circuits and errors - digital.csic: home

48
1 1 © IMSE-CNM ΣΔ Design Group CMOS Sigma CMOS Sigma- Delta Converters Delta Converters – From Basics to State From Basics to State- of of- the the- Art Art Roc Rocí o del R o del Rí o, Bel o, Belén P n Pérez rez- Verd Verdú and Jos and José M. de la Rosa M. de la Rosa {rocio,belen,jrosa}@imse.cnm.es KTH, Stockholm, April 23-27 Circuits and Errors Circuits and Errors 2 © IMSE-CNM ΣΔ Design Group 1. Circuits and Errors in DT 1. Circuits and Errors in DT ΣΔ ΣΔ Modulators Modulators 2. Circuits and Errors in CT 2. Circuits and Errors in CT ΣΔ ΣΔ Modulators Modulators Errors degrading NTF Errors degrading NTF Additive noise sources Additive noise sources Harmonic distortion Harmonic distortion Case study Case study OUTLINE OUTLINE CT CT ΣΔ ΣΔM M subcircuits subcircuits Building Building- block errors block errors Architectural timing errors Architectural timing errors Case study Case study 3. Layout & Prototyping 3. Layout & Prototyping Layout Layout floorplanning floorplanning Chip package Chip package Test PCB and Set Test PCB and Set-up up

Upload: others

Post on 24-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Circuits and Errors - DIGITAL.CSIC: Home

1

11© IMSE-CNM ΣΔ Design Group

CMOS SigmaCMOS Sigma--Delta Converters Delta Converters ––From Basics to StateFrom Basics to State--ofof--thethe--ArtArt

RocRocíío del Ro del Ríío, Belo, Beléén Pn Péérezrez--VerdVerdúú and Josand Joséé M. de la RosaM. de la Rosa

{rocio,belen,jrosa}@imse.cnm.es

KTH, Stockholm, April 23-27

Circuits and ErrorsCircuits and Errors

22© IMSE-CNM ΣΔ Design Group

1. Circuits and Errors in DT 1. Circuits and Errors in DT ΣΔΣΔ ModulatorsModulators

2. Circuits and Errors in CT 2. Circuits and Errors in CT ΣΔΣΔ ModulatorsModulators

Errors degrading NTFErrors degrading NTF

Additive noise sourcesAdditive noise sources

Harmonic distortionHarmonic distortion

Case studyCase study

OUTLINEOUTLINE

CT CT ΣΔΣΔM M subcircuitssubcircuits

BuildingBuilding--block errors block errors

Architectural timing errorsArchitectural timing errors

Case studyCase study

3. Layout & Prototyping3. Layout & Prototyping

Layout Layout floorplanningfloorplanning

Chip packageChip package

Test PCB and SetTest PCB and Set--upup

Page 2: Circuits and Errors - DIGITAL.CSIC: Home

2

33© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Overview of NonOverview of NonOverview of Non---idealities idealities idealities

Finite Amplifier Gain Non-linearities Thermal Noise Comparator hysteresis

Capacitor Mismatch Settling Errors Clock Jitter DAC Non-linearity

… among others …

- Ideal In-Band Error Power:

- Actual In-Band Error Power:

2 2

2 1

1 π12 2 1 (2 +1)

L

Q B LPL OSR +

Δ⎛ ⎞= ⎜ ⎟−⎝ ⎠

...T Q Q TH J HDP P P P P P= + Δ + + + +

44© IMSE-CNM ΣΔ Design Group

Capacitors:- Mismatch- Non-linearity

Amplifiers:- Output swing- DC gain- Dynamic limitations (GB, SR)- Thermal and 1/f noise- Gain non-linearity

Multi-bit ADCs & DACs:- Gain error- Offset error- Non-linearity

DTDT--ΣΔΣΔMs: Ms: Overview of NonOverview of NonOverview of Non---idealities idealities idealities Fully-diff SC schematicof a 2nd-order ΣΔM

Switches:- Finite on-resistance- Thermal noise- Charge injection- Clock feedthrough- Non-linearity

Comparators:- Hysteresis- Offset

Clock:- Jitter

References:- Thermal and 1/f noise- Output impedance

Depending on the building-block:

Page 3: Circuits and Errors - DIGITAL.CSIC: Home

3

55© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Overview of NonOverview of NonOverview of Non---idealities idealities idealities

Output PSD

f/fs (log)0.50.5/OSR

4th order4th order

3rd order3rd order

2nd order2nd order

AMPLIFIER DC GAIN

CAPACITOR MISMATCH

INTEGRATOR SETTLINGAmplifier GBAmplifier SRSwitch Ron

ERRORS DEGRADING NTF

CASCADE ΣΔMsNoise leakagesImperfect cancellation oflow-order quantization errors 1st order1st order

Impact dependson topology

SINGLE-LOOP ΣΔMsLow sensitivity

Depending on their effect:

66© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Overview of NonOverview of NonOverview of Non---idealities idealities idealities

CIRCUIT NOISEThermal noise (switches, opamps, refs)1/f noise (opamps, refs)

DISTORTION

Non-linear amplifier gainNon-linear capacitorsNon-linear settlingNon-linear switches

CLOCK JITTER

MODELED AS ADDITIVE ERRORS

Front-enddominates

Similar impact ondifferent topologies

AMPLIFIER DC GAIN

CAPACITOR MISMATCH

INTEGRATOR SETTLINGAmplifier GBAmplifier SRSwitch Ron

ERRORS DEGRADING NTF

CASCADE ΣΔMsNoise leakagesImperfect cancellation oflow-order quantization errors

Impact dependson topology

SINGLE-LOOP ΣΔMsLow sensitivity

Depending on their effect:

Page 4: Circuits and Errors - DIGITAL.CSIC: Home

4

77© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Leakage Integrator Leakage Integrator Leakage

Ideal SC integrator SC integrator considering amplifier finite gain

Amplifier gain1

2

CgC

=

Shift of the pole from DC (z = 1)

Effect of amplifier gain on the integrator transfer function:

88© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Leakage Integrator Leakage Integrator Leakage

Lth-order ΣΔM:

Effect on single-loop ΣΔMs: - Ideally:

- In practice:

Quite insensitive to leakages (μ2, L-1 shaping)

2nd-order ΣΔM

Page 5: Circuits and Errors - DIGITAL.CSIC: Home

5

99© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Leakage Integrator Leakage Integrator Leakage Effect on cascade ΣΔMs:

2-1-1 ΣΔM

- Ideally:- In practice:

low-order leakages

(L1-1, L2-1, …)

Mismatch between analog and digital

filtering

1010© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Leakage Integrator Leakage Integrator Leakage

Sensitivity to integ leakages of cascades increases with OSR and L1st-stage leakages dominate (L1-1 shaping)

Comparison of integrator leakage effect on 4th-order ΣΔMs

(ideal)

Page 6: Circuits and Errors - DIGITAL.CSIC: Home

6

1111© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Capacitor Mismatch Capacitor Mismatch Capacitor Mismatch

Circuit primitive: Physical implementations:

“Analog” CMOS“Digital” CMOS “Mixed” CMOS

MOS cap

1212© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Capacitor Mismatch Capacitor Mismatch Capacitor Mismatch Local and global errors in:

1 1g Cu

umg Cnσ σ

= + ⋅

σC ~ 0.05% - 0.1% using good quality caps and adequate layout strategies

1

2

u

u

CCg nC Cm

= =

Centroid techniques

AreaCapacitance per Unit Area

SC integrator

Page 7: Circuits and Errors - DIGITAL.CSIC: Home

7

1313© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Capacitor Mismatch Capacitor Mismatch Capacitor Mismatch

2nd-order ΣΔM

Effect on single-loop ΣΔMs:

- Ideally:

- In practice:

Slight increase of error, but shaping is preserved

1414© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Capacitor Mismatch Capacitor Mismatch Capacitor Mismatch

2-1-1 ΣΔMEffect on cascade ΣΔMs:

- Ideally:- In practice:

low-order leakages

Mismatch between analog and digital coeffs

(L1, L2, …)

Page 8: Circuits and Errors - DIGITAL.CSIC: Home

8

1515© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Capacitor Mismatch Capacitor Mismatch Capacitor Mismatch Effect on cascade ΣΔMs:

2-1-1 ΣΔM(OSR = 32)

σC = 0.5%

2-1-1 ΣΔM(OSR = 32)

σC = 0.1%

1616© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Capacitor Mismatch Capacitor Mismatch Capacitor Mismatch Effect on cascade ΣΔMs:

Sensitivity to mismatch rapidly increases with:- Oversampling ratio (OSR)- Cascade order (L)

1st-stage leakages dominate (L1 shaping)

Required σC for 1-bit loss in DR

Page 9: Circuits and Errors - DIGITAL.CSIC: Home

9

1717© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling If only amplifier gain is considered, the relation between voand virtual ground is assumed to be independent on time

ADC GB, SR

In practice, this relation depends is non-linear on time

Integrator temporal evolutionerror due to amplifier finite bandwidthslew-rate limitation

Modulator output spectrumincrease on the noise floorharmonic distortion due to slewing

SNDR degradation

Settling error

1818© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling Integrator temporal evolution: [Rio00]

Both integration and sampling dynamics considered

1 pole model + SR limitation in amplifiers

All parasitic caps taken into account

Page 10: Circuits and Errors - DIGITAL.CSIC: Home

10

1919© IMSE-CNM ΣΔ Design Group

Partial slewLinear response

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling

Full slew

Integrator temporal evolution: [Rio00]

GBi

SRi

2020© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling Integrator temporal evolution: [Rio00]

GBi

SRi

GBs

SRs

Page 11: Circuits and Errors - DIGITAL.CSIC: Home

11

2121© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling Integrator temporal evolution: [Rio00]

2222© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling Effect of the amplifier GB:

If only amplifier GB is considered (assuming no SR limitation)

- Can be viewed as a systematic error in the integrator weight

- Effect on ΣΔMs similar to a mismatch between analog and digital coeffs

- It causes low-order noise leakages in cascade ΣΔMs

Page 12: Circuits and Errors - DIGITAL.CSIC: Home

12

2323© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling

Additional effect of the amplifier SR (+ GB):

- “Dominant” linear dynamics are not mandatory in order to fulfill specs- SR can trade for GB- It can be used to optimize the power consumption of amplifiers

Non-linear dynamics cause distortion!SR at the front-end integ must be carefully tackled

2424© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Integrator Incomplete Settling Integrator Incomplete Settling Integrator Incomplete Settling Additional effect of the switches Ron (+ GB + SR):

φ = “1”

Input is sampled with an error

Linear dynamics are slowed down

Slew time shortens

Page 13: Circuits and Errors - DIGITAL.CSIC: Home

13

2525© IMSE-CNM ΣΔ Design Group

Noise contribution of the switches (input-referred):

DTDT--ΣΔΣΔMs: Ms: Circuit Noise Circuit Noise Circuit Noise

Main noise sources in SC integrators:Switches Thermal noise

Amplifiers Thermal and flicker noise

References Thermal and flicker noise

Integration:Sampling:

Switches for sampling

Aliasedcomponent[Fisc82]

CS = 0.66pFfs = 70MHz

2626© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Circuit Noise Circuit Noise Circuit Noise

Noise contribution of the switches (input-referred):

Main noise sources in SC integrators:Switches Thermal noise

Amplifiers Thermal and flicker noise

References Thermal and flicker noise

Integration:Sampling:

Switches for sampling Switches for integration

Page 14: Circuits and Errors - DIGITAL.CSIC: Home

14

2727© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Circuit Noise Circuit Noise Circuit Noise Noise contribution of the amplifier (input-referred):

Thermal component

Flicker component

Thermal + Flicker

corner freq.Aliased

component

Low-pass filtered version at the integ input:

Folded tails are “submerged”into the aliased thermal noise

Similar treatment for the references

2828© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Circuit Noise Circuit Noise Circuit Noise

switches amplifier references

Total noise PSD for the front-end integ:

In-band error power due to circuit noise in the ΣΔM

Switches:- kT/C is the ultimate limitation on the converter resolution- It can only be decreased by increasing Cs and/or fs (it does not depend on Ron!)- x2 in fully-diff implementations (3-dB increase, but signal power is 6dB larger!)

Amplifiers & References:- GBs should be as low as settling errors allow (reduces folding!)- 1/f contributions decrease with the corner frequency- Adequate techniques can be applied in low-freq apps: CDS, chopper, … [Enz96]

Page 15: Circuits and Errors - DIGITAL.CSIC: Home

15

2929© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Circuit Noise Circuit Noise Circuit Noise

3rd-order shaping

Ideal

w/ Integ leakage

w/ Thermal noise2nd-order shaping

no shaping

Effect of noise leakages and thermal noise on a 2-1 cascade

3030© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Circuit Noise Circuit Noise Circuit Noise

Flickercomponent

(1/f)

Thermal components

Effect of 1/f and thermal noise on the spectra of a 4th-order ΣΔM

(silicon results for several fs)

Be careful with Flicker models for transistors!Front-end amplifier needed redesign!

Page 16: Circuits and Errors - DIGITAL.CSIC: Home

16

3131© IMSE-CNM ΣΔ Design Group

IdealσJ = 0.1ns, fx = 125kHzσJ = 0.1ns, fx = 500kHz

DTDT--ΣΔΣΔMs: Ms: Clock Jitter Clock Jitter Clock Jitter

Sampling time uncertainty [Boser88]:

If jitter is modeled as random:

Error is larger, the larger input freq(wideband apps!)

Non-uniform sampling of the input

3232© IMSE-CNM ΣΔ Design Group

HD3 = -94.0dBHD3 = -89.9dBHD3 = -89.8dB

DTDT--ΣΔΣΔMs: Ms: NonNonNon---linearity of Capacitors linearity of Capacitors linearity of Capacitors

vi

- Even-order distortion cancels w/ fully-diff

- Non-linearity of sampling cap dominates

- Valid for weak non-linearities (MOS caps are very non-linear!)

In an ideal capacitor: dq = Cdv

In practice: dq = C(v)dv, with C being voltage-dependent

Considering the effect of the sampling cap only [Bran97]:

a1 = 500ppm/V, a2 = 500ppm/V2

Page 17: Circuits and Errors - DIGITAL.CSIC: Home

17

3333© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: NonNonNon---linear Amplifier Gain linear Amplifier Gain linear Amplifier Gain

- Increasing ADC helps a lot!

- ADC at the front-end larger than noise leakages require

ADC = 500, γ1 = 10%/V (single-ended ΣΔM)

Amplifier gain, dB

Output voltage, V

ADC

Actual amplifier gain depends on output voltage:

[Yin94]

3434© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: NonNonNon---linear Settlinglinear Settlinglinear Settling

SR at the front-end larger than settling requires

SR can trade for GB in the integrator settling, but non-linear dynamics cause distortion:

Page 18: Circuits and Errors - DIGITAL.CSIC: Home

18

3535© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: NonNonNon---linear Switch Resistancelinear Switch Resistancelinear Switch Resistance

|| TpV IvDDV

0 TnDD VV −

pR ,ON nR ,ON

eq,ONR

)(

1,ON

TnIDDn

n

n

VvVL

Wk'R

−−⎟⎠⎞

⎜⎝⎛

=

|)|(

1,ON

TpIp

p

p

VvL

Wk'R

−⎟⎠⎞

⎜⎝⎛

=

ON,eq ON, ON,//n pR R R=

Non-linear sampling [Geer02]:

Switches exhibit a finite RON which is also non-linear:

Alternative switch sizings

- Distortion is dynamic (increases with input freq!)- Front-end switch dominates- RON at the front-end smaller than settling requires- Very important in low-voltage!

Most suited sizing depends on parasitics, Vref/Vsupply, …

Numericallysolved

3636© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Comparators and MultiComparators and Multi--bit Quantizersbit Quantizers

Single-bit ΣΔMs: Comparator:Offset Attenuated by the integrator DC gain

Hysteresis Shaped similarly to quantization error [Boser88]

22

2 1

π4(2 +1)

L

h LP hL OSR +=

1-bit DAC Inherently linear

Multi-bit ΣΔMs:Effect of DAC errors on a 2nd-order 3-bit ΣΔM

22 2

LSB1σ INL2 2 1D B

Δ⎛ ⎞= ⎜ ⎟−⎝ ⎠

Multi-bit ADC Errors attenuated/shaped

Multi-bit DAC Non-linearity directly added to the input!

[Mede99]:DEM techniquesDual quantization

Page 19: Circuits and Errors - DIGITAL.CSIC: Home

19

3737© IMSE-CNM ΣΔ Design Group

Power-down control.

DTDT--ΣΔΣΔMs: Ms: Case StudyCase StudyA case study: A 2.5-V Cascade ΣΔM in CMOS 0.25um for ADSL/ADSL+

22--11--1 w/ dual quantization1 w/ dual quantization

Two different amplifiers: 2-stage OA in the 1st stage, and 1-stage OA in 2nd and 3rd stages.

Standard CMOS switches (no clock-boosting).

Only 2-branch integrators and 2x16 unit capacitors (MiM).

Comparators: regenerative latch + preamplification stage.

3-bit quantizer in the last stage:

Resistive-ladder DAC (no calibration).

Flash ADC: Static differential input stage + latched comparators.

3838© IMSE-CNM ΣΔ Design Group

Clock jitter

Thermal noise

Quantization noise

-90.1dB

-84.8dB

-88.1dB

-82.2dB

-86.2dB

82.8dB(13.5bit)

-82.3dB

-87.5dB

-88.1dB

-96.4dB

-95.4dB

-99.8dB

-90.3dB

80.8dB(13.1bit)

Dynamic range

-80.3dBIn-band error power

-84.5dBAmplifier noise

-86.0dBkT/C noise

DAC error

-89.4dBCap. mismatch leakage(σC = 0.05% | 0.1%)

DC gain leakage

Ideal

0.5%FSDAC INL3-bit QUANTIZER

3nsResolution time

±10mVOffset

20mVHysteresis

COMPARATORS

6nV/sqrt(Hz)Input equivalent noise

±1.8VOutput swing

800V/μsSlew rate (1.5pF)

265MHzGB (1.5pF)

3000 (70dB)DC gain

AMPLIFIER

150ΩSwitch on-resistance

1%Bottom parasitic cap.

±20%Cap. tolerance

0.05%Cap. sigma (MiM, 1pF)

0.66pFSampling capacitor

FRONT-END INTEGRATOR

15ps (0.1%)Clock jitter

70.4MHzClock frequency

1.5VReference voltage

16Oversampling ratio

2-1-1(3b)

MODULATOR

TopologyBlocks SpecsBlocks Specs

EQUATION DATABASE

Corner analysis:Corner analysis:

Fast and slow devices modelsTemperature range: [-40ºC, +110ºC]±5% variation in the 2.5-V supply

TypicalWorstCase

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

Page 20: Circuits and Errors - DIGITAL.CSIC: Home

20

3939© IMSE-CNM ΣΔ Design Group

Clock jitter

Thermal noise

Quantization noise

-90.1dB

-84.8dB

-88.1dB

-82.2dB

-86.2dB

82.8dB(13.5bit)

-82.3dB

-87.5dB

-88.1dB

-96.4dB

-95.4dB

-99.8dB

-90.3dB

80.8dB(13.1bit)

Dynamic range

-80.3dBIn-band error power

-84.5dBAmplifier noise

-86.0dBkT/C noise

DAC error

-89.4dBCap. mismatch leakage(σC = 0.05% | 0.1%)

DC gain leakage

Ideal

0.5%FSDAC INL3-bit QUANTIZER

3nsResolution time

±10mVOffset

20mVHysteresis

COMPARATORS

6nV/sqrt(Hz)Input equivalent noise

±1.8VOutput swing

800V/μsSlew rate (1.5pF)

265MHzGB (1.5pF)

3000 (70dB)DC gain

AMPLIFIER

150ΩSwitch on-resistance

1%Bottom parasitic cap.

±20%Cap. tolerance

0.05%Cap. sigma (MiM, 1pF)

0.66pFSampling capacitor

FRONT-END INTEGRATOR

15ps (0.1%)Clock jitter

70.4MHzClock frequency

1.5VReference voltage

16Oversampling ratio

2-1-1(3b)

MODULATOR

Topology

TypicalWorstCase

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

4040© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

GB = 265MHz(assuming that 85% ofthe clock cycle is useful)

Standard switches(no clock-boosting)

GB > 2.5fs is ideally enough to limit settling errors (this architecture w/ OSR = 16).

Integrator DynamicsIntegrator Dynamics

Switch on-resistance slows down the effective amplifier response:

Ron ~ 150Ω requires just GB > 3.2fs

Slew rate must be large enough to let the linear dynamic to correctly settle.

Partially slew-rate limited operation of the front-end integrator introduces distortion.

6.5 SR = 800V/μs

Page 21: Circuits and Errors - DIGITAL.CSIC: Home

21

4141© IMSE-CNM ΣΔ Design Group

OPAOPA OPBOPB

6nV/sqrt(Hz)

±1.80V

800V/μs

265MHz

3000 (70dB)

0.66pF

INTEG. 1

6nV/sqrt(Hz)

±1.80V

800V/μs

265MHz

3000 (70dB)

0.45pF0.66pF

INTEG. 2INTEG. 1

50nV/sqrt(Hz)

±1.60V

350V/μs

210MHz

600 (56dB)

0.45pF

INTEG. 4INTEG. 3

Input equivalent noise

Output swing

Slew rate (1.5pF)

GB (1.5pF)

DC gain

Unit capacitor SC CMFB netsSC CMFB nets

pMOS input schemepMOS input scheme

DTDT--ΣΔΣΔMs: Ms: Case StudyCase StudyAmplifiersAmplifiers

Cancelled body effect(substrate noise coupling)

Smaller 1/f noise

4242© IMSE-CNM ΣΔ Design Group

6nV/sqrt(Hz)

±1.80V

800V/μs

265MHz

3000 (70dB)

0.45pF0.66pF

INTEG. 2INTEG. 1

50nV/sqrt(Hz)

±1.60V

350V/μs

210MHz

600 (56dB)

0.45pF

INTEG. 4INTEG. 3

Input equivalent noise

Output swing

Slew rate (1.5pF)

GB (1.5pF)

DC gain

Unit capacitor

Power consumption

Input capacitance

Input eq. noise

Output swing

SR (1.5pF)

PM (1.5pF)

GB (1.5pF)

DC gain

19.4mW

129fF

5.5nV/sqrt(Hz)

±1.86V

883V/μs

57.9º

331.5MHz

73.5dB

17.2mW

126fF

5.1nV/sqrt(Hz)

±2.09V

1059V/μs

64.0º

446.8MHz

78.6dB

Worst CaseTypical

OPAOPA 22--stage amplifierstage amplifier Telescopic 1st stage2-path compensation

AmplifiersAmplifiers

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

SC CMFB netsSC CMFB nets

pMOS input schemepMOS input scheme

Cancelled body effect(substrate noise coupling)

Smaller 1/f noise

Page 22: Circuits and Errors - DIGITAL.CSIC: Home

22

4343© IMSE-CNM ΣΔ Design Group

6nV/sqrt(Hz)

±1.80V

800V/μs

265MHz

3000 (70dB)

0.45pF0.66pF

INTEG. 2INTEG. 1

50nV/sqrt(Hz)

±1.60V

350V/μs

210MHz

600 (56dB)

0.45pF

INTEG. 4INTEG. 3

Input equivalent noise

Output swing

Slew rate (1.5pF)

GB (1.5pF)

DC gain

Unit capacitor

Power consumption

Input capacitance

Input eq. noise

Output swing

SR (1.5pF)

PM (1.5pF)

GB (1.5pF)

DC gain

6.9mW

343fF

5.1nV/sqrt(Hz)

±1.72V

373V/μs

67.7º

331.7MHz

56.8dB

6.6mW

300fF

4.1nV/sqrt(Hz)

±1.97V

377V/μs

70.3º

393.5MHz

58.0dB

Worst CaseTypical

OPBOPB foldedfolded--cascode amplifiercascode amplifier

DTDT--ΣΔΣΔMs: Ms: Case StudyCase StudyAmplifiersAmplifiers

SC CMFB netsSC CMFB nets

pMOS input schemepMOS input scheme

Cancelled body effect(substrate noise coupling)

Smaller 1/f noise

4444© IMSE-CNM ΣΔ Design Group

Standard CMOS switches

Ron ~ 150Ω

nMOS: 8.5/0.25pMOS: 36.5/0.25

Switch onSwitch on--resistanceresistance

Slow-down of the integrators dynamics

Incomplete sampling (RC time constant)

Dynamic distortion (front-end integrator)

No clock-boostingNo low-Vt transistors

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

Page 23: Circuits and Errors - DIGITAL.CSIC: Home

23

4545© IMSE-CNM ΣΔ Design Group

0.85Vpd @ 366kHz

Sinewave inputSinewave input

Dynamic distortionDynamic distortionevaluated throughevaluated through

electrical simulationelectrical simulation

DMT inputDMT input

DTDT--ΣΔΣΔMs: Ms: Case StudyCase StudySwitch onSwitch on--resistanceresistance

4646© IMSE-CNM ΣΔ Design Group

CMOS tech with mixed-signal facilities

MiM capacitorsMiM capacitors

Also MiM caps in OPA, OPA, in the SC CMFB nets, SC CMFB nets, and in the antianti--aliasing filter aliasing filter

Integrators weights:Integrators weights:

M4

M5

M3

TOP

BOTTOM

thinoxide

Thin oxide betweenmetal 4 and metal 5

±20%Cap. spread

1%Bottom plate parasitic

0.05% (1pF)Cap. matching

Front-end integ, 0.66pF: 27μm x 27μm

Remaining integs, 0.45pF: 22μm x 22μm

Very good matching (0.1% assumed for 6-σ design)

Helps to limit the capacitive load to integrators

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

Page 24: Circuits and Errors - DIGITAL.CSIC: Home

24

4747© IMSE-CNM ΣΔ Design Group

ResistiveResistive--ladder DACladder DAC

References obtained from the on-chip analog supply

700-Ω ladder between references +2V/+0.5V (14x50Ω, 3.21mW)

Unsalicided n+ poly used in resistors

Flash ADCFlash ADC

Extra differential pair in comparators

Static input scheme (no caps)

33--bit Quantizerbit Quantizer

Reduces capacitive load to 4th integratorSaves silicon area

Power consumption

Resolution time, HL

Offset

0.3mW

2.8ns

6.3mV

100fF

3.9ns127.5μV

Input capacitance

Resolution time, LH

Hysteresis

ComparatorComparator

(Different supplies)

PrePre--amp + Regenerative latch + SR latchamp + Regenerative latch + SR latch

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

4848© IMSE-CNM ΣΔ Design Group

Dedicated analog, mixed, and digital supplies

Layout symmetry and common-centroid techniques

Guard rings with dedicated pad/pinIncreased distance among analog and digital blocks

Shielded bus for distributing the clock signals

Extensive on-chip decoupling Pad ring divided blocking cells Multiple bonding techniques

2.78mm2.78mm22 w/o padsw/o pads

4444--pin plastic QFPpin plastic QFPCMOS 0.25CMOS 0.25μμmm

44--layer PCBlayer PCB

DTDT--ΣΔΣΔMs: Ms: Case StudyCase Study

Layout & PrototypingLayout & Prototyping

Page 25: Circuits and Errors - DIGITAL.CSIC: Home

25

4949© IMSE-CNM ΣΔ Design Group

DTDT--ΣΔΣΔMs: Ms: Case StudyCase StudyExperimental resultsExperimental results

SFDR = 90dB

-6dBV @ 160kHz

THD = -87dB

Part of a commercial modem

In mass production (STMicroelectronics)

5050© IMSE-CNM ΣΔ Design Group

CT-ΣΔM Non-Idealities

Building-block Errors Architectural Timing Errors

Quantizer metastability

Excess loop delay

Clock jitter

Opamp finite (non-linear) DC gain

Integrator transientresponse

Element tolerances

Time-constant error

Non-linearity (Front-endV-I and DAC)

Noise

CTCT--ΣΔΣΔMs : Ms : Overview of CTOverview of CTOverview of CT---ΣΔΣΔΣΔM NonM NonM Non---idealities idealities idealities

Page 26: Circuits and Errors - DIGITAL.CSIC: Home

26

5151© IMSE-CNM ΣΔ Design Group

Basic building blocks − CT Integrators

A Gm-MC implementation

- 2nd-order single-loop ΣΔM

- 1-bit switched-current DAC

- 1-bit (latch) comparator

CTCT--ΣΔΣΔMs: Ms: Basic building blocksBasic building blocksBasic building blocks

5252© IMSE-CNM ΣΔ Design Group

Integrator Transfer Function (ITF) degraded by circuit non-idealities

CTCT--ΣΔΣΔMs: Ms: NonNonNon---ideal Integrator Transfer Functionideal Integrator Transfer Functionideal Integrator Transfer Function

Page 27: Circuits and Errors - DIGITAL.CSIC: Home

27

5353© IMSE-CNM ΣΔ Design Group

Opamp finite DC gain (I)

RC integrators [Gerf03]

- Same IBN degradation as in SC ΣΔMs

CTCT--ΣΔΣΔMs: Ms: Effect of finite DC gain errorEffect of finite DC gain errorEffect of finite DC gain error

5454© IMSE-CNM ΣΔ Design Group

Opamp finite DC gain (II) – Gm-C integrators

Power Spectral Density of an Lth-order ΣΔM

Relative increase of PQ in a 2nd-order ΣΔM

CTCT--ΣΔΣΔMs: Ms: Effect of finite DC gain errorEffect of finite DC gain errorEffect of finite DC gain error

Page 28: Circuits and Errors - DIGITAL.CSIC: Home

28

5555© IMSE-CNM ΣΔ Design Group

Integrator transient response (I)

Less critical than in DT ΣΔMsNeed to be taken into account, specially in broadband applications

Influence of GBW [Gerf03]

3rd-order single-loop RC CT-ΣΔM

Other dynamic effects

2nd-order polesSlew-rate

Complex analysis

Simulation-basedstudy [Ruiz03]

CTCT--ΣΔΣΔMs: Ms: Integrator transient responseIntegrator transient responseIntegrator transient response

5656© IMSE-CNM ΣΔ Design Group

Model of GBW for RC-active based CT-ΣΔMs [Ortm04]

Modeled as a gain error (GE) and extra loop delayEach delay is different for each feeback path

CTCT--ΣΔΣΔMs: Ms: Integrator transient responseIntegrator transient responseIntegrator transient response

Page 29: Circuits and Errors - DIGITAL.CSIC: Home

29

5757© IMSE-CNM ΣΔ Design Group

Element tolerancesScaling coefficients accuracy limited by random errors in resistors/capacitors

Especially critical in:• High-order single-loop architectures (instability)• Cascade architectures (analog/digital coefficient ratios)

Two types of random errors:• Absolute tolerances: variations from chip to chip (10-20%)• Relative mismatches: variations from device to device on one chip (0.5-1%)

Electrical control of frequency tuning

1

1.5

2

2.5

0 0.20.40.60.81

4

6

8

10

12

14

σc(%)σgm(%)

System-level optimization and synthesis method

CTCT--ΣΔΣΔMs: Ms: Circuit element tolerancesCircuit element tolerancesCircuit element tolerances

5858© IMSE-CNM ΣΔ Design Group

Direct synthesis method of CT cascade architectures [Tort06]:

Optimum placement of poles/zeroes of the NTFSynthesis of both analog and digital part of the cascade CT ΣΔ ModulatorReduced number number of analog componentsReduced sensitivity to element tolerances

DT-to-CT

MethodDirect

Method

CTCT--ΣΔΣΔMs: Ms: Circuit element tolerancesCircuit element tolerancesCircuit element tolerances

Page 30: Circuits and Errors - DIGITAL.CSIC: Home

30

5959© IMSE-CNM ΣΔ Design Group

1 1.5

2 2.5

0 0.20.40.60.81

8

10

12

14

16

18

σc(%)σgm(%)

SN

R L

oss

(dB

)

1

1.5

2

2.5

0 0.20.40.60.81

4

6

8

10

12

14

σc(%)σgm(%)

Direct synthesis of cascade architectures (I) [Tort06]

Sensitivity to mismatch (gm,C)A 2-1-1 example

DT-to-CT synthesis method Direct synthesis method

CTCT--ΣΔΣΔMs: Ms: Circuit element tolerancesCircuit element tolerancesCircuit element tolerances

6060© IMSE-CNM ΣΔ Design Group

Direct synthesis of cascade architectures (II) [Tort06]

CTCT--ΣΔΣΔMs: Ms: Circuit element tolerancesCircuit element tolerancesCircuit element tolerances

Page 31: Circuits and Errors - DIGITAL.CSIC: Home

31

6161© IMSE-CNM ΣΔ Design Group

Synthesized cascaded CT ΣΔMs to cope with 12-bit@20-MHz

2-1-1-1 CTΣΔM 2-2-1 CTΣΔM

3-2 CTΣΔM

CTCT--ΣΔΣΔMs: Ms: Circuit element tolerancesCircuit element tolerancesCircuit element tolerances

6262© IMSE-CNM ΣΔ Design Group

A case study: A 12-bit@20MHz, 4-b, 2-1-1 CT ΣΔM (RC/Gm Integrators)

CTCT--ΣΔΣΔMs: Ms: Synthesis MethodsSynthesis MethodsSynthesis Methods

Page 32: Circuits and Errors - DIGITAL.CSIC: Home

32

6363© IMSE-CNM ΣΔ Design Group

Integrator time-constant error (I)

CTCT--ΣΔΣΔMs: Ms: Integrator timeIntegrator timeIntegrator time---constant errorconstant errorconstant error

6464© IMSE-CNM ΣΔ Design Group

Integrator time-constant error (II)

Optimum SNR for:

CTCT--ΣΔΣΔMs: Ms: Integrator timeIntegrator timeIntegrator time---constant errorconstant errorconstant error

Page 33: Circuits and Errors - DIGITAL.CSIC: Home

33

6565© IMSE-CNM ΣΔ Design Group

Non-linearity (I): Causes

Intrinsic non-linearity of the resistor materialModulation of thickness of the conductive layer with resistor voltage

V-I transformation in RC integrators

V-I transformation in Gm-C integrators

CTCT--ΣΔΣΔMs: Ms: NonNonNon---linear errorslinear errorslinear errors

6666© IMSE-CNM ΣΔ Design Group

Non-linearity (II): Effect on Gm-C CT-ΣΔMs [Bree01]

Linearization strategies

CTCT--ΣΔΣΔMs: Ms: NonNonNon---linear errorslinear errorslinear errors

Page 34: Circuits and Errors - DIGITAL.CSIC: Home

34

6767© IMSE-CNM ΣΔ Design Group

Non-linearity (III) –Commonplace architecture

RC-active front-end integratorGm-C subsequent integrators

Other sources of non-linearityMulti-bit DACsLinearity must be the same or lower than the required resolutionCorrected by same techniques as those employed in SC ΣΔMs

• DEM• Calibration

Circuit noiseDominated by noise sources from thefront-end integrator and DACFlicker noise reduced by proper sizingand/or chopper techniquesUnsampled noise – effect of samplingreduced by the loop gain

CTCT--ΣΔΣΔMs: Ms: NonNonNon---linear errorslinear errorslinear errors

6868© IMSE-CNM ΣΔ Design Group

Comparator metastability

Modeled as a jitter noise[Cher00]

Signal-dependent

Delay

Can be cancelled by usingadditiona latches [Dagh04]

CTCT--ΣΔΣΔMs: Ms: Comparator Comparator Comparator metastabilitymetastabilitymetastability

Page 35: Circuits and Errors - DIGITAL.CSIC: Home

35

6969© IMSE-CNM ΣΔ Design Group

Excess loop delay (I)

Adds additional poles to STF/NTFCauses instabilityStability condition:

• 2nd-order

• Lth-order

DAC transient response delay

CTCT--ΣΔΣΔMs: Ms: Excess loop delayExcess loop delayExcess loop delay

7070© IMSE-CNM ΣΔ Design Group

Excess loop delay (II) – an example of instability

CTCT--ΣΔΣΔMs: Ms: Excess loop delayExcess loop delayExcess loop delay

Page 36: Circuits and Errors - DIGITAL.CSIC: Home

36

7171© IMSE-CNM ΣΔ Design Group

Excess loop delay (III) –cancellation techniques

Extra feedback paths (DACs) with tunable gains [Cher00]Additional DAC and twolatches [Yan04]

Level trigered

Edge trigered

Y(n) (without DAC_Band latches)

DAC_B output

Y(n)

CTCT--ΣΔΣΔMs: Ms: Excess loop delayExcess loop delayExcess loop delay

7272© IMSE-CNM ΣΔ Design Group

Excess loop delay (IV) - Digital compensation [Font05]Implemented in a 3rd-order single loop architecture with 5-level quantizer

• 90nm CMOS• 74-dB SNDR-peak, 600kHz bandwidth• 6.0mW, 1.5V

Excess loop delay compensated in the digital domainHalf-a-clock-cycle delay

• Relax comparators speed• Provide maximum isolation between quantizer and DAC switch events

CTCT--ΣΔΣΔMs: Ms: Excess loop delayExcess loop delayExcess loop delay

Page 37: Circuits and Errors - DIGITAL.CSIC: Home

37

7373© IMSE-CNM ΣΔ Design Group

Clock jitter (I)

S/H• Shaped by the modulator NTF• Can be neglected

DAC• Directly adds with the input• Increases the in-band noise power

DT DAC waveform CT DAC waveform

CT ΣΔMs are more sensitive toclock jitter than DT ΣΔMs

White noise model approximation (NRZ DAC) [Cher00][Zwan96]

Standard deviation of jitter error:

SNR degradation:

CTCT--ΣΔΣΔMs: Ms: Clock jitter errorClock jitter errorClock jitter error

7474© IMSE-CNM ΣΔ Design Group

Clock Jitter (II) – White noise model approximation (NRZ/RZ DAC) [Tao99a]

Bandpass CT-ΣΔMs

Lowpass CT-ΣΔMs

CTCT--ΣΔΣΔMs: Ms: Clock jitter errorClock jitter errorClock jitter error

Page 38: Circuits and Errors - DIGITAL.CSIC: Home

38

7575© IMSE-CNM ΣΔ Design Group

Clock Jitter (III) – lingering effect [Olia03a]

Jitter-induced noise includes both white and shaped componentsState-space analysis of CT-ΣΔMs with RZ DAC shows that:

Multi-bit NRZ DACs

Commonly used in CT-ΣΔMs for brodband telecom applicationsLess sensitive to clock jitter

RZ DAC NRZ DAC

CTCT--ΣΔΣΔMs: Ms: Clock jitter errorClock jitter errorClock jitter error

7676© IMSE-CNM ΣΔ Design Group

- Using state-space formulation of NTF:

[Ris94]

Clock Jitter (IV) – Multi-bit NRZ DACs [Tort05]

CTCT--ΣΔΣΔMs: Ms: Clock jitter errorClock jitter errorClock jitter error

Page 39: Circuits and Errors - DIGITAL.CSIC: Home

39

7777© IMSE-CNM ΣΔ Design Group

Assuming that SNRjitter is dominated by the signal-dependent term:

[Boser, JSSC, 1988]

If the modulator-dependent term dominates (single-bit quantization):

[Van der Zwan, JSSC, 1996]

CTCT--ΣΔΣΔMs: Ms: Clock jitter errorClock jitter errorClock jitter errorClock Jitter (V): Comparison of [Tort05] with previous approaches

7878© IMSE-CNM ΣΔ Design Group

Clock Jitter (VI) – Multi-bit NRZ DACs [Tort05]

Two cases:

- CTΣΔM1: B=2bit, fs=400MHz

- CTΣΔM2: B=5bit, fs=160MHz

CTΣΔM1

CTΣΔM2

CTCT--ΣΔΣΔMs: Ms: Clock jitter errorClock jitter errorClock jitter error

Page 40: Circuits and Errors - DIGITAL.CSIC: Home

40

7979© IMSE-CNM ΣΔ Design Group

Clock Jitter (VII) – Compensation techniques

Multi-bit quantization (non-linear DAC)Switched-capacitor DAC [Veld03]

• Voltage-mode operation (proper for active RC integrators)• Slower than switched-current (current steering) DAC

FIRDAC to generate a multilevel signal [Putt04]

CTCT--ΣΔΣΔMs: Ms: Clock jitter errorClock jitter errorClock jitter error

8080© IMSE-CNM ΣΔ Design Group

Building-block specifications130nm mixed-signal CMOS, 1P8MCascade 3-2 multi-bit (4b) CT ΣΔMGm-C loop-filter implementationCurrent-steering feedback DACs + DEM12-bit effective resolution40MS/s output rate (20MHz bandwidth)240MHz clock frequency1.2V ± 10% analog/digital power supplyOn-chip tuning of analog componentsEstimated power consumption is 45mW

Loop-filter coefficients

A case study: A Gm-C 12-bit@20MHz, 4-b, 3-2 CT ΣΔM

CTCT--ΣΔΣΔMs: Ms: Case StudyCase StudyCase Study

Page 41: Circuits and Errors - DIGITAL.CSIC: Home

41

8181© IMSE-CNM ΣΔ Design Group

Resistive source degenerated front-end transconductorLoop-filter transconductors based on quadratic term cancellation

Transistor-level performance

Transconductors

CTCT--ΣΔΣΔMs: Ms: Case StudyCase StudyCase Study

8282© IMSE-CNM ΣΔ Design Group

2 360-μA P-type gain-boosted current sources15 N-type regulated-cascode current cells

Worst-Case Transistor-level performance

Current-steering DACs

CTCT--ΣΔΣΔMs: Ms: Case StudyCase StudyCase Study

Page 42: Circuits and Errors - DIGITAL.CSIC: Home

42

8383© IMSE-CNM ΣΔ Design Group

M-i-M Capacitors

Transimpedances

Loop-Filter Transconductors

Front-End Transconductors

DAC1s

DAC2sClockLatches & DEM

Quantizers

Chip implementation

CTCT--ΣΔΣΔMs: Ms: Case StudyCase StudyCase Study

8484© IMSE-CNM ΣΔ Design Group

SNDR = 75.3 dB (12.2 bits) @ 20-MHz bandwidth

Transistor-level simulation results

CTCT--ΣΔΣΔMs: Ms: Case StudyCase StudyCase Study

Page 43: Circuits and Errors - DIGITAL.CSIC: Home

43

8585© IMSE-CNM ΣΔ Design Group

Low-resistive bulkMost Standard Most Standard

CMOS technologiesCMOS technologies

Epitaxial process with heavily-doped bulk

Impact of the on-chipswitching activity

The deep-substrate is a low-impedance path for injected disturbances.

Traditional layout techniques (guard rings, separation of blocks) have a limited effectiveness.

Circuits & Errors: Circuits & Errors: Layout & PrototypingLayout & PrototypingLayout & Prototyping

8686© IMSE-CNM ΣΔ Design Group

Dedicated analog and digital supplies:

- Analog core- Digital core- Digital output buffers

Open pad ring

Common-centroid layout techniques

Guard rings

Increased distance among analog and digital blocks

Circuits & Errors: Circuits & Errors: Layout & PrototypingLayout & PrototypingLayout & PrototypingTypical ΣΔM layout example

Page 44: Circuits and Errors - DIGITAL.CSIC: Home

44

8787© IMSE-CNM ΣΔ Design Group

Dedicated analog, mixed, and digital supplies

Layout symmetry and common-centroid techniques

Guard rings with dedicated pad/pinIncreased distance among analog and digital blocks

Shielded bus for distributing the clock signals

Extensive on-chip decoupling Pad ring divided blocking cells Multiple bonding techniques

Circuits & Errors: Circuits & Errors: Layout & PrototypingLayout & PrototypingLayout & Prototyping

8888© IMSE-CNM ΣΔ Design Group

Dedicated analog, mixed, and digital supplies

Layout symmetry and common-centroid techniques

Guard rings with dedicated pad/pinIncreased distance among analog and digital blocks

Shielded bus for distributing the clock signals

Extensive on-chip decoupling Pad ring divided blocking cells Multiple bonding techniques

2.78mm2.78mm22 w/o padsw/o pads

4444--pin plastic QFPpin plastic QFPCMOS 0.25CMOS 0.25μμmm

44--layer PCBlayer PCB

The chip also includes other blockspertaining to the final application

PLLPLLDecimation filterDecimation filter

(2x, 4x)(2x, 4x)

(( 8, 8, 16, 16, 32)32)

Test SetTest Set--UpUp ΣΔΣΔMMPLL +PLL + ΣΔΣΔM + FilterM + Filter

Circuits & Errors: Circuits & Errors: Layout & PrototypingLayout & PrototypingLayout & Prototyping

Example: A ΣΔM in 0.25μm for ADSL/ADSL+

Page 45: Circuits and Errors - DIGITAL.CSIC: Home

45

8989© IMSE-CNM ΣΔ Design Group

Circuits & Errors: Circuits & Errors: Test PCBTest PCBTest PCB

9090© IMSE-CNM ΣΔ Design Group

Circuits & Errors: Circuits & Errors: Test PCBTest PCBTest PCB

Page 46: Circuits and Errors - DIGITAL.CSIC: Home

46

9191© IMSE-CNM ΣΔ Design Group

Circuits & Errors: Circuits & Errors: Chip PackageChip PackageChip Package

Double-bonding and multiple pins for supplies

Different pin assignment for analog, mixed and digital

9292© IMSE-CNM ΣΔ Design Group

Novel tech (characterization notyet confirmed by silicon results)

TwoTwo--layer PCBlayer PCB

Decoupling

Impedance termination

Soldered samples

Anti-aliasing filter

Independent control of amplifier bias currentsIndependent control of amplifier bias currents

Low-distortionsignal generator

Digital test unit

WorkstationWorkstation

PCBPCB clocksupply, reference

input bit streams

bit streams

Test SetTest Set--UpUpCancellation logic64k-sample FFT

(in order to avoid socket parasitics)

(passive, 1st order)

Circuits & Errors: Circuits & Errors: Test SetTest SetTest Set---upupup

Page 47: Circuits and Errors - DIGITAL.CSIC: Home

47

9393© IMSE-CNM ΣΔ Design Group

[Boser88] B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation Analog-to-Digital Converters”. IEEE Journal of Solid-State Circuits, vol. 23. pp. 1298-1308, December 1988.

[Bran97] B. Brandt, P.F. Ferguson, and M. Rebeschini, “Analog Circuit Design of ΣΔ ADCs”, Chapter 11 in Delta-Sigma Data Converters: Theory, Design and Simulation (S.R. Norsworthy, R. Schreier, and G.C. Temes, Editors).IEEE Press, 1997.

[Enz96] C.C. Enz and G.C. Temes, “Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization”. Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, November 1996.

[Fisc82] J.H. Fischer, “Noise Sources and Calculation Techniques for Switched Capacitor Filters”. IEEE Journal of Solid-State Circuits, vol. 17, no. 4, pp. 742-752, August 1982.

[Geer02] Y. Geerts, M. Steyaert, and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters. Kluwer Academic Publishers, 2002.

[Mede99] F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez, Top-Down Design of High-Performance Modulators. Kluwer Academic Publishers, 1999.

[Rio00] R. del Río, F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez, “Reliable Analysis of Settling Errors in SC Integrators: Application to ΣΔ Modulators”. IEE Electronics Letters, vol. 36, no. 6, pp. 503-504, March 2000.

[Yin94] G. Yin and W. Sansen, “A High-Frequency and High-Resolution Fourth-Order ΣΔ A/D Converter in BiCMOS Technology”. IEEE Journal of Solid-State Circuits, vol. 29, pp. 857-865, August 1994.

More details on errors and case study …[Rio06] R. del Río, F. Medeiro, B. Pérez-Verdú, J.M. de la Rosa, and A. Rodríguez-Vázquez, CMOS Cascade Sigma-

Delta Modulators for Sensors and Telecom: Error Analysis and Practical Design. Springer, 2006.

DTDT--ΣΔΣΔMs: Ms: ReferencesReferencesReferences

9494© IMSE-CNM ΣΔ Design Group

[Bree00] L.J. Breems, E.J. Van der Zwan and J. Huijsing, “A 1.8-mW CMOS ΣΔ Modulator with Integrated Mixer forA/D Conversion of IF Signals”. IEEE Journal of Solid-State Circuits, Vol. 35, pp. 468-475, April 2000.

[Bree01] L. Breems and J.H. Huijsing, Continuous-Time Sigma-Delta Modulation for A/D Conversion in Radio Receivers. Kluwer Academic Publishers, 2001.

[Cher00] J.A. Cherry and W.M. Snelgrove, Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion. Kluwer Academic Publishers, 2000.

[Font05] P. Fontaine, A. N. Mohieldin and A. Bellaourar, “A Low-Noise Low-Voltage CT ΔΣ Modulator with Digital Compensation of Excess Loop Delay”. Proc. of the 2005 IEEE Int. Solid-State Circuits Conf., pp. 498-499, 2005.

[Gerf03] F. Gerfers, M. Ortmanns and Y. Manoli, “A 1.5-V 12-bit Power-Efficient Continuous-Time Third-Order ΣΔModulator”. IEEE Journal of Solid-State Circuits, Vol. 38, pp. 1343-1352, August 2003.

[Olia03a] O. Olieai, “State-Space Analysis of Clock Jitter in Continuous-Time Oversampling Data Converters”. IEEE Transactions on Circuits and Systems I, Vol. 50, pp. 31-37, January 2003.

[Olia03b] O. Olieai, “Design of Continuous-Time Sigma-Delta Modulators With Arbitrary Feedback Waveform”. IEEE Transactions on Circuits and Systems II, Vol. 50, pp. 437-444, August 2003.

[Ortm01] M. Ortmanns, F. Gerfers, and Y. Manoli, “On the synthesis of cascaded continuous-time Sigma-Delta modulators”. Proc. of the 2001 IEEE Int. Symp. on Circuits and Systems, Vol. 5, pp. 419-422, May 2001.

[Ortm04] M. Ortmanns, F. Gerfers and Y. Manoli, “Compensation of Finite Gain-Bandwidth Induced Errors in Continuous-Time Sigma-Delta Modulators”. IEEE Transactions on Circuits and Systems I, Vol. 51, pp. 1088-1099, June 2004.

[Ortm05] M. Ortmanns, F. Gerfers and Y. Manoli: “A Case Study on 2-1-1 Cascaded Continuous-Time Sigma-Delta Modulators”. IEEE Transactions on Circuits and Systems I, Vol. 52, pp. 1515-1525, August 2005.

CTCT--ΣΔΣΔMs: Ms: ReferencesReferencesReferences

Page 48: Circuits and Errors - DIGITAL.CSIC: Home

48

9595© IMSE-CNM ΣΔ Design Group

[Tao99a] H. Tao, L. Toth and M. Khoury, “Analysis of Timing Jitter in Bandpass Sigma-Delta Modulators”. IEEE Transactions on Circuits and Systems I, Vol. 46, pp. 991-1001, August 1999.

[Tao99b] H. Tao and J.M. Khoury, “A 400MS/s Frequency Translating BandPass Delta-Sigma Modulator”. IEEE Journalof Solid-State Circuits, Vol. 34, pp. 1741-1752, December 1999.

[Tort05] R. Tortosa, J.M. de la Rosa, A. Rodríguez-Vázquez and F.V. Fernández, “Analysis of Clock Jitter Error in Multibit Continuous-Time ΣΔ Modulators with NRZ Feedback Waveform”. Proc. Of the 2005 Int. Symposiumon Circuits and Systems (ISCAS), May 2005.

[Tort06] R. Tortosa, J.M. de la Rosa, F.V. Fernández and A. Rodríguez-Vázquez: “A New High-Level SynthesisMethodology of Cascaded Continuous-Time Sigma-Delta modulators”. IEEE Trans. On Circuits andSystems – II: Express Briefs, pp. 739-743, August 2006.

[Tort07] R. Tortosa, A. Aceituno, J.M. de la Rosa, F.V. Fernández and A. Rodríguez-Vázquez: “A 12-bit@40Ms/s Gm-C Cascade 3-2 Continuous-Time Sigma-Delta Modulator”. Proc. Of the 2007 Int. Symposium on Circuitsand Systems (ISCAS), May 2007.

[Yan04] S. Yan and E. Sánchez-Sinencio, “A Continuous-Time ΣΔ Modulator With 88-dB Dynamic Range and 1.1-MHz Signal Bandwidth”. IEEE Journal of Solid-State Circuits, pp. 75-86, January 2004.

CTCT--ΣΔΣΔMs: Ms: ReferencesReferencesReferences