circuitry with a luttinger liquid k.-v. pham laboratoire de physique des solides pascal’s...

47
Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Post on 18-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Circuitry with a Luttinger liquid

K.-V. Pham

Laboratoire de Physique des Solides

Pascal’s Festschrifft Symposium

Page 2: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

● Some Background:

New playgrounds (< 10 yrs) for LL at the Meso/Nano scale:

e.g. quantum wires, carbon nanotubes, cold atoms

Finite-size: ergo New Physics due to the boundaries

IMO Two quite relevant things:

• nature of the BOUNDARY CONDITION:

Periodic (finite-size corrections, numerics…)

Open (e.g. broken spin chains…), twisted

Boundary conformal field theory (e.g. single impurity as a boundary problem, cf Kondo…)

• interaction with PROBES (are invasive) (e.g. transport)

Page 3: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

● Towards Nanoelectronics / nanospintronics

● But before some more basic questions:

What happens to a LL plugged into a (meso) electrical circuit?

i.e. LL as an electrical component

Impact of finite-size?

Coupling to other electrical components?

Page 4: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

How would an electrical engineer view a LL?

Page 5: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

How would an electrical engineer view a LL?

• Condensed Matter theorist:

Low-energy effective Field Theory (harmonic solid)

Density:

Current:LL phase fields

Page 6: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

● Electrical engineer:

How would an electrical engineer view a LL?

Page 7: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

How would an electrical engineer view a LL?

● Electrical engineer:

Page 8: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

How would an electrical engineer view a LL?

● Electrical engineer:

Capacitive energy !

Page 9: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

How would an electrical engineer view a LL?

● Electrical engineer:

Capacitive energy !

Page 10: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

How would an electrical engineer view a LL?

● Electrical engineer:

Capacitive energy !

Inductive energy !

Page 11: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

● Electrical engineer:

How would an electrical engineer view a LL?

The LL is just a (lossless) Quantum Transmission line

Page 12: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

● Electrical engineer:

How would an electrical engineer view a LL?

The LL is just a (lossless) Quantum Transmission line

Page 13: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

● Electrical engineer:

How would an electrical engineer view a LL?

The LL is just a (lossless) Quantum Transmission line

Further Ref:- Bockrath PhD Thesis ‘99, Burke IEEE ’02

- circuit theory (Nazarov, Blanter…)

- K-V P., Eur Phys Journ B 2003

Page 14: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Zero modes(charged but dispersionless)

Excitations (from bosonization):

•Density oscillations i.e. Plasmons (neutral)

Page 15: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Excitations (from bosonization):

•Density oscillations i.e. Plasmons (neutral)

•Zero modes(charged but dispersionless)

Page 16: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Excitations (from bosonization):

•Density oscillations i.e. Plasmons (neutral)

•Zero modes(charged but dispersionless)

Electrical Engineer? Transmission line: telegrapher equation

Page 17: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Excitations (from bosonization):

•Density oscillations i.e. Plasmons (neutral)

•Zero modes(charged but dispersionless)

Electrical Engineer? Transmission line: telegrapher equation

Wave velocity

excitations are also plasma waves

Page 18: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Excitations (from bosonization):

•Density oscillations i.e. Plasmons (neutral)

•Zero modes(charged but dispersionless)

Electrical Engineer? Transmission line: telegrapher equation

excitations are also plasma waves

Wave velocity

Page 19: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

Page 20: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

A little mystery: LL Conductivity is actually infinite ! Dissipation should be impossible!

Page 21: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

A little mystery: LL Conductivity is actually infinite ! Dissipation should be impossible! E.E. answer: resistance is non-zero because it’s not really a resistance but the characteristic impedance of the transmission line !

(quantifies the energy transported by a traveling wave)

Page 22: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

A little mystery: LL Conductivity is actually infinite ! Dissipation should be impossible! E.E. answer: resistance is non-zero because it’s not really a resistance but the characteristic impedance of the transmission line !

(quantifies the energy transported by a traveling wave)

half-infiniteTransmission line <=> resistance =

Page 23: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

A little mystery: LL Conductivity is actually infinite ! Dissipation should be impossible! E.E. answer: resistance is non-zero because it’s not really a resistance but the characteristic impedance of the transmission line !

(quantifies the energy transported by a traveling wave)

InfiniteTransmission line = 2 half-infinite TL

half-infiniteTransmission line <=> resistance =

Page 24: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

A little mystery: LL Conductivity is actually infinite ! Dissipation should be impossible! E.E. answer: resistance is non-zero because it’s not really a resistance but the characteristic impedance of the transmission line !

(quantifies the energy transported by a traveling wave)

InfiniteTransmission line = 2 half-infinite TL

half-infiniteTransmission line <=> resistance =

=> conductance: G=1/2Z0

Page 25: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

A little mystery: LL Conductivity is actually infinite ! Dissipation should be impossible! E.E. answer: resistance is non-zero because it’s not really a resistance but the characteristic impedance of the transmission line !

(quantifies the energy transported by a traveling wave)

InfiniteTransmission line = 2 half-infinite TL

half-infiniteTransmission line <=> resistance =

=> conductance: G=1/2Z0Since:

Page 26: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

DC Conductance of infinite LL:

A little mystery: LL Conductivity is actually infinite ! Dissipation should be impossible! E.E. answer: resistance is non-zero because it’s not really a resistance but the characteristic impedance of the transmission line !

(quantifies the energy transported by a traveling wave)

InfiniteTransmission line = 2 half-infinite TL

half-infiniteTransmission line <=> resistance =

=> conductance: G=1/2Z0Since: One

recovers:

Page 27: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

A simple Series circuit

● Ref: Lederer, Piéchon, Imura + K-V P., PRB 03

Page 28: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Rationale:

•Phenomenological Model for mesoscopic electrodes

•The 2 Resistors modelize contact resistances.

•Implementation:

•Are described in term of dissipative boundary conditions.

•Quantization not trivial (NO normal eigenmodes) but bosonization still holds (Ref: K-V P, Progr Th Ph 07)

Page 29: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Some Straightforward Properties (at least for an E.E.) (ref: K-V P, EPJB 03):

•DC resistance:

•AC conductance: is a 3 terminal measurement

Conductance is a 3x3 matrix.

Page 30: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Resonances for Gij (i,j=1,2):

•Interpretation:

•Infinite Transmission Line (TL): Traveling waves

Page 31: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Resonances for Gij (i,j=1,2):

•Interpretation:

•Infinite Transmission Line (TL): Traveling waves

•Open TL: Standing waves (nodes: perfect reflections of plasma wave at boundaries)

Page 32: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Resonances for Gij (i,j=1,2):

•Interpretation:

•Infinite Transmission Line (TL): Traveling waves

•Open TL: Standing waves (nodes: perfect reflections of plasma wave at boundaries)

•TL+resistors: Standing waves are leaking (imperfect reflections => finite life-time)

Page 33: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Reflection coefficients for a TL (classical and quantum i.e. LL):

Page 34: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Reflection coefficients for a TL (classical and quantum i.e. LL):

Reflections in a TL due to impedance mismatch

(cf: Safi & Schulz, inhomogeneous LL, Fabry-Perot)

Resonances:

Page 35: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Impedance matching of a TL and implications.

Impedance mismatch leads to reflections => novel physics for Luttinger (E.E. :not so new, standing waves of a TL)

Match impedances to Z0 => kills reflections !

Page 36: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Impedance matching of a TL and implications.

Impedance mismatch leads to reflections => novel physics for Luttinger (E.E. :not so new, standing waves of a TL)

Match impedances to Z0 => kills reflections !

=> finite TL now behaves like infinite TL

Property still true for quantum TL (i.e. Luttinger) !(cf K-V P., Prog. Th. Ph. 07)

Page 37: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Impedance matching of a Luttinger Liquid:

•Remedy to invasiveness of probes

•The finite LL exhibits the same properties as the usual infinite LL:

•allows measurements of intrinsic properties of a LL in (and despite) a meso setup.

Page 38: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Impedance matching of a Luttinger Liquid:

•Remedy to invasiveness of probes

•The finite LL exhibits the same properties as the usual infinite LL:

•allows measurements of intrinsic properties of a LL in (and despite) a meso setup.

•Experimental realization:

Rheostat???

Depends on type of measurement (DC or AC)

Page 39: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

•Tuning of (contact) resistances at the mesoscopic level in quantum wires (Yacoby):

Electron density in the wire

Ref: Yacoby et al, Nature Physics 07

Two-terminal conductance of a quantum wire

Page 40: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

(unpublished; courtesy A. Yacoby)

In this setup, contact resistances (barriers at electrodes) are equal: So that:

Impedance matching if:(crossing of curves G=G(nL)

and Ke2/h=f(nL) )

The two curves cross: impedance matching realized !

Page 41: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Applications of impedance matching:

Shot noise (detection of fractional excitations in the LL)Issue:

•shot noise for infinite LL in various setups should exhibit anomalous charges (Kane, Fisher PRL 94; T. Martin et al 03)

•These charges are irrational in general and can be shown to correspond to exact eigenstates of the LL

•Description of LL spectrum in terms of fractional eigenstates (holons, spinons, 1D Laughlin qp, …) :

K-V P, Gabay & Lederer PRB ’00

•But probes are invasive so that it is predicted that fractional charges can not be extracted from shot noise (Ponomarenko ’99, Trauzettel+Safi ’04)

Page 42: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Interferences by probes circumvented by impedance matching:

A promising setup (A. Yacoby expts): Two parallel quantum wires

•Spin-charge separation observed in this setup (Auslaender et al, Science ‘05)

•Current asymetry incompatible with free electrons observed (predicted by Safi Ann Phys ’97); can be ascribed to fractional excitations (K-V P, Gabay, Lederer PRB ’00).

(Consistent with fractional excitations but not definite proof: more expts needed)

Page 43: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Other interesting things but no time for discussion…

•Gate conductance G33, DC & AC shot noise, bulk tunneling, charge relaxation resistance

Page 44: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

(Setup idea: Burke ’02)

Page 45: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Conclusion: Main message

1) The LL is a Quantum Transmission Line

2) The Physics of classical Transmission lines can bring many interesting insights into the LL physics at the meso scale

Page 46: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Conclusion: Main message

1) The LL is a Quantum Transmission Line

2) The Physics of classical Transmission lines can bring many interesting insights into the LL physics at the meso scale

Thank You

Thank you, Pascal , for many fruitful years of Physics !!!

Page 47: Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium

Addenda: Gate conductance:

Here RC is the contact resistance:

Rq is the charge relaxation resistance:

NB: Recover earlier results of Blanter et al as special limit: