asynchronous switchingFixed frequency

    Synchronous switchingVariable frequency

    DS inV V >

    DS inV V

  • 8/10/2019 Chris Basso APEC Seminar 2011

    38/165

    38 Chris Basso APEC 2011

    600 0.85 510 V DSS D BV k = =

    115 Vclamp DSS D os inV BV k V V = =

    A vertical MOSFET features a buried parasitic NPN transistorThe collector-base junction of this transistor forms the body-diodeThis diode can accept to avalanche in certain conditionsDo NOT use this diode as a Transient Voltage Suppressor!

    Adopt a safety coefficient k D when chosing the maximum V DS (t )15% derating is usually selected

    k D = 0.85

    Take V os around 15 20 V RCD clampdesign entry

    Protecting the Power MOSFET

    gate

    drain

    source

  • 8/10/2019 Chris Basso APEC Seminar 2011

    39/165

    39 Chris Basso APEC 2011

    BV DSS = 600 V

    V DS (t )

    V r V in

    V clamp

    V os

    Safety margin

    100 V / div

    Inclusion of a Safety MarginThe voltage on the drain swings up to V clamp

    Capture this waveform in worst-case conditions

    nominal

    max

    max

    out

    out

    in

    V

    I

    V

    =

    =

    =

    Test at start-up

    and in short-circuit

  • 8/10/2019 Chris Basso APEC Seminar 2011

    40/165

    40 Chris Basso APEC 2011

    The reflected voltage affects the power dissipation in the clamp

    Do not Reflect too Much Voltage

    ( )2

    ,

    12 1clamp

    cV avg sw leak peak

    c

    k P F L I

    k =

    clamp

    cr

    V k

    V =

    1 1.5 2 2.5 30

    10

    20

    30

    40

    50

    60

    ck

    ( )WclampP

    If V clamp is too close to V r , dissipation occurs k c = 1.3 to 2

  • 8/10/2019 Chris Basso APEC Seminar 2011

    41/165

    41 Chris Basso APEC 2011

    ( )c out f clamp

    k V V N

    V

    +

    The turns ratio affects the reflected voltage

    PIV in out V N V = +

    Compute the Transformer Turns Ratio

    But also the Peak Inverse Voltage of the secondary diode

    Choose a 100%derating factor

    PIV 100 V=

    BV 200V=

    PIV

    ringing

    If

    Then

    Always check the margins are not violated in any operating modes

    V f

    ( )d V t

    ( )out f clamp c

    V V V k

    N

    +

  • 8/10/2019 Chris Basso APEC Seminar 2011

    42/165

    42 Chris Basso APEC 2011

    ( )

    2

    2 out f

    clamp clamp

    clpsw leak peak

    V V V V

    N R

    F l I

    + = clampclp

    clp sw

    V C

    R F V =

    Select the Clamp Passive ElementsThe clamp resistor depends on the maximum peak current

    600 V

    550 V

    600 V

    550 V

    clpC clp R

    D

    Watch for the peak current overshoot in fault!

    ,max ,max,max

    sense in peak prop

    sense p

    V V I t

    R L= +

    Worst-case value

  • 8/10/2019 Chris Basso APEC Seminar 2011

    43/165

    43 Chris Basso APEC 2011

    It can also forward-bias the MOSFET body diodeDamp it!

    V DS (t )

    The Leakage Inductor RingsThis ringing can be of high frequency and is radiated-EMI rich

    ..

    damp R

    D

    clpC

    clp R

    Watch for

    added cap.

  • 8/10/2019 Chris Basso APEC Seminar 2011

    44/165

    44 Chris Basso APEC 2011

    0 1leak damp

    lQ

    R

    = = 0@leak l damp Z f R=

    V

    Without R damp

    With R dampSimilar overshoot

    V DS (t) V DS (t)a b

    V

    Without R damp

    With R dampSimilar overshoot

    V DS (t) V DS (t)a b

    Fighting Parasitic Ringing part IThe installed resistor reduces the ringing on the drain

  • 8/10/2019 Chris Basso APEC Seminar 2011

    45/165

    45 Chris Basso APEC 2011

    Fighting Parasitic Ringing part II

    .

    .

    If the series resistor is not enough, install a damper

    1. Measure the ringing: f 0

    2. Evaluate leakage impedance at f 0

    3. Make4. Try

    5. Tweak for power dissipation0

    12damp

    C f R

    =leak damp l R Z =

    02leak l leak Z l f =

    Ray Ridley Snubber design procedure

    damp R

    dampC

    Eff B h b h Cl i A i

  • 8/10/2019 Chris Basso APEC Seminar 2011

    46/165

    46 Chris Basso APEC 2011

    3.0325m 3.0335m 3.0345m 3.0355m 3.0365mtime in seconds

    40.0

    160

    280

    400520

    v d r a

    i n i n v o

    l t s

    p l o t

    1 1

    3.042m 3.046m 3.050m 3.054m 3.058mtime in seconds

    10.0

    130

    250

    370490

    v d r a

    i n i n v o

    l t s

    P l o t 5

    2

    3.042m 3.046m 3.050m 3.054m 3.058mtime in seconds

    10.0

    130

    250

    370490

    v d r a

    i n # a i n v o

    l t s

    P l o t 4

    3

    3.042m 3.046m 3.050m 3.054m 3.058mtime in seconds

    10.0

    130

    250

    370490

    v d r a

    i n # a i n v o

    l t s

    P l o t 3

    3

    No damper zoom

    V peak = 510 V

    Can forward biasthe body diode No damper

    V DS (t)

    V DS (t)

    V DS (t)

    V DS (t)

    Rdamp = 290 C damp = 220 pF

    Rdamp = 290 C damp = 50 pF

    V peak = 452 V

    V peak = 494 V

    a

    b

    c

    F leak = 2.08 MHz

    3.0325m 3.0335m 3.0345m 3.0355m 3.0365mtime in seconds

    40.0

    160

    280

    400520

    v d r a

    i n i n v o

    l t s

    p l o t

    1 1

    3.042m 3.046m 3.050m 3.054m 3.058mtime in seconds

    10.0

    130

    250

    370490

    v d r a

    i n i n v o

    l t s

    P l o t 5

    2

    3.042m 3.046m 3.050m 3.054m 3.058mtime in seconds

    10.0

    130

    250

    370490

    v d r a

    i n # a i n v o

    l t s

    P l o t 4

    3

    3.042m 3.046m 3.050m 3.054m 3.058mtime in seconds

    10.0

    130

    250

    370490

    v d r a

    i n # a i n v o

    l t s

    P l o t 3

    3

    No damper zoom

    V peak = 510 V

    Can forward biasthe body diode No damper

    V DS (t)

    V DS (t)

    V DS (t)

    V DS (t)

    Rdamp = 290 C damp = 220 pF

    Rdamp = 290 C damp = 50 pF

    V peak = 452 V

    V peak = 494 V

    a

    b

    c

    F leak = 2.08 MHz

    Effects Brought by the Clamping Action

    Wh Di d S l f h Cl ?

  • 8/10/2019 Chris Basso APEC Seminar 2011

    47/165

    47 Chris Basso APEC 2011

    V DS

    (t)

    V DS (t)

    No ringing!

    Recovery losses

    V = 37 V

    I d (t)

    V DS

    (t)

    V DS (t)

    No ringing!

    Recovery losses

    V = 37 V

    I d (t)

    Can a simple 1N4007 be used in a RCD clamping network?The answer is yes for low power applications (below 20 W)The long recovery time naturally damps the leakage inductor

    What Diode to Select for the Clamp?A fast diode is a must: MUR160 is good fit

    B S th Cl L l d t R

  • 8/10/2019 Chris Basso APEC Seminar 2011

    48/165

    48 Chris Basso APEC 2011

    0 1 2 340

    60

    80

    100

    120

    140

    V clamp (V)

    I peak (A)0 1 2 3

    40

    60

    80

    100

    120

    140

    V clamp (V)

    I peak (A)

    Watch-out for clamp voltage variations, at start-up or in short-circuitThe main problem comes from the propagation delay!

    Be Sure the Clamp Level does not Runaway

    Ch k th Cl V lt g V i ti

  • 8/10/2019 Chris Basso APEC Seminar 2011

    49/165

    49 Chris Basso APEC 2011

    150u 450u 750u 1.05m 1.35mtime in seconds

    -200

    0

    200

    400

    600

    v d r a

    i n i n v o

    l t s

    p l o t

    110

    150u 450u 750u 1.05m 1.35mtime in seconds

    -100

    0

    100

    200

    300

    v c l a m p

    i n v o

    l t s

    P l o t 2 12

    150u 450u 750u 1.05m 1.35mtime in seconds

    -300m

    100m

    500m

    900m1.30

    v s e n s e

    i n v o

    l t s

    P l o t 3

    15

    150u 450u 750u 1.05m 1.35mtime in seconds

    -2.00

    2.00

    6.00

    10.0

    14.0

    v o u t

    i n v o

    l t s

    P l o t 4

    16

    V DS (t)

    V clamp (t)

    V sense (t)

    V out (t)

    overshoot

    Max V sense

    150u 450u 750u 1.05m 1.35mtime in seconds

    -200

    0

    200

    400

    600

    v d r a

    i n i n v o

    l t s

    p l o t

    110

    150u 450u 750u 1.05m 1.35mtime in seconds

    -100

    0

    100

    200

    300

    v c l a m p

    i n v o

    l t s

    P l o t 2 12

    150u 450u 750u 1.05m 1.35mtime in seconds

    -300m

    100m

    500m

    900m1.30

    v s e n s e

    i n v o

    l t s

    P l o t 3

    15

    150u 450u 750u 1.05m 1.35mtime in seconds

    -2.00

    2.00

    6.00

    10.0

    14.0

    v o u t

    i n v o

    l t s

    P l o t 4

    16

    V DS (t)

    V clamp (t)

    V sense (t)

    V out (t)

    overshoot

    Max V sense

    No design margin!

    Check the Clamp Voltage Variations

    Drainvoltage

    Clampvoltage

    Sensevoltage

    OutputvoltageWorst case

    A Zener or TVS to Hard Clamp the Voltage

  • 8/10/2019 Chris Basso APEC Seminar 2011

    50/165

    50 Chris Basso APEC 2011

    Vout

    Dclp

    Vbulk

    TVS

    V DS (t)

    I d (t)

    200t = ns

    V DS (t)

    I d (t)

    200t = ns

    ( )21

    2 z

    TVS sw leak peak out f

    z

    V P F l I

    V V

    V N

    =+

    The TVS improves the efficiency in standby but degrades EMIIt costs around 5 cents

    A Zener or TVS to Hard Clamp the VoltageTVS do not suffer from voltage runaways in fault conditions

    Course Agenda

  • 8/10/2019 Chris Basso APEC Seminar 2011

    51/165

    51 Chris Basso APEC 2011

    Course Agenda

    The Flyback Converter

    The Parasitic Elements

    How These Parasitics Affect your Design?

    Current-Mode is the Most Popular Scheme

    Fixed or Variable Frequency?More Power than Needed

    The Frequency Response

    Compensating With the TL431

    What Control Scheme?

  • 8/10/2019 Chris Basso APEC Seminar 2011

    52/165

    52 Chris Basso APEC 2011

    What Control Scheme?Two control scheme coexist, current-mode andvoltage-mode

    Voltage-mode?

    Current-mode?

    Operatingwaveformsare identical

    Voltage-mode?

    Current-mode?

    Ac -transferfunctionsdiffer

    Voltage Mode Control

  • 8/10/2019 Chris Basso APEC Seminar 2011

    53/165

    53 Chris Basso APEC 2011

    S

    R

    Q

    Q

    +

    -

    ..

    +

    -

    Voltage-Mode ControlVoltage mode uses a ramp to generate the duty-ratioThe error voltage directly adjusts the duty-ratio

    sense R

    maxV

    out V

    FB

    dd v

    bulk V

    ( ) D t

    ( )err V t

    ( )sawV t ( ) D t

    err V

    Voltage-Mode Control

  • 8/10/2019 Chris Basso APEC Seminar 2011

    54/165

    54 Chris Basso APEC 2011

    Voltage-Mode ControlPROsPROs

    Does not need the inductor current informationCan go to very small duty-ratioCCM operation without sub-harmonic instabilitiesNo need for slope compensation, current limit

    unaffected

    CONsCONs

    No inherent input line feedforward (weak audiosusceptibility)

    Cannot use small bulk capacitor, bad ripple rejection2 nd -order system in CCM: mode transition can be a

    problem

    Limited integrated circuit offer

    Peak-Current-Mode Control

  • 8/10/2019 Chris Basso APEC Seminar 2011

    55/165

    55 Chris Basso APEC 2011

    Peak-Current-Mode Control

    S

    R

    Q

    Q

    +

    -

    .

    .

    sense RmaxV

    out V

    FB

    dd v

    err V

    bulk V

    Current mode uses the inductor current information asa rampThe error voltage adjusts the inductor peak currentThe duty-ratio is indirectly controlled

    ( ) D t

    ( ) L I t ( )err V t

    ( ) L I t

    Peak-Current-Mode Control

  • 8/10/2019 Chris Basso APEC Seminar 2011

    56/165

    56 Chris Basso APEC 2011

    Peak Current Mode ControlPROsPROs

    Inherent pulse-by-pulse current limitationNatural input line rejectionMode transition DCM to CCM is easyConverter remains a 1 st -order system at low frequencyWidest offer on the market: a really popular technique!

    CONsCONs

    Leading Edge Blanking limits the minimum duty-ratioRequires slope compensation against sub-harmonic

    oscillationsAdditionnal ramp affects the available maximum peak

    current

    Current sense can sometimes be a problem (floatingsense)

    A Dirty Inductor Current Signal

  • 8/10/2019 Chris Basso APEC Seminar 2011

    57/165

    57 Chris Basso APEC 2011

    A Dirty Inductor Current Signal

    The inductor current is sensed with a resistor, atransformer

    This information is affected by parasitics: false trippingpossible!

    3.122m 3.126m 3.131m 3.135m 3.139m

    -100m

    100m

    300m

    500m

    700m

    1

    ( )senseV t

    Can potentiallyfalse trip thecontroller

    The LEB Cleanses the Signal

  • 8/10/2019 Chris Basso APEC Seminar 2011

    58/165

    58 Chris Basso APEC 2011

    The LEB Cleanses the Signal

    A circuit blinds the controller at turn-on for a small time(250 ns)

    It conveys the signal afterwards: Leading Edge Blanking

    2

    2

    ( )senseV t

    Cleanedges

    sense R

    CS

    DRV

    S1

    S 2

    PWMreset

    bulk V

    DRV

    LEBt

    . .

    It Limits the Minimum Duty-Ratio

  • 8/10/2019 Chris Basso APEC Seminar 2011

    59/165

    59 Chris Basso APEC 2011

    It Limits the Minimum Duty Ratio

    During the LEB duration, the controller is completelyblind!

    In output winding short-circuits, failures are likely tooccur

    1.2

    2.6

    4

    591u 594u 597u 600u 603u

    -3.001.00

    5.00

    9.00

    13.0

    0.8 sense R

    LEBt

    + 80%

    LE B delt t +( ) DRV V t

    ( )senseV t

    ( )CS V t

    t LEB + t del sets the minimum duty-ratio: cannot go lower, t on ,min

    If the Primary Inductor is too Low

  • 8/10/2019 Chris Basso APEC Seminar 2011

    60/165

    60 Chris Basso APEC 2011

    y

    In short-circuit situations, you reflect the diode forwarddrop

    .

    .

    bulk V

    1 N

    f V

    f V

    N

    ( ) p L

    I t

    t sense R

    inon

    p

    f off

    p

    V S L

    V S

    NL

    =

    =

    onS

    off S

    swT

    ,minont

    Almostno decrease

    If you hit the minimum on-time, you cannot limit thecurrent!

    The Primary Current Runs out of Control

  • 8/10/2019 Chris Basso APEC Seminar 2011

    61/165

    61 Chris Basso APEC 2011

    1.00

    3.00

    5.00

    7.00

    9.00

    i p r i m

    i n a m p e r e s

    P l o t 1

    7

    35.0u 70.0u 105u 140u 175utime in seconds

    0

    400m

    800m

    1.20

    1.60

    v s e n s e

    i n v o

    l t s

    P l o t 2

    8

    I Lp(t)

    V sense (t)

    Demagnetizationtoo weak

    1 V

    Maximum theoretical peak value, 5 A

    The current climbs-upto 9 A!!

    1.00

    3.00

    5.00

    7.00

    9.00

    i p r i m

    i n a m p e r e s

    P l o t 1

    7

    35.0u 70.0u 105u 140u 175utime in seconds

    0

    400m

    800m

    1.20

    1.60

    v s e n s e

    i n v o

    l t s

    P l o t 2

    8

    I Lp(t)

    V sense (t)

    Demagnetizationtoo weak

    1 V

    Maximum theoretical peak value, 5 A

    The current climbs-upto 9 A!!

    Chris Bassofirst design

    y

    The current current climbs cycle by cycle until smokeappears!

    Minimum t on

    ok

    Sub-Harmonic Oscillations

  • 8/10/2019 Chris Basso APEC Seminar 2011

    62/165

    62 Chris Basso APEC 2011

    Ac analysis shows a first-order system at f c

  • 8/10/2019 Chris Basso APEC Seminar 2011

    63/165

    63 Chris Basso APEC 2011

    I L

    t dT sw dT sw

    T sw

    I L(0)

    I L(T sw)

    S 1 S 2

    t

    ab

    I L(0) I L(T sw) err

    i

    V

    R

    I L(T sw) I L(0)

    I peak

    I L

    t dT sw dT sw

    T sw

    I L(0)

    I L(T sw)

    S 1 S 2

    t

    ab

    I L(0) I L(T sw) err

    i

    V

    R

    I L(T sw) I L(0)

    I L

    t dT sw dT sw

    T sw

    I L(0)

    I L(T sw)

    S 1 S 2

    t

    ab

    I L(0) I L(T sw) err

    i

    V

    R

    I L(T sw) I L(0)

    I peak

    ( ) (0)'

    n

    L sw L

    d I nT I

    d

    =

    1 peak I a S t = +

    2 peak b I S t =

    1 2

    peak peak I a I b

    S S

    =

    Solvingt

    1 2

    ( )(0) L sw L I T I S S

    =

    2

    1 'S d S d

    =

    y p y

    The condition for instability is: CCM operation + duty-ratio > 50%

    Instability Depends on Duty-Ratio

  • 8/10/2019 Chris Basso APEC Seminar 2011

    64/165

    64 Chris Basso APEC 2011

    clock

    I peak

    I L

    Perturbation has gone

    I L(0)

    I L(0)

    t

    clock

    I peak

    I L

    Perturbation has gone

    I L(0)

    I L(0)

    t

    I L(0)

    clock

    I peak

    Duty clamp

    I L

    I L(0)

    t

    I L(0)

    clock

    I peak

    Duty clamp

    I L

    I L(0)

    t

    clock

    I peak

    Duty clamp

    I L

    I L(0)

    t

    Duty-ratio < 50%

    Duty-ratio > 50%

    Asymptotically stable

    Asymptotically unstable

    ( ) (0)'

    n

    L sw Ld I nT I d

    =

    With a duty-ratio below 50%, perturbation naturally dies out

    The Cure is in the Ramp

  • 8/10/2019 Chris Basso APEC Seminar 2011

    65/165

    65 Chris Basso APEC 2011

    I L

    t dT sw dT sw

    T sw

    I L(0)

    I L(T sw)

    S 1S 2

    t

    I L(0)

    S acb

    I L(T sw)

    err

    i

    V R

    I L

    t dT sw dT sw

    T sw

    I L(0)

    I L(T sw)

    S 1S 2

    t

    I L(0)

    S acb

    I L(T sw)

    err

    i

    V R

    ( )2

    2

    1( ) (0) (0)

    '

    n

    a

    n

    L sw L La

    S S

    I nT I I aS d

    d S

    = = +

    Must staybelow 1

    2

    2

    11

    0

    a

    a

    S

    S S S

    Up tod = 100%

    Injecting a ramp on the feedback signal, damping is obtained

    A Model to Simulate a Flyback Converter

  • 8/10/2019 Chris Basso APEC Seminar 2011

    66/165

    66 Chris Basso APEC 2011

    A SPICE model can predict subharmonic instabilities

    1

    D1Ambr20200ctp

    23

    4

    Lp{Lp}

    5DC

    vout6

    vout

    X2xXFMRRATIO = -N

    Vin100AC = 0

    8

    R1014.4m

    C56600u

    v c a

    c

    P W M s w

    i t c h C M

    p

    d u t y - c y c

    l e

    X9PWMCML = LpFs = FswRi = RiSe = Se

    Rload4

    parameters

    Vout=19Soff=(Vout/(N*Lp))*Ri

    N=250mFsw=65kLp=350uRi=250mA=0.5Se=A*Soff

    10

    R166k

    R210k

    9

    12

    X3AMPSIMP

    V22.5

    13

    LoL1kH

    15

    CoL1kF

    AC = 1Vstim

    err

    B1VoltageV(err)/3 > 1 ?1 : V(err)/3

    19.7V 19.0V

    0V

    441mV

    -79.0V100V

    19.0V

    774mV

    2.50V

    2.50V

    2.32V2.32V

    2.32V

    0V

    Simulation Results of the CCM Flyback

  • 8/10/2019 Chris Basso APEC Seminar 2011

    67/165

    67 Chris Basso APEC 2011

    As ramp is injected, the double-pole Q is dampedInjecting more ramp turns the converter into voltage-mode

    -24.0

    -12.0

    0

    12.0

    24.0

    1 10 100 1k 10k 100k

    -180

    -90.0

    0

    90.0

    180

    No ramp

    ( ) H s

    ( ) H s

    250%aS S =

    No ramp

    250%aS S =

    Modern Circuits Include Slope Compensation

  • 8/10/2019 Chris Basso APEC Seminar 2011

    68/165

    68 Chris Basso APEC 2011

    A simple resistor in series with current sense resistor does the job

    6

    411 R

    9C

    bulk V

    18 R2Q

    25 R

    20 k ramp R

    300 nsdelay

    PWM

    Q

    4.2FBV

    PWMreset

    2.5V

    0.8 V1S

    2S

    ..

    6

    411 R

    9C

    bulk V

    18 R2Q

    25 R

    20 k ramp R

    300 nsdelay

    PWM

    Q

    4.2FBV

    PWMreset

    2.5V

    0.8 V1S

    2S

    ..

    NCP1250

    Adjust the resistor to setthe ramp to any level

    Course Agenda

  • 8/10/2019 Chris Basso APEC Seminar 2011

    69/165

    69 Chris Basso APEC 2011

    The Flyback Converter

    The Parasitic Elements

    How These Parasitics Affect your Design?

    Current-Mode is the Most Popular Scheme

    Fixed or Variable Frequency?More Power than Needed

    The Frequency Response

    Compensating With the TL431

    Modulation Strategies

  • 8/10/2019 Chris Basso APEC Seminar 2011

    70/165

    70 Chris Basso APEC 2011

    on

    off

    off

    on

    LeadingLeading edgemodulation

    TrailingTrailing edge

    modulation

    Clock

    Clock

    off

    feedback

    feedback

    The most popular modulation strategy is trailing-edge

    Leading-edge modulation often appears in post-regulatorsV GS (t )

    V GS (t )

    Fixed Frequency Operation

  • 8/10/2019 Chris Basso APEC Seminar 2011

    71/165

    71 Chris Basso APEC 2011

    The vast majority of converters use fixed-frequency operationSwitching losses depend on frequency: high frequency, highlosses!

    Capacitive losses are a brake to efficiency improvement

    CCM operation induces high losses on the secondary diodePotential shoot-trough hampers synchronous rectificationThe Right Half-Plane Zero severely limits the available

    bandwidth

    ( ) DS V t

    ( ) D I t ( )d I t

    ( ) DS V t

    Hard blocking

    Noise and losses!

    The Right-Half-Plane Zero

  • 8/10/2019 Chris Basso APEC Seminar 2011

    72/165

    72 Chris Basso APEC 2011

    In a CCM flyback, I out is delivered during the off-time:

    T sw

    D 0T sw

    I d (t )

    t

    I L(t )

    in

    p

    V L

    I d 0

    T sw

    D 1T sw

    I d (t )

    t

    I L(t )

    d

    I L1

    I d 1

    I L0

    If D brutally increases, D' reduces and I out drops!What matters is the inductor current slew-rate

    ( ) Ld V t dt

    in

    p

    V L

    Processing the Output Power Demand

  • 8/10/2019 Chris Basso APEC Seminar 2011

    73/165

    73 Chris Basso APEC 2011

    If I L(t ) can rapidly change, I out increases when D goes up

    100u 300u 500u 700u 900u

    d (t ) V out (t )

    I L(t )

    I out (t )

    200 s

    d = 58.3%

    d = 59%

    Failing to Increase the Current in Time

  • 8/10/2019 Chris Basso APEC Seminar 2011

    74/165

    74 Chris Basso APEC 2011

    If I L(t ) is limited because of a big L p, I out drops when D increases

    2

    100u 300u 500u 700u 900u

    d (t )

    d = 59%

    d = 58.3%

    V out (t )

    I L(t )

    I out (t )

    10 s

    V out drops!

    I out drops!

    The RHPZ is a Positive Root

  • 8/10/2019 Chris Basso APEC Seminar 2011

    75/165

    75 Chris Basso APEC 2011

    Small-signal equations can help us to formalize it

    2

    2

    2

    'load z

    p

    R D N DL

    =

    The negative signindicates a positive root!

    ( )( )

    1 2

    0 2

    0 0

    1 1

    1

    z zout

    s s

    v sG

    d s s sQ

    +

    =

    + +

    Voltagemode

    Currentmode

    Voltage mode or current mode, the RHPZ remains the same

    ( )

    ( ) ( )

    1 2 3

    0

    1 1 1

    z z zout

    c

    s s s

    v sG

    v s D s

    + + =

    Simulating the RHPZ

  • 8/10/2019 Chris Basso APEC Seminar 2011

    76/165

    76 Chris Basso APEC 2011

    To limit the effects of the RHPZ, limit the duty ratio slew-rateChoose a crossover frequency equal to 20-30% of RHPZ position

    A simple RHPZ can be easily simulated:

    12

    E110k

    R110k

    3

    C110n SUM2

    K1

    K2

    4

    X1SUM2K1 = 1K2 = 1

    1

    0

    1

    ( ) ( ) ( ) ( ) 11out in in in

    R sV s V s V s V s

    sC

    = =

    V out (s)V in(s)

    A Zero Producing a Phase Lag

  • 8/10/2019 Chris Basso APEC Seminar 2011

    77/165

    77 Chris Basso APEC 2011

    With a RHPZ we have a boost in gain but a lag in phase!

    0

    ( ) 1 s

    G s

    = +

    LHPZ

    RHPZ

    0

    ( ) 1 s

    G s

    =

    -40.0

    -20.0

    0

    20.0

    40.0

    1 10 100 1k 10k 100k 1Megfrequency in hertz

    -180

    -90.0

    0

    90.0

    180

    |V out (s)|

    arg V out (s)

    -90

    +1

    Is There a RHPZ in DCM?

  • 8/10/2019 Chris Basso APEC Seminar 2011

    78/165

    78 Chris Basso APEC 2011

    A RHPZ also exists in DCM boost, buck-boost converters

    When D 1 increases, [ D 1, D 2] stays constant but D 3 shrinks

    T sw

    D 1T sw

    I d (t )

    t D 2T sw

    D 3T sw

    I L,peak (t )

    Is There a RHPZ in DCM?

  • 8/10/2019 Chris Basso APEC Seminar 2011

    79/165

    79 Chris Basso APEC 2011

    T sw

    D 1T sw

    t D 2T sw

    D 3T sw

    1d

    The triangle is simply shifted to the right by 1d

    The refueling time of the capacitor is delayed and a drop occurs

    I d (t )

    I L,peak (t )

    Is There a RHPZ in DCM?

  • 8/10/2019 Chris Basso APEC Seminar 2011

    80/165

    80 Chris Basso APEC 2011

    If D increases, the diode current is delayed by

    2.02m 2.04m 2.06m 2.09m 2.11mtime in seconds

    180m

    220m

    260m

    300m

    340m

    v d u t y

    i n v o

    l t s

    -1.00

    1.00

    3.00

    5.00

    7.00

    i ( b 2 )

    , i ( b 2 ) # a i n a m p e r e s

    P l o t 1

    23

    4

    1.85m 1.99m 2.13m 2.27m 2.41mtime in seconds

    6.65

    6.75

    6.85

    6.95

    7.05

    v o u t

    i n v o

    l t s

    P l o t 3

    1

    2.02m 2.04m 2.06m 2.09m 2.11m

    6.65

    6.75

    6.85

    6.95

    7.05

    v o u t

    i n v o

    l t s

    P l o t 2

    1

    D (t ) I d (t )

    V out (t )

    V out (t )

    1d

    1d

    Averaged models can predict the DCM RHPZ

    A Large-Signal Model is Available

  • 8/10/2019 Chris Basso APEC Seminar 2011

    81/165

    81 Chris Basso APEC 2011

    Averaged models can predict the DCM RHPZ

    Vout

    16

    R11150

    C51m

    R10

    150m3

    Vin10V

    11

    L175u

    5

    R150k

    R3

    10k

    6

    8

    X2AMPSIMP

    V22.5

    Verr

    1

    LoL1kH

    10

    CoL1kF

    V1xAC = 1

    vout

    vout

    d a

    c

    P W M s w

    i t c h V M

    p

    X3PWMVML = 75uFs = 100k

    15.0V

    15.0V

    10.0V

    10.0V

    2.50V

    278mV278mV

    0V

    ( )( )

    ( )( )( )( )

    1

    1

    2

    2

    1 1 1 1

    z zout d

    p p

    s s s sv s H

    d s s s s s

    + =

    + +

    1

    1 z

    out ESR

    sC R

    =2 2

    load z

    Rs

    M L=

    1

    2 1 1

    1 p

    out ESR

    M s

    M C R

    =

    2

    21 1

    2 p sw M

    s F D

    =

    2 12 1

    out d

    V M H

    D M

    =

    MerciVatch!

    The Model Predicts it!

  • 8/10/2019 Chris Basso APEC Seminar 2011

    82/165

    82 Chris Basso APEC 2011

    Averaged models can predict the DCM RHPZ

    11.06 kHz z f =

    2 141 kHz z f =

    14.2 Hz p f =

    28.75 dBd H =

    247.1 kHz p f =

    28.6 dB

    -45

    f p1

    4.2 Hz 1 kHz 47 kHz 141 kHz 1 10 100 10k 100k 1Meg

    -40.0

    -20.0

    0

    20.0

    40.0

    -180

    -90.0

    0

    90.0

    180

    8

    7

    f z2

    f p2 f z1

    Going to Variable Frequency

  • 8/10/2019 Chris Basso APEC Seminar 2011

    83/165

    83 Chris Basso APEC 2011

    More converters are using variable-frequency operationThis is known as Quasi-Square Wave Resonant mode: QRValley switching ensures extremely low capacitive lossesDCM operation saves losses on the secondary diode

    Easier synchronous rectificationThe Right Half-Plane Zero is pushed to high frequencies

    ( ) DS V t

    ( ) D I t ( )d I t

    ( ) DS V t

    Smooth signals

    Less noise

    Low CV losses

    What is the Principle of Operation?

  • 8/10/2019 Chris Basso APEC Seminar 2011

    84/165

    84 Chris Basso APEC 2011

    The drain-source signal is made of peaks and valleysA valley presence means:The drain is at a minimum level, capacitors are naturally

    discharged

    The converter is operating in the discontinuous conductionmode

    2.061m 2.064m 2.066m 2.069m 2.071m

    0

    120

    240

    360

    480

    ( ) DS

    V t DTt off t on

    V in valley

    V

    A QR Circuit Does not Need a Clock

  • 8/10/2019 Chris Basso APEC Seminar 2011

    85/165

    85 Chris Basso APEC 2011

    The system is a self-oscillating current-mode converter

    S

    R

    Q

    Q

    +

    -

    ..

    +

    -.

    GFB Rsense

    V out

    C out

    Resr

    Rload

    R pullup

    N p:N s

    V dd

    V bulk

    FB

    L p

    CTR

    65 mV

    Demagdetector

    A Winding is Used to Detect Core ResetWhen the flux returns to zero, the aux. voltage drops

  • 8/10/2019 Chris Basso APEC Seminar 2011

    86/165

    86 Chris Basso APEC 2011

    0

    200

    400

    600

    800

    2.251m 2.255m 2.260m 2.264m 2.269m

    -800m

    -400m

    0

    400m

    800m

    -20

    -10

    0

    10

    20V A

    V

    ( ) DS V t

    ( ) p L

    I t

    . .

    .

    ( ) p L

    I t

    bulk V

    aux

    d V N

    dt

    =

    0 =

    Core isreset

    delay

    delay

    ( )auxV t

    g pDiscontinuous Mode is always maintained

    set

    The Frequency Linearly Changes

  • 8/10/2019 Chris Basso APEC Seminar 2011

    87/165

    87 Chris Basso APEC 2011

    As the peak current and the on-slope vary, T sw changes

    swT

    ,on LLt ,max peak I

    ,max peak I

    ( ) p L

    I t

    Excellent behavior in short-circuit conditions!

    ,sw LLT ,on HLt ,sw HLT

    1P

    2P

    lowlow rms currents in the MOSFET (weak stress)

    off f pS V NL=

    ( )off out f pS V V NL= +

    , ,on LL in LL pS V L=, ,on HL in HL pS V L=

    t

    t

    The Excursion Can be Quite Large

  • 8/10/2019 Chris Basso APEC Seminar 2011

    88/165

    88 Chris Basso APEC 2011

    In heavy load low-line conditions, F sw decreasesIn light-load and high-line operations, F sw can go very high

    ( )VinV ( )VinV

    ( )kHzswF

    ( )A peak I

    100 200 300 40030

    40

    50

    60

    70

    80

    100 200 300 4002.4

    2.6

    2.8

    3

    3.2

    3.4

    EMI and switching losses are at stake as F sw goes upStandby power obviously suffers from this condition

    In a Bounded System Discrete Jumps

    A h l d li h h f h k

  • 8/10/2019 Chris Basso APEC Seminar 2011

    89/165

    89 Chris Basso APEC 2011

    As the load gets lighter, the frequency goes to the skyModern controllers fold the frequency back with a VCOProblem, the only places to re-start are valleys: discrete jumps

    Outputcurrent

    New Controllers Lock in the Valleys

    T h i h NCP1380 l k h ll

  • 8/10/2019 Chris Basso APEC Seminar 2011

    90/165

    90 Chris Basso APEC 2011

    To prevent the noise, the NCP1380 locks the valleyThe current is allowed to move within a certain limitWhen it exceeds this limit, the controller selects a new valleyAs the load gets lighter, a VCO takes over and reduce F sw

    0 20 40 602 10

    4

    4 104

    6 104

    8 104

    1 105

    F s w

    ( H z )

    P out (W)

    1st2nd3rd4th

    1st2nd3rd4thVCOmode

    VCOmodeP out decreasesP out increases

    NCP1379/1380

    Course Agenda

  • 8/10/2019 Chris Basso APEC Seminar 2011

    91/165

    91 Chris Basso APEC 2011

    The Flyback Converter

    The Parasitic Elements

    How These Parasitics Affect your Design?Current-Mode is the Most Popular Scheme

    Fixed or Variable Frequency?

    More Power than Needed

    The Frequency Response

    Compensating With the TL431

    What is The Problem?

    A t i d ig d t t id i 85 t 265 V

  • 8/10/2019 Chris Basso APEC Seminar 2011

    92/165

    92 Chris Basso APEC 2011

    A converter is designed to operate on wide mains 85 to 265 Vrms

    It can deliver a maximum power before protection trips

    The maximum power delivered at high line is larger than that atlow line

    85 V rms to 265 V rmsIncrease loaduntil protectiontrip.

    What Does the Standard Say?

    There is a test called Limited Power Source LPS

  • 8/10/2019 Chris Basso APEC Seminar 2011

    93/165

    93 Chris Basso APEC 2011

    There is a test called Limited Power Source, LPS

    The maximum power the converter can deliver must beclamped

    If clamped, the manufacturer can use inferior fire proofingmaterials Output Voltage

    ( )Vout V

    rmsV dcV

    Output Current( )Aout I

    Apparent Power( )VAS

    20 20 8 5 out V 20 30out V < 20 30out V < 8 100

    - 20 60out V < 150 out V 100

    IEC950 safety standard

    19-V adapter, I out, max = 5 A

    Why the Power Runs Away in a Flyback?,max

    ,maxin

    peak peak prop

    V I I tL= +The inductor

  • 8/10/2019 Chris Basso APEC Seminar 2011

    94/165

    94 Chris Basso APEC 2011

    ,max

    0.8 peak

    sense

    I

    R

    in

    p

    V S

    L=

    propt

    delt

    p I I t L

    ( ) p L

    I t

    ( )outCS t

    ( )GS V t

    PWM is reset

    , peak LL I

    Highline

    Lowline

    Depends ondrive capabilityand MOSFET

    QG

    , peak HL I The inductor

    current slopeincreases at highline.

    The controllertakes time to reactto an overcurrent

    situation.The inductor

    current keepsgrowing until theMOSFET turns off.

    The overshoot islarger at higherslopes (High V in)

    The Effect in a DCM Converter

    A flyback converter operated in DCM obeys the formula:

  • 8/10/2019 Chris Basso APEC Seminar 2011

    95/165

    95 Chris Basso APEC 2011

    A flyback converter operated in DCM obeys the formula:

    2,max

    12out p peak sw

    P L I F =

    Primaryinductor

    Max. peakcurrent infault

    Switchingfrequency

    Converterefficiency

    As L p and F sw are fixed, I peak, max changes with line input

    ,,max,

    insense peak LL prop

    sens

    L

    e p

    LV V I t R L

    = +

    ,max peak I

    ( ) p I L

    ,,max,

    insense peak HL prop

    sens

    L

    e p

    H V V I t R L

    = +

    Low line High line

    , ,

    ,max,,

    peak in HL in LL

    p sense peak HLin LL

    prop sense

    I V V L V I

    V t R

    =

    +

    A 13.5% overshoot translatesin a 28% power increase

    ( )21.13 1.28= ( is considered constant over the range)

    t

    L p = 250 H Vsense = 1 V t prop = 350 ns Vin,LL = 120 V in,HL = 370 V Rsense =

    The Power Increases at High Line

  • 8/10/2019 Chris Basso APEC Seminar 2011

    96/165

    96 Chris Basso APEC 2011

    Lp 250 H, V 1 V, t p p 350 ns, V , 120, V , 370 V, R 0.33 , F sw = 65 kHz

    100 200 300 40045

    50

    55

    60

    65

    ( )VinV

    ( )Wout P

    46 W

    63W

    In this example, the converter stays DCM over the whole inputrange.

    17 Wout P =

    = 85% = 89%

    How to Compensate the Runaway?How do we compensate this excess of power?we reduce the maximum peak current at high

  • 8/10/2019 Chris Basso APEC Seminar 2011

    97/165

    97 Chris Basso APEC 2011

    we reduce the maximum peak current at highline

    this is called Over Power Protection OPP peak I peak I

    inV inV

    ,max peak I , peak LL I , peak HL I

    HL LL

    How to calculate the compensated high-line current?Equate low-line power with high-line power and solve

    for I peak

    HL LL

    2,max, ,max,1

    2 pout eak H HL p w L s HLP L F I =

    Solve for I peak

    ( ),max peak in I f V =

    Reducing the Peak Current

    The final inductor peak current must equal:

  • 8/10/2019 Chris Basso APEC Seminar 2011

    98/165

    98 Chris Basso APEC 2011

    ,ma

    ,max,

    x,

    2 out LL peak HL

    p sw HL

    I L F

    P

    =

    The amplitude of the sensed voltage must reduce by:

    You must subtract the prop. delay to obtain the controllersetpoint

    ,,max,

    in HLsense peak HL prop

    sense p

    V V I t

    R L=

    The final inductor peak current must equal:

    ,,max,

    in HLsense peak HL prop sense

    p

    V V V I t R

    L

    =

    For What Final Result?

    Thanks to the OPP, the power stays under control

  • 8/10/2019 Chris Basso APEC Seminar 2011

    99/165

    99 Chris Basso APEC 2011

    100 200 300 40040

    50

    60

    70

    ( )VinV

    ( )Wout P

    46 W

    63 W

    42 W 46 W 4 Wout P =

    Thanks to the OPP, the power stays under control

    The CCM Case is a Different Picture

    In DCM, the valley current is zero, the stored energy is:

  • 8/10/2019 Chris Basso APEC Seminar 2011

    100/165

    100 Chris Basso APEC 2011

    In DCM, the valley current is zero, the stored energy is:2

    ,max

    12 p peak

    E L I =

    The peak current runaway, alone, affects the transmitted powerIn CCM, the valley current changes the formula:

    ( )2 2

    ,max

    12 p peak valley E L I I =

    ,max peak I

    ( ) p I L

    t

    valley I

    The Converter Changes its Operating ModeIn fault mode, the converter operates in deep CCM at low lineAs the input voltage increases, the valley current decreases

  • 8/10/2019 Chris Basso APEC Seminar 2011

    101/165

    101 Chris Basso APEC 2011

    p g , y

    Maximum current in fault

    Maximum current in fault

    ( ) p L

    I t

    t

    t

    ,minin

    p

    V

    L

    ,maxin

    p

    V

    L

    ( )out f p

    V V

    NL

    +

    ( )out f p

    V V

    NL

    +

    ,max, p LL I

    ,max, p HL I

    , , p valley LL I

    , , p valley HL I

    ,on LLt

    ,on HLt 0

    Low line

    High line

    LL E

    HL E

    HL LL E E >

    Computing the Transmitted Power in CCMFirst, we write the t

    onand t

    off equations in

    CCM

  • 8/10/2019 Chris Basso APEC Seminar 2011

    102/165

    102 Chris Basso APEC 2011

    CCM( )

    p L I t

    t

    ,minin

    p

    V

    L

    ( )out f p

    V V NL

    +

    peak I

    valley I

    ont off t

    swT

    in peak valley on

    p

    V I I t L

    = + ( )out f valley peak off p

    V V I I t NL

    += sw on off T t t = +

    (1) (2) (3)

    Solving for the Valley CurrentBy combining the 3 equations, we have:

    ( ) ( )

  • 8/10/2019 Chris Basso APEC Seminar 2011

    103/165

    103 Chris Basso APEC 2011

    ( ) p peak valleyon

    in

    L I I t

    V

    =

    ( ) p peak valleyoff sw on sw

    in

    L I I t T t T

    V

    = =

    Replace t off in(2):( )( ) f out valley p peak p sw in

    valley peak p in

    V V I L I L T V I I

    L NV

    + +=

    Solve for I valley :( )

    ( )sw f out

    valley peak

    p f out

    in

    in

    T V V V I I

    L V V N V

    +=

    + +

    ,maxsense

    peak propse se p

    n

    n

    iV I t R L

    V = +

    Max faultcurrent

    ( )( )sw in f out

    L

    p f out in

    T V V V I

    L V V NV

    + =

    + +

    LL or HL

    L peak valley I I I =

    Inductor ripplecurrent

    Identifying the Operating ModeHaving the ripple on hand, we can confirm the

    mode:I N I

  • 8/10/2019 Chris Basso APEC Seminar 2011

    104/165

    104 Chris Basso APEC 2011

    Lon p

    in

    I t L

    V

    =

    ( ) L

    off p

    out f

    N I t L

    V V

    =

    +

    0on off sw

    valley

    t t T I

    + =>

    CCM

    on off sw

    sw off on

    t t T DT T t t

    + 0.5 under damping

    Asymptotically stable

    Q = 0.5

    phase margin depends on the needed response: fast, no overshootgood practice is to shoot for 60and make sure m always > 45

    What Compensator Types do we Need?

    There are basically 3 compensator types:type 1, 1 pole at the origin, no phase boost

  • 8/10/2019 Chris Basso APEC Seminar 2011

    119/165

    119 Chris Basso APEC 2011

    type 2, 1 pole at the origin, 1 zero, 1 pole. Phase boost up to 90type 3, 1 pole at the origin, 1 zero pair, 1 pole pair. Boost up to 180

    10 100 1k 10k 100k

    ( )G s

    ( )G s

    270

    b o o s t

    1 2 5 10 20 50 100 200 500 1k

    ( ) 270G s =

    ( )G s

    10 100 1k 10k 100k

    ( )G s

    ( )G s

    270

    b o o s t

    Type 1 Type 2 Type 3Boost = 0 Boost up to 90 Boost up to 180

    Fixed-Frequency Current-Mode

    2 First, check the operating mode, CCM or DCM?

  • 8/10/2019 Chris Basso APEC Seminar 2011

    120/165

    120 Chris Basso APEC 2011

    , 22load in

    p crit out sw

    in

    R V L

    V F N V N

    =

    +

    L p > L p,crit ? Yes, CCM else DCM

    Assume CCM, compute the duty-ratio:

    out

    out in

    V D

    V NV =

    +

    Compute M and : L

    22 pout

    Lin load sw

    L N V

    M NV R T = =

    Evaluate the dc gain and poles/zeros positions:

    ( )0 2

    11

    2 1

    load

    sense FB

    L

    RG R G N D

    M

    =

    + +

    Fixed-Frequency Current-ModeCompute the poles/zeros positions:

    ( )2

    2

    2

    1

    2load

    z

    D R f

    DL N

    =

    1

    12 z R

    f C

    =( )

    1

    3

    1 1

    2 L

    p

    D D f

    R C + +

    =

  • 8/10/2019 Chris Basso APEC Seminar 2011

    121/165

    121 Chris Basso APEC 2011

    Check the quality coefficient at F sw /2in

    n sense p

    V S R

    L= ( )1e c nS M S =

    1 = no compensation( )( )

    11 0.5 p c

    Q M D

    =

    Apply to formula to plot the ac response:

    ( ) 1 2

    0 2

    2

    1

    1 11

    11

    z z

    n p n p

    s s

    H s G s ssQ

    +

    + ++

    1 e

    cn

    S M S = + n swT

    =

    2 2 p DL N 1 2 t R ou ES R C 1 2p load out R C

    3 rd order

    Fixed-Frequency Current-Mode

    2

    Extract the magnitude and the argument definitions

  • 8/10/2019 Chris Basso APEC Seminar 2011

    122/165

    122 Chris Basso APEC 2011

    ( ) 2

    1

    22

    1

    10 0 2 2 22

    1 11

    20log1 1

    z z

    p n n p

    f f f f

    H f G f f f f f f Q

    + + =

    + +

    ( )1 2 1

    1 1 1 12

    1arg tan tan tan tan

    1 z p n p z

    n

    f f f f H f

    f f f Q f f f

    =

    Plot them with Mathcad for instance.

    RHPZ

    Fixed-Frequency Current-Mode

    20Extract the information at the selected crossover frequency

  • 8/10/2019 Chris Basso APEC Seminar 2011

    123/165

    123 Chris Basso APEC 2011

    10 100 10 3 104 10520

    10

    0

    10

    100

    0

    100

    ( ) H s

    ( ) H s

    ( ) 16.3dB3kHz H = ( )arg 3 kH 3z 2 H =

    dB

    Hz

    Sub-harmonicoscillations

    Damp poleswith S e

    Low line, high power

    Fixed-Frequency Current-Mode

    The compensation strategy is the following:compensate the gain loss at fc so that: ( )3 kHz 16 3dBG = +

  • 8/10/2019 Chris Basso APEC Seminar 2011

    124/165

    124 Chris Basso APEC 2011

    compensate the gain loss at f c so that:

    evaluate the boost in phase at f c

    to get phase 70 margin:

    ( )3 kHz 16.3dBG

    ( )Boost PM argH 90 3.15c f = = Boost = 0 select type 1 origin pole

    Boost < 90 select type 2 origin pole, 1 pole, 1 zerok -factor can be used to place the pole and the zero

    tan 45 12

    boost k

    = +

    poles and zeros are coincident

    1 1 3 3 kHz pk c f kf k = = = 13

    3 kHz1

    c zk

    f k f

    k = = =

    Fixed-Frequency Current-Mode

    Plot the compensator transfer function80 180

    ( )G s

  • 8/10/2019 Chris Basso APEC Seminar 2011

    125/165

    125 Chris Basso APEC 2011

    10 100 10 3 10 4 10 520

    0

    20

    40

    60

    260

    240

    220

    200

    ( )G s

    ( )G s

    dB

    Hz

    ( )

    1

    2

    110 2

    0

    1

    20log

    1k

    zk

    pk p

    f

    f G f G

    f f f f

    + = +

    1

    1 1

    1

    180tan tan

    zk pk

    f f boost

    f f =

    Fixed-Frequency Current-Mode

    Plot the loop gain transfer function G(s) H (s) and check the margi100 0

    ( )T

  • 8/10/2019 Chris Basso APEC Seminar 2011

    126/165

    126 Chris Basso APEC 2011

    10 100 10 3 10 4 10 550

    0

    50

    300

    200

    100

    360

    ( )T s

    ( )T s

    dB

    Hz

    f c = 3 kHz

    70m =

    Sweep ESR , C out , Rload and verify the resultsLow line, high power

    Fixed-Frequency Current-ModeIn case the converter transitions to DCM, update the equation

    20

  • 8/10/2019 Chris Basso APEC Seminar 2011

    127/165

    127 Chris Basso APEC 2011

    10 100 10 3 104 10530

    20

    10

    0

    10

    50

    0

    50( ) H s

    ( ) H s

    ( ) 1 2

    1 2

    0

    1 1

    1 1

    z z

    p p

    s s

    H s Gs s

    +

    =

    + +

    Yes, analytical analysis is long and tedious.But, it teaches where the threats are and how to deal with!

    Variable-Frequency Current-ModeObserving the waveforms helps us to derive an average mode

    ( )a I t ( )c I t

  • 8/10/2019 Chris Basso APEC Seminar 2011

    128/165

    128 Chris Basso APEC 2011

    a c

    p

    Vc/(2*Ri)d1.Ic

    Ia IcIt gives birth to a large-signal model

    peak I

    swdT swT

    peak I

    ( ) 2sw peak c T

    I I t =

    ( )2 i out out inc

    in out

    R P V NV V V V

    +=

    1c psw

    i in out

    V LT

    R V V

    = +

    1

    2 out ic in

    P Rd

    V V =Senseresistor

    Variable-Frequency Current-ModeLinearization is needed to get a small-signal model

    Implement this small-signal model in a flyback configuration a

    v ( c , p ) .k

  • 8/10/2019 Chris Basso APEC Seminar 2011

    129/165

    129 Chris Basso APEC 2011

    c

    p

    v c.k c

    k c p

    i c.k i c

    v ( a , c ) .k a c

    i c

    X5XFMRRATIO = N

    Resr

    Cout

    Rload

    Vout

    Lp

    Vin

    http://cbasso.pagesperso-orange.fr/Spice.htm

  • 8/10/2019 Chris Basso APEC Seminar 2011

    130/165

    Use a SPICE Model to Stabilize the Converter

    R10

    2Vin340AC = 0

    18 4

    X2xXFMRRATIO = -250m

    vout

    16DCD1Ambr20200ctp

    20

    L12.2u

    R120m vout

    vint

    R15

    parameters

    Vout=19

    Ibridge=250uRlower=2.5/Ibridge

    v c a

    c

    P W M s w

    i t c h

    C M

    p

    d u t y - c y c l e

    19.0V

    340V

    -78.4V 19.6V

    19.0V

    116mV

    0V

    19.0V

  • 8/10/2019 Chris Basso APEC Seminar 2011

    131/165

    131 Chris Basso APEC 2011

    1

    C52m

    15m13

    Lp{Lp}

    6

    27

    C1220u

    85mRupper=(Vout-2.5)/Ibridge

    Lp=600uFs=70kRsense=0.5Se=0

    fc=1kpm=60Gfc=-21pfc=-88

    G=10^(-Gfc/20)boost=pm-(pfc)-90pi=3.14159K=tan((boost/2+45)*pi/180)

    Fzero=fc/kFpole=k*fc

    Rpulldown=4.7kRLED=CTR*Rpulldown/GCzero=1/(2*pi*Fzero*Rupper)Cpole=1/(2*pi*Fpole*Rpulldown)

    CTR=0.9Pole=15k

    B1

    Voltage

    (V(err)-1.2)/3 > 1 ?1 : (V(err)-1.2)/3

    15

    14

    CoL1kF

    VstimAC = 1

    8 5

    LoL1kH

    2V5gnd

    UC384X19

    X3OP384X1

    R247k

    R347k

    err

    Rload20

    X9PWMCML = LpFs = FsRi = RsenseSe = Se

    9

    Vdd5

    10

    11

    X10TL431_G

    Rupper2{Rupper}

    Rlower2{Rlower}

    Rled{RLED}

    Czero1{Czero}

    vout

    Cpole2

    {Cpole}

    X7OptocouplerCpole = 1/(6.28*pole*pullup)CTR = CTR

    vint

    R4{Rpulldown}

    Verr

    19.0V 19.0V

    470mV

    2.39V

    0V

    2.39V 2.39V

    2.50V

    2.61V

    5.00V

    17.6V

    2.49V

    18.8V Cannot bebeaten forsimplicityand speed!

    Automate thecompensation!

    Unveil the Transfer Function in a Second

    20.0

    40.0

    90.0

    180

    dB

    ( ) H s

  • 8/10/2019 Chris Basso APEC Seminar 2011

    132/165

    132 Chris Basso APEC 2011

    -40.0

    -20.0

    0

    10 100 1k 10k 100k

    -180

    -90.0

    0

    90.0

    180

    -60.0

    -30.0

    0

    30.0

    60.0

    dB

    -180

    -90.0

    0 ( ) H s

    ( )T s

    ( )T s

    Loop gain

    Power stage gain

    m

    f c

    Course Agenda

    The Flyback Converter

    Th P i i El

  • 8/10/2019 Chris Basso APEC Seminar 2011

    133/165

    133 Chris Basso APEC 2011

    The Parasitic Elements

    How These Parasitics Affect your Design?Current-Mode is the Most Popular Scheme

    Fixed or Variable Frequency?

    More Power than NeededThe Frequency Response

    Compensating With the TL431

    How is regulation performed?Text books only describe op amps in compensators

    out V

  • 8/10/2019 Chris Basso APEC Seminar 2011

    134/165

    134 Chris Basso APEC 2011

    err V

    The market reality is different: the TL431 rules!

    TL431 optocoupler

    err V

    out V Im thelaw!

    The TL431 Programmable ZenerThe TL431 is the most popular choice in nowadays designsIt associates an open-collector op amp and a reference voltageThe internal circuitry is self-supplied from the cathode currentWhen the R node exceeds 2 5 V it sinks current from its cathode

  • 8/10/2019 Chris Basso APEC Seminar 2011

    135/165

    135 Chris Basso APEC 2011

    When the R node exceeds 2.5 V, it sinks current from its cathode

    2.5V

    K

    A

    R

    TL431A

    K

    A

    R

    RAK

    The TL431 is a shunt regulator

    A Rabbit and a (French) SnailThe TL431 lends itself very well to optocoupler control

    out V dd V

    out V Fast lane Slow lane

  • 8/10/2019 Chris Basso APEC Seminar 2011

    136/165

    136 Chris Basso APEC 2011

    lower R

    1 R LED R

    bias R

    FBV

    2C 1C

    TL431

    1 I LED I

    1 I

    min 2.5 VV =

    1 V f V

    1 Vbias

    bias

    I R

    =

    bias R

    R LED must leave enough headroom over the TL431: upper limit!

    LED R

    dc representation

    pullup R

    Understanding the Fast Lane DrawbackThis LED resistor is a design limiting factor in low output voltages:

    431,min,max min

    i

    CTRCTR

    out f TL LED pullup

    dd CE t bi ll

    V V V R R

    V V I R

    +

  • 8/10/2019 Chris Basso APEC Seminar 2011

    137/165

    137 Chris Basso APEC 2011

    , minCTRdd CE sat bias pullupV V I R

    When the capacitor C 1 is a short-circuit, R LED fixes the fast lane gain( )out V s

    LED R

    pullup R

    dd V

    1 I

    c I 0 V

    in ac

    ( )FBV s

    1( ) CTRFB pullupV s R I =

    1

    ( )out LED

    V s I

    R=

    ( )CTR( )

    pullupFB

    out LED

    RV sV s R=

    This resistor plays a role in dc too!

    lower R

    1 R

    The Static Gain LimitLet us assume the following design:

    ,max

    5 1 2.520k 0.3

    4.8 0.3 1 0.3 20 LED R

    m k

    + 5 V1 V

    out V

    V

    =

    =

  • 8/10/2019 Chris Basso APEC Seminar 2011

    138/165

    138 Chris Basso APEC 2011

    431,min

    ,

    min

    1 V

    2.5 V4.8 V

    300 mV

    1 mA

    CTR 0.320 k

    f

    TL

    dd

    CE sat

    bias

    pullup

    V

    V

    V

    V

    I

    R

    =

    =

    =

    =

    =

    ==

    ,max 857 LED R

    0

    20CTR 0.3 7 or 17 dB

    0.857 pullup

    LED

    RG

    R> > >

    In designs where R LED fixes the gain, G0 cannot be below 17 dB

    You cannot amplify by less than 17 dB

    Forbidden Compensation AreasYou must identify the areas where compensation is possible

    18040.0

    dB

    Not ok

  • 8/10/2019 Chris Basso APEC Seminar 2011

    139/165

    139 Chris Basso APEC 2011

    10 100 1k 10k 100k

    -180

    -90.0

    0

    90.0

    -40.0

    -20.0

    0

    20.0

    ( )arg H s

    ( ) H s

    -17 dB

    500

    500 Hzc f >

    okRequires

    17 dBor more

    Requiresless

    than 17 dBof gain

    Injecting Bias CurrentMake sure enough current always biases the TL431If not, open-loop gain suffers a 10-dB difference can be observed!

    > 10 dB diff

  • 8/10/2019 Chris Basso APEC Seminar 2011

    140/165

    140 Chris Basso APEC 2011

    I bias = 1.3 mA

    I bias = 300 A

    > 10-dB difference

    Easysolution

    I bias

    Rbias

    1 1 k 1bias

    Rm

    = =

    Small-Signal AnalysisThe TL431 is an open-collector op amp with a reference voltageNeglecting the LED dynamic resistance, we have:

    ( )out V s ( ) ( ) ( )

    1out opV s V s I s

    =

  • 8/10/2019 Chris Basso APEC Seminar 2011

    141/165

    141 Chris Basso APEC 2011

    LED R

    lower R

    1 R

    1C 1 I

    ( )opV s

    ( )1 LED R

    ( ) ( ) ( )11

    11

    op out out upper upper

    sC V s V s V s

    R sR C = =

    0

    ( )( )

    11

    1

    11 upper

    out LED upper

    sR C I s

    V s R sR C

    +=

    We know that: 1( ) CTRFB pullupV s R I =

    ( )( )1

    1

    CTR 1 pullup upper FBout LED upper

    R sR C V sV s R sR C

    +=

    Creating a High-Frequency PoleIn the previous equation we have:

    a static gain

    a 0-dB origin pole frequency 1 =

    0 = CTR pullup

    LED

    RG R

  • 8/10/2019 Chris Basso APEC Seminar 2011

    142/165

    142 Chris Basso APEC 2011

    a 0 dB origin pole frequency

    a zero

    We are missing a pole for the type 2!

    1

    1

    1 zupper R C

    =

    o

    1 p

    upper C R

    pullup R

    2C

    ( )FBV s

    dd V

    Add a cap. fromcollector to ground

    ( )( ) ( )

    1

    1 2

    CTR 1

    1 pullup upper FB

    out LED upper pullup

    R sR C V s

    V s R sR C sR C

    + = +

    Type 2 transfer function

    Understanding the Optocoupler PoleThe optocoupler also features a parasitic capacitorit comes in parallel with C 2 and must be accounted for

    V out (s)

  • 8/10/2019 Chris Basso APEC Seminar 2011

    143/165

    143 Chris Basso APEC 2011

    FB c

    e

    R pullup

    C

    V dd

    V FB (s)

    optocoupler

    C opto

    2 || optoC C C =

    Extracting the PoleThe optocoupler must be characterized to know where its pole is

    2

    Rpullup

    5

    Cdc10uFIc

    Rled20k

    ( )O s

  • 8/10/2019 Chris Basso APEC Seminar 2011

    144/165

    144 Chris Basso APEC 2011

    1

    Rpullup20k

    Vdd5

    3

    X1SFH615A-4

    4

    Vbias

    Rbias

    VFB

    6

    Vac

    IF

    Adjust V bias to have V FB at 2-3 V to be in linear region, then ac-sweepThe pole in this example is found at 4 kHz

    -3 dB

    ( )O s

    ( )O s

    1 1 2 nF2 6.28 20 4opto pullup pole

    C R f k k

    = =

    Another designconstraint!

    4 k

    The TL431 in a Type 1 CompensatorTo make a type 1 (origin pole only) neutralize the zero and the pole

    ( )( ) ( )

    1

    1 2

    CTR 1

    1 pullup upper FB

    out LED upper pullup

    R sR C V s

    V s R sR C sR C

    + =

    +

  • 8/10/2019 Chris Basso APEC Seminar 2011

    145/165

    145 Chris Basso APEC 2011

    1 2upper pullupsR C sR C = 1 2 pullupupper

    RC C R

    = o1

    1

    CTR

    pupper LED

    pullup

    R RC

    R

    =substitute

    o

    2

    CTR p

    LEDC R =

    2

    CTR2 po LED

    C f R

    =

    Once neutralized, you are left with an integrator

    ( ) 1

    po

    G ss

    = ( ) o| | pcc

    f G f

    f

    =o c p f c

    f G f = 2CTR

    2 c f c LEDC

    G f R

    =

    A Type 1 Design ExampleWe want a 5-dB gain at 5 kHz to stabilize the 5-V converter

    5 V

    1 V

    2 5 V

    out

    f

    V

    V

    V

    =

    =

    = Apply 15%

  • 8/10/2019 Chris Basso APEC Seminar 2011

    146/165

    146 Chris Basso APEC 2011

    431,min

    ,

    min

    520

    2.5 V

    4.8 V300 mV

    1 mA

    CTR 0.3

    20 k

    10 1.77

    5 kHz

    TL

    dd

    CE sat

    bias

    pullup

    fc

    c

    V

    V V

    I

    R

    G

    f

    ==

    =

    =

    =

    = =

    =

    ,max 857 LED R 728 LED R =

    Apply 15%margin

    2

    CTR 0.37.4 nF

    2 6.28 1.77 5 728c f c LED

    C G f R k

    = =

    C opto = 2 nF

    7.4 2 5.4 nFC n n= = 1 2 14.7 nF pullup

    upper

    RC C

    R=

    Simulation of the Type 1SPICE can simulate the design automate elements calcula