coastal management - geological society of america...geological monitoring edited by rob young and...

4
edited by Rob Young and Lisa Norby Geological Monitoring Edited by Rob Young and Lisa Norby, 2009 Previously sold out and now available as a PDF, Geological Monitoring is a practical, nontechnical guide for land manag- ers, educators, and the public that synthesizes representative methods for monitoring short-term and long-term change in geologic features and landscapes. GEOMONP, 305 p., ISBN 9780813760322 | original list $80.00 | now $9.99 | Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America HIST ANOM. CHRON. C31 C32 C33 31 32 33 M0r M1 M5 M10 M12 M14 M16 M18 M20 M22 M25 M29 M3 RAPID POLARITY CHANGES 30 C30 C34 34 5 10 15 20 25 30 35 40 45 50 55 60 65 1 C1 C2 C2A C3 C3A C4 C4A C6 C6A C6B C6C C7 C8 C9 C10 C11 C12 C13 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C7A C5 C5A C5B C5C C5D C5E 2 2A 3 3A 4 4A 5 5B 5A 5C 6 6A 6B 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 28 29 26 27 7A 6C 5D 5E 30 C30 70 80 90 100 110 120 130 140 150 160 170 180 190 210 200 220 230 240 250 MESOZOIC TRIASSIC JURASSIC CRETACEOUS AGE (Ma) EPOCH AGE PICKS (Ma) MAGNETIC POLARITY PERIOD LATE EARLY LATE EARLY MIDDLE LATE EARLY MIDDLE MAASTRICHTIAN CAMPANIAN SANTONIAN CONIACIAN TURONIAN CENOMANIAN ALBIAN APTIAN BARREMIAN HAUTERIVIAN VALANGINIAN BERRIASIAN TITHONIAN KIMMERIDGIAN OXFORDIAN CALLOVIAN BATHONIAN BAJOCIAN AALENIAN TOARCIAN PLIENSBACHIAN SINEMURIAN HETTANGIAN NORIAN RHAETIAN CARNIAN LADINIAN ANISIAN OLENEKIAN INDUAN 66.0 72.1 83.6 86.3 89.8 93.9 100.5 ~113 ~125 ~129.4 ~132.9 ~139.8 ~145.0 ~152.1 ~157.3 ~166.1 ~163.5 ~168.3 ~170.3 ~174.1 ~199.3 ~190.8 ~208.5 ~242 ~227 251.90 251.2 247.2 ~182.7 ~237 ~201.3 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 PRECAMBRIAN PROTEROZOIC ARCHEAN AGE (Ma) EON ERA BDY. AGES (Ma) 1000 1200 1800 2050 2300 1400 1600 2500 2800 3200 3600 4000 541 635 720 PERIOD EDIACARAN CRYOGENIAN TONIAN STENIAN ECTASIAN CALYMMIAN STATHERIAN OROSIRIAN RHYACIAN SIDERIAN NEOPRO- TEROZOIC MESOPRO- TEROZOIC PALEOPRO- TEROZOIC NEOARCHEAN MESO- ARCHEAN PALEO- ARCHEAN EOARCHEAN HADEAN 260 280 300 320 340 380 360 400 420 440 460 480 500 520 540 PALEOZOIC PERMIAN DEVONIAN ORDOVICIAN SILURIAN MISSIS- SIPPIAN PENNSYL- VANIAN CAMBRIAN CARBONIFEROUS AGE (Ma) EPOCH AGE PICKS (Ma) PERIOD GZHELIAN KASIMOVIAN MOSCOVIAN BASHKIRIAN SERPUKHOVIAN VISEAN TOURNAISIAN FAMENNIAN FRASNIAN GIVETIAN EIFELIAN EMSIAN PRAGIAN LOCHKOVIAN Lopin- gian MIDDLE Guada- lupian Cisura- lian LLANDO- VERY EARLY EARLY FURON- GIAN Epoch 3 Epoch 2 TERRE- NEUVIAN LATE LUDLOW LATE MIDDLE WENLOCK CHANGHSINGIAN WORDIAN ROADIAN WUCHIAPINGIAN CAPITANIAN KUNGURIAN ASSELIAN SAKMARIAN ARTINSKIAN PRIDOLI LUDFORDIAN GORSTIAN HOMERIAN RHUDDANIAN TELYCHIAN AERONIAN SHEINWOODIAN HIRNANTIAN SANDBIAN KATIAN DARRIWILIAN DAPINGIAN AGE 10 JIANGSHANIAN PAIBIAN GUZHANGIAN DRUMIAN AGE 5 AGE 4 AGE 3 AGE 2 FORTUNIAN FLOIAN TREMADOCIAN EARLY EARLY MIDDLE MIDDLE LATE LATE 251.90 259.1 254.14 265.1 268.8 272.95 ~283.5 290.1 295.0 303.7 307.0 298.9 323.2 330.9 346.7 358.9 ~372.2 ~382.7 ~387.7 ~393.3 ~407.6 ~410.8 ~419.2 ~423.0 ~425.6 ~433.4 ~430.5 ~438.5 ~440.8 ~427.4 ~443.8 ~445.2 ~453.0 ~458.4 ~470.0 ~467.3 ~477.7 ~485.4 ~494 ~497 ~500.5 ~504.5 ~489.5 ~509 ~514 ~521 ~529 541.0 315.2 GSA GEOLOGIC TIME SCALE v. 5.0 CENOZOIC AGE (Ma) EPOCH AGE PICKS (Ma) MAGNETIC POLARITY PERIOD HIST. ANOM. CHRON. QUATER- NARY PLEISTOCENE* MIOCENE OLIGOCENE EOCENE PALEOCENE PLIOCENE PIACENZIAN ZANCLEAN MESSINIAN TORTONIAN SERRAVALLIAN LANGHIAN BURDIGALIAN AQUITANIAN CHATTIAN RUPELIAN PRIABONIAN BARTONIAN LUTETIAN YPRESIAN DANIAN THANETIAN SELANDIAN CALABRIAN HOLOCENE PALEOGENE NEOGENE GELASIAN TERTIARY 0.012 1.8 3.600 5.333 7.246 11.63 13.82 15.97 20.44 23.03 27.82 33.9 37.8 41.2 47.8 56.0 59.2 61.6 66.0 2.58 *The Pleistocene is divided into four ages, but only two are shown here. What is shown as Calabrian is actually three ages—Calabrian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma. The Cenozoic, Mesozoic, and Paleozoic are the Eras of the Phanerozoic Eon. Names of units and age boundaries usually follow the Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates and picks of boundaries usually follow the Cohen et al. (2013, updated) compilation. The numbered epochs and ages of the Cambrian are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma. REFERENCES CITED Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane, Australia, 5–10 August 2012.) Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018). Gradstein, F.M, Ogg, J.G., Schmitz, M.D., et al., 2012, The Geologic Time Scale 2012: Boston, USA, Elsevier, https://doi.org/10.1016/B978-0-444-59425-9.00004-4. Previous versions of the time scale and previously published papers about the time scale and its evolution are posted to http://www.geosociety.org/timescale. Geologic Time Scale Poster v. 5.0 Compiled by J.D. Walker, J.W. Geissman, S.A. Bowring, and L.E. Babcock, 2018 Use this colorful, poster-size version of GSA’s Geologic Time Scale to decorate your office or classroom. GTSPOS | 20" × 26" | $9.95 | Managing the Gulf Coast Using Geology and Engineering By Richard A. Davis Jr., Nicole Elko, and Ping Wang, 2018 The Gulf of Mexico is an excellent region for considering coastal management as it applies to the physical barrier/inlet system because of the coast’s varied environments, from remote areas to huge urban popula- tions, and its tidal inlets—some natural, some dredged, and others that have been structured for more than a century. In discussing options for managing and pro- tecting the various elements of the barrier/ inlet system, the authors consider each approach in terms of cost, logistics, and past successes or failures. Anthropogenic impact as well as the problems generated by natural processes (from hurricanes to seaweed invasions) are covered, as is the impact of management decisions, providing decision makers with a valuable resource filled with examples and information. GULFMAN, 102 p., ISBN 9780813741239 | $28.00 | member price $20.00 | Explore } Discover } Acquire By Richard A. Davis Jr., Nicole Elko, and Ping Wang Managing the Gulf Coast Using Geology and Engineering Explore the wonders of geoscience using these teaching resources. Eteach Resources Product Name Product Code List Price Member Price Geoscience Teaching Materials } Our Explore Geoscience materials are available as downloads. } Resources include up-to-date back- ground information, numerous hands-on/minds-on activities, images, and 3D models. } Each product was written by geo- science teachers for geoscience teachers … so you know it works! EarthCaching: An Educator’s Guide ET0013 FREE Explore Deep Time ET0011 $8.95 $6.95 Explore Earth Cycles ET0009 $8.95 $6.95 Explore Fossils ET0008 $8.95 $6.95 Explore Silicate Chemistry ET0010 $8.95 $6.95 The Science and Technology of Gold ET0012 $8.95 $6.95 Explore Energy ET0004 $8.95 $6.95 Explore Plate Tectonics ET0003 $8.95 $6.95 Explore Tsunami ET0007 $8.95 $6.95 Explore Volcanoes - Elementary ET0005 $8.95 $6.95 Explore Volcanoes - Secondary ET0006 $8.95 $6.95 Explore Cross Sections ET0002 $8.95 $6.95 Explore Geoscience Models ET0001 $29.99 $23.99 In and Out of the Classroom Coastal Management

Upload: others

Post on 23-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coastal Management - Geological Society of America...Geological Monitoring Edited by Rob Young and Lisa Norby, 2009 Previously sold out and now available as a PDF, Geological Monitoring

edited by Rob Young and Lisa Norby

Geological Monitoring

Edited by Rob Young and Lisa Norby, 2009

Previously sold out and now available as a PDF, Geological Monitoring is a practical, nontechnical guide for land manag-ers, educators, and the public that synthesizes representative methods for monitoring short-term and long-term change in geologic features and landscapes.GEOMONP, 305 p., ISBN 9780813760322 | original list $80.00 | now $9.99 |

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America

HIS

T

AN

OM

.

CH

RO

N.

C31

C32

C33

31

32

33

M0rM1

M5

M10

M12M14M16M18M20

M22

M25

M29

M3

RA

PID

PO

LAR

ITY

CH

AN

GE

S

30 C30

C3434

5

10

15

20

25

30

35

40

45

50

55

60

65

1 C1

C2

C2A

C3

C3A

C4

C4A

C6

C6A

C6B

C6C

C7

C8

C9

C10

C11

C12

C13

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C7A

C5

C5A

C5B

C5CC5D

C5E

2

2A

3

3A

4

4A

5

5B

5A

5C

6

6A

6B

7

8

9

10

11

12

13

1516

17

18

19

20

21

22

23

24

25

28

29

26

27

7A

6C

5D

5E

30 C30

70

80

90

100

110

120

130

140

150

160

170

180

190

210

200

220

230

240

250

MESOZOIC

TR

IAS

SIC

JUR

AS

SIC

CR

ETA

CE

OU

S

AGE(Ma)

EPOCH AGEPICKS(Ma)

MAGNETICPOLARITY

PERIOD

LATE

EARLY

LATE

EARLY

MIDDLE

LATE

EARLY

MIDDLE

MAASTRICHTIAN

CAMPANIAN

SANTONIANCONIACIAN

TURONIAN

CENOMANIAN

ALBIAN

APTIAN

BARREMIAN

HAUTERIVIAN

VALANGINIAN

BERRIASIAN

TITHONIAN

KIMMERIDGIAN

OXFORDIAN

CALLOVIANBATHONIANBAJOCIANAALENIAN

TOARCIAN

PLIENSBACHIAN

SINEMURIAN

HETTANGIAN

NORIAN

RHAETIAN

CARNIAN

LADINIAN

ANISIAN

OLENEKIANINDUAN

66.0

72.1

83.686.389.8

93.9

100.5

~113

~125

~129.4~132.9

~139.8

~145.0

~152.1

~157.3

~166.1~163.5

~168.3~170.3~174.1

~199.3

~190.8

~208.5

~242

~227

251.90251.2247.2

~182.7

~237

~201.3

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

PRECAMBRIAN

PR

OT

ER

OZ

OIC

AR

CH

EA

N

AGE(Ma)

EON ERABDY.

AGES(Ma)

1000

1200

1800

2050

2300

1400

1600

2500

2800

3200

3600

4000

541

635

720

PERIOD

EDIACARAN

CRYOGENIAN

TONIAN

STENIAN

ECTASIAN

CALYMMIAN

STATHERIAN

OROSIRIAN

RHYACIAN

SIDERIAN

NEOPRO-TEROZOIC

MESOPRO-TEROZOIC

PALEOPRO-TEROZOIC

NEOARCHEAN

MESO-ARCHEAN

PALEO-ARCHEAN

EOARCHEAN

HADEAN

260

280

300

320

340

380

360

400

420

440

460

480

500

520

540

PALEOZOIC

PE

RM

IAN

DE

VON

IAN

OR

DO

VIC

IAN

SIL

UR

IAN

MIS

SIS

-S

IPP

IAN

PE

NN

SYL-

VAN

IAN

CA

MB

RIA

NC

AR

BO

NIF

ER

OU

S

AGE(Ma) EPOCH AGE

PICKS(Ma)PERIOD

GZHELIANKASIMOVIAN

MOSCOVIAN

BASHKIRIAN

SERPUKHOVIAN

VISEAN

TOURNAISIAN

FAMENNIAN

FRASNIAN

GIVETIANEIFELIAN

EMSIAN

PRAGIANLOCHKOVIAN

Lopin-gian

MIDDLE

Guada-lupian

Cisura-lian

LLANDO-VERY

EARLY

EARLY

FURON-GIAN

Epoch 3

Epoch 2

TERRE-NEUVIAN

LATE

LUDLOW

LATE

MIDDLE

WENLOCK

CHANGHSINGIAN

WORDIANROADIAN

WUCHIAPINGIAN

CAPITANIAN

KUNGURIAN

ASSELIANSAKMARIAN

ARTINSKIAN

PRIDOLILUDFORDIAN

GORSTIANHOMERIAN

RHUDDANIAN

TELYCHIANAERONIAN

SHEINWOODIAN

HIRNANTIAN

SANDBIANKATIAN

DARRIWILIANDAPINGIAN

AGE 10JIANGSHANIAN

PAIBIANGUZHANGIAN

DRUMIANAGE 5AGE 4

AGE 3

AGE 2

FORTUNIAN

FLOIAN

TREMADOCIAN

EARLY

EARLY

MIDDLE

MIDDLE

LATE

LATE

251.90

259.1

254.14

265.1268.8272.95~283.5

290.1295.0

303.7307.0

298.9

323.2

330.9

346.7

358.9

~372.2

~382.7

~387.7

~393.3

~407.6~410.8

~419.2~423.0~425.6

~433.4~430.5

~438.5~440.8

~427.4

~443.8~445.2

~453.0~458.4

~470.0~467.3

~477.7

~485.4

~494~497~500.5~504.5

~489.5

~509 ~514

~521

~529

541.0

315.2

GSA GEOLOGIC TIME SCALE v. 5.0CENOZOIC

AGE(Ma)

EPOCH AGEPICKS(Ma)

MAGNETICPOLARITY

PERIOD

HIS

T.

AN

OM

.

CH

RO

N.

QUATER-NARY PLEISTOCENE*

MIO

CE

NE

OLI

GO

CE

NE

EO

CE

NE

PALE

OC

EN

E

PLIOCENEPIACENZIAN

ZANCLEAN

MESSINIAN

TORTONIAN

SERRAVALLIAN

LANGHIAN

BURDIGALIAN

AQUITANIAN

CHATTIAN

RUPELIAN

PRIABONIAN

BARTONIAN

LUTETIAN

YPRESIAN

DANIAN

THANETIAN

SELANDIAN

CALABRIANHOLOCENE

PALE

OG

EN

EN

EO

GE

NE

GELASIAN

TE

RT

IAR

Y

0.0121.8

3.600

5.333

7.246

11.63

13.82

15.97

20.44

23.03

27.82

33.9

37.8

41.2

47.8

56.0

59.2

61.6

66.0

2.58

*The Pleistocene is divided into four ages, but only two are shown here. What is shown as Calabrian is actually three ages—Calabrian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma. The Cenozoic, Mesozoic, and Paleozoic are the Eras of the Phanerozoic Eon. Names of units and age boundaries usually follow the Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates and picks of boundaries usually follow the Cohen et al. (2013, updated) compilation. The numbered epochs and ages of the Cambrian are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma. REFERENCES CITEDCohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Australia, 5–10 August 2012.) Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).Gradstein, F.M, Ogg, J.G., Schmitz, M.D., et al., 2012, The Geologic Time Scale 2012: Boston, USA, Elsevier, https://doi.org/10.1016/B978-0-444-59425-9.00004-4. Previous versions of the time scale and previously published papers about the time scale and its evolution are posted to http://www.geosociety.org/timescale.

Geologic Time Scale Poster v. 5.0

Compiled by J.D. Walker, J.W. Geissman, S.A. Bowring, and L.E. Babcock, 2018

Use this colorful, poster-size version of GSA’s Geologic Time Scale to decorate your of� ce or classroom. GTSPOS | 20" × 26" | $9.95 |

Managing the Gulf Coast Using Geology and Engineering

By Richard A. Davis Jr., Nicole Elko, and Ping Wang, 2018

The Gulf of Mexico is an excellent region for considering coastal management as it applies to the physical barrier/inlet system because of the coast’s varied environments, from remote areas to huge urban popula-tions, and its tidal inlets—some natural, some dredged, and others that have been structured for more than a century. In discussing options for managing and pro-tecting the various elements of the barrier/inlet system, the authors consider each approach in terms of cost, logistics, and past successes or failures. Anthropogenic impact as well as the problems generated by natural processes (from hurricanes to seaweed invasions) are covered, as is the impact of management decisions, providing decision makers with a valuable resource � lled with examples and information.

GULFMAN, 102 p., ISBN 9780813741239| $28.00 | member price $20.00 |

Explo

re }

Disc

over

} Ac

quire

By Richard A. Davis Jr., Nicole Elko, and Ping Wang

Managing the Gulf Coast Using Geology and Engineering

By R

ichard A. D

avis Jr., Nicole Elko, and Ping W

angM

anaging the Gulf C

oast Using G

eology and Engineering

Explore the wonders of geoscience using these teaching resources.

Eteach Resources Product NameProduct

CodeList

PriceMember

Price

Geoscience Teaching Materials} Our Explore Geoscience materials

are available as downloads.} Resources include up-to-date back-

ground information, numerous hands-on/minds-on activities, images, and 3D models.

} Each product was written by geo-science teachers for geoscience teachers … so you know it works!

EarthCaching: An Educator’s Guide ET0013 FREEExplore Deep Time ET0011 $8.95 $6.95Explore Earth Cycles ET0009 $8.95 $6.95Explore Fossils ET0008 $8.95 $6.95Explore Silicate Chemistry ET0010 $8.95 $6.95The Science and Technology of Gold ET0012 $8.95 $6.95Explore Energy ET0004 $8.95 $6.95Explore Plate Tectonics ET0003 $8.95 $6.95Explore Tsunami ET0007 $8.95 $6.95Explore Volcanoes - Elementary ET0005 $8.95 $6.95Explore Volcanoes - Secondary ET0006 $8.95 $6.95Explore Cross Sections ET0002 $8.95 $6.95Explore Geoscience Models ET0001 $29.99 $23.99

In and Out of the Classroom Coastal Management

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America

3000

3250

3500

3750

4000

AR

CH

EA

N

3200

3600

MESO-ARCHEAN

PALEO-ARCHEAN

EOARCHEAN

HADEAN

HIRNANTIAN

SANDBIANKATIAN

DARRIWILIANDAPINGIAN

AGE 10JIANGSHANIAN

PAIBIANGUZHANGIAN

DRUMIANAGE 5AGE 4

AGE 3

AGE 2

FORTUNIAN

FLOIAN

TREMADOCIAN

~443.8~445.2

~453.0~458.4

~470.0~467.3

~477.7

~485.4

~494~497~500.5~504.5

~489.5

~509 ~514

~521

~529

541.0

brian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma. Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).Gradstein, F.M, Ogg, J.G., Schmitz, M.D., et al., 2012, The Geologic Time Scale 2012: Boston, USA, Elsevier, https://doi.org/10.1016/B978-0-444-59425-9.00004-4.

/www.geosociety.org/timescale.

an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).

Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America

4000

brian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma. Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).v. 5.0

v. 5.0

v. 5.0Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America

v. 5.0Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America

v. 5.0Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America

v. 5.0Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America

v. 5.0

v. 5.0

v. 5.0

v. 5.0

v. 5.0

v. 5.0

v. 5.0

v. 5.0

v. 5.0brian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma.

v. 5.0brian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma.

v. 5.0brian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma.

v. 5.0brian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma.

Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates

v. 5.0 Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates

v. 5.0 Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates

v. 5.0 Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates

an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma. v. 5.0

an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma. v. 5.0

an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma. v. 5.0

an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane, v. 5.0

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane, v. 5.0

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane, v. 5.0

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).v. 5.0

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).v. 5.0

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).v. 5.0

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of Americabrian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma.

Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).

Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018, Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of Americabrian from 1.80 to 0.781 Ma, Middle from 0.781 to 0.126 Ma, and Late from 0.126 to 0.0117 Ma.

Gradstein et al. (2012), Cohen et al. (2012) , and Cohen et al. (2013, updated) compilations. Numerical age estimates an are provisional. A “~” before a numerical age estimate typically indicates an associated error of ±0.4 to over 1.6 Ma.

Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostratigraphic Chart: International Commission on Stratigraphy, www.stratigraphy.org (accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane,

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, The ICS International Chronostratigraphic Chart: Episodes v. 36, no. 3, p. 199–204 (updated 2017, v. 2, http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed May 2018).

Page 2: Coastal Management - Geological Society of America...Geological Monitoring Edited by Rob Young and Lisa Norby, 2009 Previously sold out and now available as a PDF, Geological Monitoring

Facies Models 4

Edited by Noel P. James and Robert W. Dalrymple, 2010

The essential volume on sedimentary succession interpretation, this full-color textbook by the Geological Association of Canada incorpo-rates the enormous advances in our understanding of depositional environments since the last edition (1992). Written for the advanced undergraduate- to graduate-student level, this book is accessible to anyone with an interest in sedimentary environments.

GACGT6, 575 p. plus index, ISBN 9781897095508 | $100.00 | member price $85.00 |

N 7m=14.007

14 15

r=1.71

Reduced nitrogen

3–

(as NH4+)

S 16

32 33 34 36

r=1.84m=32.066Sulfur as sulfide

2–

78 80 82

Se

m=78.96

74 76 77r=1.98

Selenium342–

as selenide

Br 35

m=79.904

79 81 (82)

r=1.95(7+ r=0.39)

Bromine

as bromide

Cl 17

m=35.453

35 37

r=1.81

Chlorineas chloride

C 6m=12.011

12 13 14

r=2.60

Reduced carbon

4–

15

m=30.974r=2.12

Phosphorus

3–

as phosphide

P

51

r=2.45

121 123

Sb

m=121.760

Antimony

3–

as antimonide

Noble Gases

Ani

ons

with

w

hich

har

d ca

tions

pr

efer

entia

lly

coor

dina

te

Anions

(No ionization)

Ani

ons

with

w

hich

sof

t cat

ions

pr

efer

entia

lly

coor

dina

te

Inte

rmed

iate

Anions that commonly coordinate with H+

(e.g., as CH4, NH3, H2S, H2O, etc.)

At 85

215 218 219

AstatineRn 86

(222)

220 222218 219

Radon

Si 14

m=28.086r=2.71

Silicon as silicide

4–

Most known natural occurrences of phosphides and silicides are in metorites

and cosmic dust.

Most natural occurrences of carbides and nitrides are in meteorites or mantle phases.

He 2

3 4

Helium

m=4.0026r=1.2

Ne 10

20 21 22

Neon

m=20.180r=1.5

Ar 18

36 38 40

Argon

m=39.948r=1.8

Kr 36

78 80 8283 84 86

Kryptonm=83.80

r=1.9

Xe 54

129 130 131132 134 136

124 126 128

Xenonm=131.29

r=2.1

As 33m=74.922

75

r=2.22

Arsenic as arsenide

3–

Cations that coordinate with H2O(or CO3

2– or SO42–)

in solution

Cations that coordinate with O2– in solution (e.g., as

NO3–, PO4

3–, SO42–, etc.)

Noble Gases(No ionization)

z/r = 1

Rn 86(222)

219 220 222

Radon

z/r = 4z/r = 2

"Hard" or "Type A" Cations(All electrons removed from outer shell)

(Thus a noble-gas-like configuration of the outer shell)

Coordinate F>O>N=Cl>Br>I>S

Where Fe2+

and Fe3+ would fall if they were

hard cations

He 2m=4.0026

3 4

Helium

r=1.2

Ne 10m=20.180

20 21 22

Neon

r=1.5

Ar 18

m=39.948

36 38 40

Argon

r=1.8

Kr 36m=83.80

78 80 8283 84 86

Krypton

r=1.9

Xe 54m=131.29

129 130 131132 134 136

124 126 128

Xenon

r=2.1

ionic charge ÷ionic radius

= 32 =zr

Cs 55m=132.905

133

r=1.69

Cesium ion

+

Fr 87(223)

223

r=1.76

Francium ion

(<30 g in crust)very rare

+137 138

Ba 56m=137.327

130 132r=1.35

134 135 136

Barium ion

2+

Ra 88(226)

223 224

r=1.40

226 228

Radium ion

2+

Cations that coordinate with OH–

or O2– in solution

z / r= 16

?

Ac 89m=227.03

r=1.18

227 228

?Actinium ion

3+ Pu 94Plutonium

Very limitednatural

on Earthoccurrence

239

Np 93Neptunium

237 ?

Very limitednatural

on Earthoccurrence

Pa 91(231)

(+4 r=0.98)

231 234

Protactinium ion

5+

Cations that coordinate

with OH– (orH2O) in solution

+Li 3m=6.941

6 7

r=0.60

Lithium ion

Na 11m=22.990

23

Sodium ion

r=0.95

+

+

Rb 37m=85.468

85 87

r=1.48

Rubidium ion

+

Be 4m=9.012

9

r=0.31

Beryllium ion

2+

Sr 38m=87.62

87 8884 86

r=1.13

Strontium ion

2+

B 5

m=10.811

10 11

r=0.20

Boron as borate (B(OH)3

3+

or B(OH)4–)

C 6

12 13 14

m=12.011

Carbon, as CO2,

2-& carbonate (CO3 )

4+

bicarbonate (HCO3)-

15r=0.

r=0.46

Mn7+

(MnO4– )

Cr 24

m=51.996

50 52 53 54

r=0.52

Chromium as chromate (CrO42–)

6+V 23

m=50.942

50 51r=0.59

Vanadium ione.g., as vanadate

5+

96 98 100

Mo 42

m=95.94

92 94 95 97r=0.62

Molybdenum as molybdate

6+

Re 75

m=186.207r=0.56

185 187

Rhenium ion

7+

r=0.68

W 74

180 182 183184 186

m=183.84

Tungsten (Wolfram) as tungstate

6+

Tc 43

(100)

TechnetiumVery limited

natural

on Earthoccurrence

99

Elements 95 and beyond do not occur naturally: 95: Americium 96: Curium 97:Berkelium 98 Californium 99: Einsteinium100: Fermium

101: Mendelevium102: Nobelium103: Lawrencium104: Rutherfordium105: Hahnium "Soft" ("Type B") Cations

(Many electrons remain in outer shell)Coordinate I>Br>S>Cl=N>O>F

z r/= 4

Intermediate Cations(Some electrons remain in outer shell)Coordination with S or O likely

z/r = 16

Po

210 211 212

216 218214 215

84Polonium

zr/ = 8

coordinate with O2– (± OH–) in solutionCations that

3+ r= 0.64

Mn 25

4+ r=0.53

Manganese ion

3,4+ Fe 26

r=0.64

Ferric iron

3+ Co 27

r=0.63

Cobaltic cobalt

3+ Sn 50r=0.71

Stannic tin4+

Sn 50m=118.710

112 114 115 116r=1.12

120 122 124117 118 119

Stannous tin

2+

102 104

Ru 44m=101.07

96 98 99

3+ r=0.694+ r=0.67

100 101

Ruthenium ion3,4+

Pd 46m=106.42

102 104 105106 108 110

r=0.86

Palladium ion

2+

Re 75m=186.207

185 187

r=0.65

Rhenium ion

4+

212 214

Pb 82m=207.2

204 206 207

r=1.20

208 210 211

Plumbous lead

2+

Pb 82r=0.84Plumbic lead

4+

Bi 83m=208.980

r=1.20

212 214 215209 210 211

Bismuth ion

3+

Bi 83r=0.74

Bismuth ion5+

z/r =

8

As 33r=0.47

arsenate (AsO43–)

5+

As 33m=74.922

75

Arsenic,

r=0.69

as in arsenites

3+r=0.62

Sb 51antimonate5+

Sb 51

m=121.760r=0.90

121 123

Antimony ion,

3+

as in antimonites

S 16r=0.37

4+as sulfite (SO32–)

Sulfur Se 34r=0.42

selenate (SeO42–)

6+

52r=0.56

Te tellurate6+

128 130

52

m=127.60

120 122 123r=0.89

124 125 126

TeTellurium ion,

4+

as in tellurites

53

r=0.44

IodineI5+

as iodate (IO3 )–

m=126.904

Rare earth elements (REEs)(effectively "Hard" or "Type A" cations in their 3+ state)

176Hf?

No natural occurrence

on Earth

Pm 61

(150)?

Promethium

z/r = 2

138Ba

Lantha-nides:

z/r =

4

*For the sake of simplicity,

232Th-208Pb series are omitted.the 235U-207Pb and

z/r =

2

= ionic charge ÷

ionic radius

z/r=

1

La 57

m=138.906r=1.15

138 139

Lanthanum ion

3+

142

Ce 58m=140.116

136 138 140r=1.11

Cerium ion

3+

148 150

Nd 60m=144.24

142 143 144r=1.08

146 145?

Neodymium ion

3+

Eu 63m=151.964

151 153r=1.03

Europium ion

3+

Gd 64m=157.25

152 154 155r=1.02

158 160156 157

Gadolinium ion

3+Tb 65

m=158.925r=1.00

159

Terbium ion

3+ Dy 66m=162.50

156 158r=0.99

163 164160 161 162

Dysprosium ion

3+Ho 67

m=164.930

165

r=0.97

Holmium ion

3+ Er 68m=167.26

162 164 166

r=0.96

167 168 170

Erbium ion

3+Tm 69

m=168.934

169

r=0.95

Thulium ion

3+ Yb 70m=173.04

168 170 171

r=0.94(2+ r= 1.13)

174 176172 173

Ytterbium ion

3+

Lu 71m=174.967

175 176r=0.93

Lutetium ion

3+Pr 59m=140.908

141

r=1.09(4+ r=0.92)

Praseodymium ion3+r=1.01

Ce 58Cerium ion

4+

152 154

Sm 62m=150.36

144 147 148r=1.04

149 150

Samarium ion

3+

Eu 63

r=1.12Europium ion

Substitutes for Ca2+

2+

C6

Diamond

r=0.77& graphite

S16

SulfurSi14

r=1.34Silicon

Se34

Selenium

r=1.6

Cd48

Cadmium

r=1.56

In49

Indium

r=1.66

52Te

Tellurium

r=1.7

Re75

Rhenium

r=1.37

Ta73

Tantalum

r=1.46

Gases

Non-metals

Metals

O8

2oxygen

Molecular

Bi83

Bismuth

r=1.82

Pb82Lead

r=1.75

Cr24

Chromium

r=1.27

Co27

Cobalt

r=1.25

Ni28

Nickel

r=1.24

Fe26

Ironr=1.26

Pd46

Palladium

r=1.37

Rh45

Rhodium

r=1.34

Ru44

Ruthenium

r=1.34

Os76

Osmium

r=1.35

Ir77

Iridium

r=1.35

Zn30Zinc

r=1.39

Al13

Aluminumr=1.43

As33

Arsenic

r=1.48

Sb51

Antimony

r=1.61

Sn50Tin

r=1.58

Au79

Gold

r=1.44

Ag47Silver

r=1.44

Pt78

Platinum

r=1.38

Cu29

Copper

r=1.28

Hg80

Mercury

r=1.60

Tl81

Thallium

r=1.71

Elemental Forms

other than noble gases(uncharged)

Principal elements in iron meteorites (Fe>>Ni>>Co) and, with S or O, presumably domi-nant elements in Earth's core

and isotopic

are omitted toconserve space)

(Atomic masses

information

FeZrLiLu

10 most abundant elements in Earth's crust11th to 20th most abundant elements in Earth's crust21st to 40th most abundant elements in Earth's crust41st to 92nd most abundant elements in Earth's crust

Elements that are thought to make up most of the Earth's core (Fe>Ni>Co), along with possibly S or O

Elements that occur as native minerals, recognized in antiquity ( recognized from Middle Ages to 1862; recognized after 1963.)

Elements that make natural mineral alloys with FeElements that make natural mineral alloys with CuElements that make natural mineral alloys with OsElements that make natural mineral alloys with PtElements that make natural mineral alloys with Au

See also Insets 1 to 5 and 7.

Inset 7: Conceptual model of the behavior of oxides of hard (and intermediate) cations

Li NCations

Rb O2–

Low z/r

High z/r

Weak cation-oxygen bonds

Strong cation-oxygen bonds

cation-cation

Strongbonds, but

repulsion

H+

Intermediate z/r

Si 14

m=28.086

28 29 30

r=0.41

as silicate (SiO44–)

4+

or Si(OH)40

Cr 24m=51.996

50 52 53 54

r=0.69

chromium

3+Chromic

54 56 57 58

Ions concentrated in deep-sea ferromanganese nodules relative to seawater

Ions commonly concentrated in residual soils and residual sediments. Small symbol ( ) indicates less certainty.

with full outer electron shells

La 3+Ba2+ Hf 4+Cs +

Y 3+Sr 2+ Zr 4+ Nb5+Rb+

Ca2+ Ti 4+ V 5+K +

AlMg2+ Si 4+ P5+Na +

B 3+Be2+ C4+Li +

3+

251BromelliteChrysoberyl

240

Periclase160

254Corundum

198

Spinel

38Quartz

210

Perovskite

216Rutile

115Lime

87

71

3

145

152*

175

Tausonite

38Quartz

Mineral of one cation:

71Nonmineral:

210Perovskite

Mineral of two cations:

200

150100

50

Inset 1: Bulk modulus (Ks in GPa) of oxide minerals of hard cations

*Baddeleyite has

at ambient condi-

Ks = 95 GPa but

stable ZrO2 phase

is for the latter.

is not the most

tions; value shown

z / r=

1

z / r=

1

z / r= 4

Cd 48

114 116111 112 113

r=0.97106 108 110

m=112.411Cadmium ion

2+In 49

m=114.818

1+ r=1.32

113 115

3+ r=0.81

Indium ion

1,3+

Au 79m=196.967

r=1.37

197

Gold ion

(3+ r=0.85)

+ Tl 81m=204.383

r=1.40

207 208 210203 205 206

Thallous thallium

+

Tl 81r=0.95

Thallic thallium

3+202 204 206

Hg 80m=200.59

196 198 199r=1.19

200 201

Mercurous ion

+

Ag 47m=107.868

r=1.26

107 109

Silver ion

+

+

63 65

Cu 29m=63.546

r=0.96

Cuprous copper

Cr 24r=0.90

chromium

2+Chromous

H 1

1 2 3

Hydrogen ion

m=1.0079r=10-5

+

Ni 28

r=0.73

Nickel ion

3+

61 62 64

Ni 28m=58.693

58 60r=0.72

Nickel ion2+

r=0.62

Ga 31m=69.723

69 71

(1+ r=1.13)

Gallium ion

3+

70 72 73 74 76

Ge 32m=72.61

(2+ r=0.93)r=0.53

Germanium ion4+

because it speciates both as I– (to right)

Iodine is shown twice as a solute in seawater

and IO3 (here).–

H 1m=1.0079

1 2 3r=2.08

Hydrogen–

as hydride

O 8m=15.999

16 17 18

r=1.40

2–Oxygen as oxide

Hg 80r=1.10

Mercuric ion2+

zr = 8/

zr =

8/

z/r =

4

z / r=

2

CrMn

2+

Fe 3+

Fe2+

Co2+

Ni2+

Cu+ Zn2+

Sn4+

Pb2+

Bi3+

2603

2054 1652

1838

2078 2228 15092242

1903

10981170

BismiteMassicot

Cassiterite

Bunsenite Cuprite

Zincite

Hematite

Manga-nosite Sb

928

As547

Cd2+

>1773

Cu2+

1719

Tenorite

Ga3+

2079Ge

4+

1388

Ag~473(d)

+

Tl852

+

Tl3+

1107

Sn2+

1353(d)

Hg2+

773(d)Montroydite

Valentinite

Auno stable

oxide

+

2400

2000

1600

1200

800

Inset 6: Melting and decomposition (d) temperatures (K) of oxides of intermediate and soft cations

Co3+

1168 (d)V

4+

2240

Mn3+

1353(d)

As5+

588

In3+

2185Pd

2+

1023(d)Rh

2+

1373(d)Mo

4+

1373(d)

W4+

~1773(d)Re

4+

1173(d)Pt

2+

598(d)

Au3+

423(d)Hg+

373(d)

Arsenolite

3+1600

2000

Avicennite

Ir4+

1273 (d)

1200Eskolaite

3+

Wüstite

Tugarinovite

Paramont-roseite

Argutite3+

RomarchiteMonteponite

400

See also Inset 3.

Commonly coordinate with O of carboxyl groups of organic ligands

Commonly coordinate with C of organic ligands, as in methylmercury

Sc 21m=44.956

45

r=0.81

(48)

Scandium ion

3+

Al 13

m=26.982

27

r=0.50

3+Aluminum ion asAl3+ or Al(OH)n3–n

Fe3+

49 50

Ti 22m=47.867

46 47 48

r=0.68

Titanic titanium

4+

Zr 40m=91.224

90 91

r=0.80

92 94 96 ?

Zirconium ion

4+

La & 57-REEs 71

170Yb

See below

3+ Hf 72m=178.49

174 176 177

r=0.81

178 179 180

Hafnium ion

4+Ta 73

m=180.948

180 181

r=0.73

Tantalum ion

5+

as tantalate

Th 90m=232.038

227 228 230

r=0.95(+3 r=1.14)

231 234

Thorium ion

232*

4+ 92Uranium ionr=0.97

U4+

74

m=183.84

180 182 183

r=0.64

184 186

WTungsten (Wolfram)

ion

4+

190 192

Os 76m=190.23

184 186

r=0.69

187 188 189

Osmium ion

4+ Ir 77m=192.217

r=0.66

191 193

Iridium ion

4+97 98 100

42m=95.94

92 94 95 96r=0.68

MoMolybdenum ion

4+

r=0.61

V 23Vanadium ion

4+

V 23m=50.942

50 51r=0.74

vanadium

3+Vanadous

Ti 22r=0.90Titanium ion

2+

Ti 22r=0.75Titanium ion

3+

4 most abundant constituents in atmosphere

5th to 8th most abundant

Anions that form minerals with K+ and Na+

Anions that form minerals with Al3+, Ti4+, and Zr4+

Anions that form minerals with Si4+

Anions that form minerals with Mg2+

Cations that form simple oxide minerals Cations that form simple sulfide minerals

Cations that form simple fluoride minerals

Cations that form oxysalt minerals (e.g., S6+ in sulfates, As5+ in arsenates)

Cations that form simple bromide or iodide minerals

Anions that form minerals with Au+Anions that form minerals with Ag+Anions that form minerals with Cu+

128 130

52

m=127.60

120 122 123r=2.21

124 125 126

TeTellurium

2–

as telluride

Bi 83

m=208.980

Bismuth as

2–,3–

bismuthide

The only bismuthide minerals are of

Pd, Ag, Pt, Au, and Pb

Y 39m=88.906

89

Yttrium ion

r=0.93

3+ Nb 41

m=92.906r=0.70

Niobium (orColumbium) ion

(96)93

5+ Rh 45m=102.906

r=0.86

103

Rhodium ion

2+

Pt 78m=195.078

190 192 193

r=0.96

196 198194 195

?

Platinum ion

2+

z r/=

1 2

z r/=

1–

z r/=

2–

78 80 82

Se 34m=78.96

74 76 77r=0.50

4+

as selenite(SeO32–)Selenium

F 9m=18.998

19

r=1.36

Fluorineas fluoride

Periclase

La 3+ Hf 4+ Ta5+ W6+

Y 3+Sr2+ Zr 4+ Nb5+ Mo6+

Ca2+ Ti 4+ V 5+K + Cr 6+

AlMg2+Si 4+ P5+Na + S6+

B 3+Be2+ C4+ N5+Li +

Th4+

3+

Corundum

Lime

Quartz

Shcherbinaite

Molybdite

Tantite

Baddeleyite

Inset 4: Solubility of oxide minerals of hard cations

4.4Bromellite

–7.4 2.77

9.9–2.4 –8.1 –3.9 –1.37

14.01.4

Sc3+

–9.7 –7.6

Rb+

28.94.3

Ba2+6.7

Log of activity of cation species in distilled water at 25 °C

–9.7

Mineral

Thorianite

Rutile

La 3+ Hf 4+ Ta5+ W6+

Y 3+Sr2+ Zr 4+ Nb5+ Mo6+

Ti 4+ V 5+ Cr 6+

Al Si 4+ P5+ S6+

B 3+Be2+ C 4+ N5+Li +

Th4+

3+

9

PericlaseMg2+

Na +

5.5-67.5-8 9 7

3-3.55.5

Perovskite

3-4

7

6

Spinel

Corundum

Bromellite

Ca2+K +3.5Lime

Quartz

Shcherbinaite

Molybdite

Tantite

Thorianite

Baddeleyite

6.5Srilankite

>9(Ru=6-6.5)

Chrysoberyl8.5

*A non-rutile synthetic TiO2is the hardest known oxide

Inset 2: Hardness of oxide minerals of hard cations

7Quartz

Mineral of one cation:

5.5

Perovskite

Mineral of two cations

H=4

H=4

H=6

H=8

H=6

Hardness (Mohs scale)

*

6.5

3000

La 3+Ba2+ Hf 4+ Ta5+Cs + W6+

Y 3+Sr 2+ Zr 4+ Nb5+Rb+ Mo6+

Sc3+Ca2+ Ti 4+ V 5+K+ Cr 6+

AlMg2+ Si 4+ P5+Na + S6+

B 3+Be2+ C4+ N5+Li +

Th4+

1700

1193

2681 723 216

3125 1996 855 290

3200 2103 943

673 2938 3123 1785 1074

2286 25802500

3173 2058 1745

3493

25002000

1000

500

3000

2000

1500 1500

2345

3+

Inset 3: Melting T(K) of oxides of hard cations

See also Inset 6.

v. 4.8e 02 22 October 2012

92

234 235 238

Uranium

*r=0.7

m=238.029

U

as uranyl (UO22+)

6+

F–

Cl–

Br–

I–

Anion:

Na+( )-, and Mg2+( )-bearing halides (mol/L)

HgI2

Villiaumite

Halite

100110-210-410-610-8

Sellaite

Chlorargyrite

Bromargyrite

Iodargyrite

NaBr

NaI

AgF

MgBr2

MgI2

MineralNonmineral

HgBr2

HgCl2

Solubility of Ag+( )-, Hg2+( )-,

(AgCl)

(AgBr)

(AgI)

(MgF2)(NaF)

(NaCl)

MgCl2

of hard and soft cationsInset 8: Solubility of halides

I 53

r=2.16(7+ r=0.50)

(124) 127(128) (130)

Iodine as iodidem=126.904

r=0.25

Fe 26as ferrate or

6+

perferrate (FeO42–)

= ionic potentialor charge density

zr = ionic charge ÷

ionic radius

Ge 54m=72.59

2 3 4

r=1.05

Ionic Radius (r) (Å)

Atomic MassMost abundant (bold)Radioactive (italicized)

β-β+EC,

α

Naturally occurring isotopes

Radioactivedecay pathways

Outline solid for naturally occurring elements or ions;dashed for ones that rarely or never occur in nature.

ActiniumElement Name

Atomic Number(number of protons)

Symbol(see scale at far right) 3+

(or elemental radius for elemental forms)

Permanganate (MnO4–) is a hard cation

shown to leftChromate

(CrO42–) is a

hard cation shown to left

MgAlBO4(Sinhalite)

Me2+CO3KNO3(Niter)

Na2SO4(Thenardite)

CaSO4(Anhydrite)Al2SiO5 (K-S-A)

ZrSiO4 (Zircon)

KAl2Si3O8 (Kspar)

AlPO4(Berlinite)

Na3PO4(Olympite)

(e.g., Calcite)

Si 4+ P5+ S6+

B 3+ C4+ N5+

Inset 5: Typical simple oxysalt minerals (__MOn minerals without OH or H2O)

Minerals withcations of very low

ionic potential(e.g., K+, Na+, Ba2+)

Minerals with cations of low (e.g., K+) to moderate (e.g., Al3+) ionic potential

"K-S-A" indicates kyanite,andalusite, & sillimanite.

NaNO3(Natratine)

Minerals with cations of low ionic

potential

8 most abundant solutes dissolved in seawater9th to 16th most abundant 17th to 22nd most abundant

2nd to 8th most abundant solutes in average river water Most abundant solute in average river water (HCO3

–)

Ions that enter later phases in igneous rocks because of their large size (mostly "large-ion lithophiles")

Ions that enter early-forming phases in igneous rocks

Ions least depleted from mantle in formation of crustIons enriched in CAIs (Ca-Al-rich inclusions in meteorites) relative to the composition of the solar system

Solutes that can be limiting nutrients in the oceans

Macronutrient solutes on land Micronutrient solutes on land

Ions essential to the nutrition of at least some vertebrates ("essential minerals")

Solutes that can be limiting nutrients in the growth of bacteria

Fe 26m=55.845r=0.76

Ferrous iron

2+

N 7

m=14.007

14 15

r=0.11

Nitrogenas nitrate (NO3–)

5+

P

m=30.974

31r=0.34

Phosphorus as51

phosphate (PO43–

5+

and HPO42–)

S 16

m=32.066

32 33 34 36

r=0.29

Sulfur assulfate (SO42–)

6+

K 19m=39.098

39 40 41

r=1.33

Potassium ionCa 20

m=40.078

40 42 4344 46 48

Calcium ion

2+

r=0.99

Mg 12m=24.305

24 25 26

r=0.65

Magnesium ion

2+

Fe2+

55

Mn 25m=54.938

r=0.80

Manganous Mn

2+

59

Co 27m=58.933r=0.74

Cobaltous cobalt

2+r=0.69

Cu 29Cupric copper

2+

Zn 30m=65.39

64 66

r=0.74

67 68 70

Zinc ion

2+

r=0.27

Cl7+

(ClO4– )

as per-chlor-nate

as per-manga-

nate

42Mo2+

Nb414+

Nb413+

H1

2hydrogenMolecular

2N 7

nitrogenMolecular O

8

as inatmosphericOH0, HO2, and H2O2

1–

Anionswith incomplete outer electron

shells

Also see Inset 9.

Ions

that

tend

to

ent

er in

to

and/

or s

tay

in

O2-

-bea

ring

solid

s

Ions

that

tend

to o

nly

ente

r O

2--b

earin

g so

lids

late

, or

not a

t al

l, an

d in

stea

d to

ent

er o

r re

mai

n in

aque

ous

solu

tion

.

See also Inset 9.

presumably as rheniate

26

(smaller print where very scarce)

10

36

129

Example

Inset 9: The many

valence states of nitrogen

and carbon

5+ NO3– (nitrate)

4+ NO2 (nitrogen dioxide)3+ NO2

– (nitrite)2+ NO (nitric oxide)1+ N2O (nitrous oxide)0 N2 (nitrogen)3– NH3 (ammonia)

Shown above in the main table.

2– CH3OH (methanol)3– C2H6 (ethane)4– CH4 (methane)

4+ CO2 (carbon dioxide)

2+ CO (carbon monoxide)

0 graphite, diamondacetic acid, carbohydrates,

Other alkanes yield non-integer valuesfrom 4– to 2–.

Also see Inset 9.

N2 is the most abundant constituent of the atmosphere; NO2, NO, N2O,

and NH3 are minor constituents.

3+ HOOCCOOH (oxalic acid)

calculated assuming H is 1+ and O is 2-.

Example

Inset 9: The many

valence statesof nitrogen and carbon

5+ NO3– (nitrate)

4+ NO2 (nitrogen dioxide)3+ NO2

– (nitrite)2+ NO (nitric oxide)1+ N2O (nitrous oxide)0 N2 (nitrogen)3– NH3 (ammonia)

Shown above in the main table.

N2 is the most abundant constituent of the atmosphere; NO2, NO, N2O,

and NH3 are minor constituents.

2– CH3OH (methanol)3– C2H6 (ethane)4– CH4 (methane)

4+ CO2 (carbon dioxide)

2+ CO (carbon monoxide)

0 graphite, diamondacetic acid, carbohydrates,

Other alkanes yield non-integer valuesfrom 4– to 2–.

3+ HOOCCOOH (oxalic acid)

calculated assuming H is 1+ and O is 2-.

Valencestate

MAP AND CHART SERIES MCH092RV2doi:10.1130/2015.MCH092RV2

Published by The Geological Society of America, Inc.3300 Penrose Place • P.O. Box 9140Boulder, Colorado, 80301-9140, USA

© 2015 The Geological Society of America, Inc. All rights reserved.Printed in the USA

An Earth Scientist's Periodic Table of the Elements and Their IonsL. Bruce Railsback, Department of Geology, University of Georgia, Athens, Georgia, 30602-2501, U.S.A. For more resources, see the Earth Scientist's Periodic Table of the Elements and Their Ions website.

An earlier version of this table was published as Figure 1 of L.B. Railsback, 2003, An Earth Scientist's Periodic Table of the Elements and Their Ions: Geology, v. 31, no. 9, p. 737–740. Publication of that version was supported by National Science Foundation Grant DUE 02-03115.

An Earth Scientist’s Periodic Table of the Elements and Their Ions (REVISED) By L. Bruce Railsback, 2015This periodic table is designed to contextualize trends in geochemistry, mineralogy, aqueous chemistry, and other natural sciences. First published as an insert in the September 2003 issue of Geology, this version is updated and supersized—36" × 76"!

MCH092RV2, 1 folded sheet (36" × 76"), 7 p. text | $10.00 |

The Geology of Plate Tectonics Compiled by Gregory R. WesselThis chart belongs in every geology classroom and lab! Printed in full-color, it attempts to organize the types of plate boundaries and displays them in a useful graphic form. The chart describes geologic features with each type. Sheet is 36" × 53" (folded only).

MCH059REV, 1 folded sheet (36" × 53") | $9.95 |

The Grand Canyon Trail of Time Companion

By Karl Karlstrom and Laura Crossey

The creators of the “Trail of Time” exhibi-tion at Grand Canyon have published this guide to the exhibit to enhance your walk along the accessible Rim Trail from Grand Canyon Village to Yavapai Geology Museum. Families, groups, and individuals will � nd activities in the guide that combine sight-seeing, learning, challenges, and adventure. Be sure to take a copy of this guide along on your trip to Grand Canyon, and � nd out for yourself why it won the 2011 � rst place award from the National Association of Interpretation.

8 ½" × 5 ½"; side-spiral bound (Published by Trail of Time Publishers.)

TRAIL, 136 p., ISBN 9780578404967 | $14.95 |

Shop Online } rock.geosociety.org/store

You May Also Like

SPE489P: Grand Canyon Geology: Two Billion Years of Earth’s History

Edited by J. Michael Timmons and Karl E. Karlstrom, 2012

Page 3: Coastal Management - Geological Society of America...Geological Monitoring Edited by Rob Young and Lisa Norby, 2009 Previously sold out and now available as a PDF, Geological Monitoring

Rite in the Rain notebooks contain all-weather writing paper that sheds water, enabling you to write in any weather using a pencil or an all-weather pen. Our paper is totally recyclable.

Rite in the Rain ProductsProduct

Code PricePocket Organizer Pouch RITRP835 US $ 24.95Shirt Pocket Spiral Notebook in blue RITR235 US $ 3.95Shirt Pocket Spiral Notebook, 3" × 5" RITR135 US $ 3.95Side Spiral Metric Notebook, 45⁄8" × 7"NOW IN BLAZE ORANGE RITROR73 US $ 6.95

Side Spiral Metric Notebook, 45⁄8" × 7" RITR363 US $ 6.95Geology Field Bound Book, 43⁄4" × 71⁄2" RITR540F US $ 21.95Field Book Pouch for 540F Book RITRC540F US $ 28.25Black Field-Flex Memo Book, 31⁄2" × 5" RITR754 US $ 5.45

In the Field Pocket-Sized Sand Grain Sizing FolderThis pocket-sized folder consists of a sphericity/roundness measuring chart; printed examples of well-sorted and poorly sorted grain samples in the � ne, medium, and coarse ranges; four actual grain samples illustrating angular, sub-angular, subrounded, and rounded shapes; and six grain size samples (silt, very � ne sand, � ne sand, medium sand, coarse sand, and very coarse sand). Measurement limits for granules, pebbles, cobbles, and boulders are indicated.

GRN001, single copy | $7.50 | member price $5.95 |

GSA Photo Scale / Time Scale This versatile field tool combines GSA’s popular photo scale and time scale. On one side is our Author’s Photo Scale, cal-ibrated boldly in centimeters (10) and inches (4). Includes a GSA seal for fine focus and an evaluation scale for granular material from 1 to 5 millimeters diameter. The reverse side includes the complete Geologic Time Scale. Sturdy 20-mil × 2.5" × 6.5" tan vinyl printed in blue.

PTS002, pack of 10 | $9.00 | member price $7.50 |

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

260

280

300

320

340

380

360

400

420

440

460

480

500

520

540

4000

PALEOZOIC

PE

RM

IAN

DE

VO

NIA

N

OR

DO

VIC

IAN

SIL

UR

IAN

MIS

SIS

-S

IPP

IAN

PE

NN

SY

L-VA

NIA

N

CA

MB

RIA

N

CA

RB

ON

IFE

RO

US

AGE(Ma)

EPOCHAGE

PICKS(Ma)

PERIOD

252

260

254

265269

272279

290296

304307

299

323

331

347

359

372

383388

393

408411

419423426

433430

439441

427

444445

453458

470467

478

485

494497501

505

490

509 514

521

529

541

GZHELIANKASIMOVIANMOSCOVIANBASHKIRIANSERPUKHOVIANVISEAN

TOURNAISIANFAMENNIAN

FRASNIANGIVETIANEIFELIAN

EMSIANPRAGIANLOCHKOVIAN

315

PRECAMBRIAN

PR

OTE

RO

ZOIC

AR

CH

EA

N

AGE(Ma) EON

ERA

BDY.AGES(Ma)

1000

1200

1800

2050

2300

1400

1600

2500

2800

3200

3600

4000

Lopin-gian

MIDDLE

Guada-lupian

Cisura-lian

LLANDO-VERY

EARLY

EARLY

FURON-GIAN

Epoch 3

Epoch 2

TERRE-NEUVIAN

LATE

LUDLOW

LATE

MIDDLE

WENLOCK

541

635

850

PERIOD

CHANGHSINGIAN

WORDIANROADIAN

WUCHIAPINGIANCAPITANIAN

KUNGURIAN

ASSELIAN

SAKMARIAN

ARTINSKIAN

PRIDOLI

LUDFORDIANGORSTIANHOMERIAN

RHUDDANIAN

TELYCHIANAERONIAN

SHEINWOODIAN

HIRNANTIAN

SANDBIAN

KATIAN

DARRIWILIANDAPINGIAN

AGE 10JIANGSHANIANPAIBIANGUZHANGIANDRUMIANAGE 5AGE 4AGE 3

AGE 2FORTUNIAN

FLOIANTREMADOCIAN

EDIACARANCRYOGENIAN

TONIAN

STENIAN

ECTASIAN

CALYMMIAN

STATHERIAN

OROSIRIAN

RHYACIAN

SIDERIAN

NEOPRO-TEROZOIC

MESOPRO-TEROZOIC

PALEOPRO-TEROZOIC

NEOARCHEAN

MESO-ARCHEAN

PALEO-ARCHEAN

EOARCHEAN

HADEAN

EARLY

EARLY

MIDDLE

MIDDLE

LATE

LATE

3300 Penrose Place • P.O. Box 9140 • Boulder, CO 80301-9140

1-888-443-4472 • 1-303-357-1000 • www.geosociety.org

© 2

015

237

70

80

90

100

110

120

130

140

150

160

170

180

190

210

200

220

230

240

250

5

10

15

20

25

30

35

40

45

50

55

60

65

HIS

T

AN

OM

.

CH

RO

N.

C31

C32

C33

31

32

33

M0rM1

M5

M10

M12M14M16M18

M20

M22

M25

M29

M3

RA

PID

PO

LAR

ITY

CH

AN

GE

S

30 C30

C3434

1 C1

C2

C2A

C3

C3A

C4

C4A

C6

C6A

C6B

C6C

C7

C8

C9

C10

C11

C12

C13

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C7A

C5

C5A

C5B

C5C

C5D

C5E

2

2A

3

3A

4

4A

5

5B

5A

5C

6

6A

6B

7

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

28

29

26

27

7A

6C

5D

5E

30 C30

MESOZOIC

TR

IAS

SIC

JUR

AS

SIC

CR

ETA

CE

OU

S

AGE(Ma)

EPOCHAGE

PICKS

(Ma)

MAGNETIC

POLARITY PERIOD

LATE

EARLY

LATE

EARLY

MIDDLE

LATE

EARLY

MIDDLE

MAASTRICHTIAN

66.0

72.1

83.6

86.3

89.8

93.9

100

113

126

131

134

139

145

152

157

166164

CAMPANIAN

SANTONIAN

CONIACIAN

TURONIAN

CENOMANIAN

ALBIAN

APTIAN

BARREMIAN

HAUTERIVIAN

VALANGINIAN

BERRIASIAN

TITHONIAN

KIMMERIDGIAN

OXFORDIAN

CALLOVIAN

BATHONIAN

BAJOCIAN

AALENIAN

TOARCIAN

PLIENSBACHIAN

SINEMURIAN

HETTANGIAN

NORIAN

RHAETIAN

CARNIAN

LADINIAN

ANISIAN

OLENEKIAN

INDUAN

168170

174

199

191

201

209

241

228

252250247

RA

PID

PO

LAR

ITY

CH

AN

GE

S

CENOZOIC

AGE(Ma)

EPOCHAGE

PICKS

(Ma)

MAGNETIC

POLARITY PERIOD

HIS

T.

AN

OM

.

CH

RO

N.

QUATER-NARY PLEISTOCENE*

MIO

CE

NE

OLI

GO

CE

NE

EO

CE

NE

PA

LEO

CE

NE

PLIOCENE

PIACENZIAN

0.011.8

3.6

5.3

7.2

11.6

13.8

16.0

20.4

23.0

28.1

33.9

37.8

41.2

47.8

56.0

59.2

61.6

66.0

ZANCLEAN

MESSINIAN

TORTONIAN

SERRAVALLIAN

LANGHIAN

BURDIGALIAN

AQUITANIAN

CHATTIAN

RUPELIAN

PRIABONIAN

BARTONIAN

LUTETIAN

YPRESIAN

DANIAN

THANETIAN

SELANDIAN

CALABRIAN

HOLOCENE

PA

LEO

GE

NE

NE

OG

EN

E

GELASIAN2.6

183

GEOLOGICAL SOCIETY OF AMERICA

GEOLOGIC TIME SCALE

Get full-size chart: www.gsapubs.org

v. 4.0

Wallet-Size Geologic Time ScaleGreat for handouts or as a portable reference.

CTS003, pack of 25 | $7.00 | member price $5.00 |

Geology Terms in English and Spanish / Terminología Geológica en Español e Inglés

By Henry Aurand, 2000

Sunbelt Pocket Guide, published by Sunbelt Publications.

OPB010, 118 p., 3 5⁄8" × 5" softcover, perfect bound, ISBN 9780932653291 | $9.95 |

DoohicKey 6x Key Tool by Nite Ize®Made of durable stainless steel with a carabiner clip for easy attachment, one end works as a scraper, tape cutter, and scorer; the other end serves as a � at-head screwdriver and pry tool. The outer edge is scored as a ruler in both inches and cen-timeters, the opposite edge features a bottle opener, and the interior is ridged to provide 3 wrench sizes. This tool is airport friendly, so you can take it with you and keep it close at hand.

NITEDOO, Size: 2.6" × 0.7" × 0.1" (64.8 mm × 17.2 mm × 2.5 mm); Weight: 0.4 oz (12 g) | $4.99 |

Drawing Geological Structures

By Jorn H. Kruhl, 2017DRAWGEO, 232 p., 4 ½" x 7" softcover,

ISBN 9781405182324| $40.00 | member price $35.00 |

Field Hydrogeology, 4th Edition

By Rick Brassington, 2017HYDRO, 312 p., 4 ½" x 7" softcover,

ISBN 9781118397398| $55.00 | member price $50.00 |

Basic Geological Mapping, 5th Edition

By Richard J. Lisle, Peter Brabham, and John W. Barnes, 2011

MAPPING, 230 p., 4 1⁄2" × 7" softcover, ISBN 9780470686348

| $50.00 | member price $45.00 |

Sedimentary Rocks in the Field: A Practical Guide, 4th Edition

By Maurice E. Tucker, 2011SEDROCK, 288 p., 4 ½" × 7" softcover,

ISBN 9780470689165 | $67.00 | member price $62.00 |

The Field Description of Igneous Rocks, 2nd Edition

By Dougal Jerram and Nick Petford, 2011

ROCKS, 256 p., 4 1⁄2" × 7" softcover, ISBN 9780470022368

| $49.00 | member price $44.00 |

Field Geophysics, 4th Edition

By John J. Milsom and Asger Eriksen, 2011

GEOPHYS, 304 p., 4 1⁄2" × 7" softcover, ISBN 9780470749845

| $48.00 | member price $43.00 |

Shop Online } rock.geosociety.org/storeIn the FieldIn the Field

for everyday use

Portable POCKET GUIDES

Page 4: Coastal Management - Geological Society of America...Geological Monitoring Edited by Rob Young and Lisa Norby, 2009 Previously sold out and now available as a PDF, Geological Monitoring

In Pr

ess

Geologic ExcursionsGeologic ExcursionsGeologic Excursions

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

IN SOUTHWESTERN NORTH AMERICA

Edited by Philip A. Pearthree

Field Guide 55

Geologic Excursions in Southwestern North Am

erica

Geologic Excursions in Southwestern North America

Edited by Philip A. Pearthree

This volume, prepared as part of the Geological Society of America Annual Meeting in Phoenix, includes � eld guides covering aspects of the spectacular geology of southwestern North America. Field guides tackle the geology of the southern Colorado Plateau, from paleoenvironments of Petri� ed Forest National Park, to Jurassic sand dunes of southern Utah, to the San Francisco Volcanic Field, to awesome Grand Canyon. Appropriately for the 50th anniversary of the � rst lunar landing, one trip visits sites in northern Arizona that helped prepare astronauts

for their missions. Several guides address aspects of the Proterozoic to Cenozoic tectonic development of the Transition Zone between the

Colorado Plateau and the Basin and Range. Exploring the Basin and Range, guides feature Laramide tectonism and ore deposit development, features associated with large-magnitude Ceno-

zoic extensional tectonism, large Miocene volcanic centers in northwestern Arizona, and tectonism and development of the lower

Colorado River. Three � eld guides explore various aspects of northwest-ern Mexico, including tectonics and ore deposits of Sonora, fauna and paleo environments of Colorado River delta deposits, and volcanism in central Baja California. Finally, a guide analyzes anthropogenic earth � ssures that have developed in the Phoenix metropolitan area.

FLD055, 553 p., ISBN 9780813700557 | IN PRESS |

You May Also Like

SPE533: Tectonosedimentary Relations of Pennsylvanian to Jurassic Strata on the Colorado Plateau

SPE489P: Grand Canyon Geology: Two Billion Years of Earth’s History

FLD011P: Field Guide to Plutons, Volcanoes, Faults, Reefs, Dinosaurs, and Possible Glaciation in Selected Areas of Arizona, California, and Nevada

MWR183P: Late Cenozoic Lava Dams in the Western Grand Canyon

Related Books

Field Guide 11

Field Guide to Plutons, Volcanoes, Faults, Reefs,

Dinosaurs, and Possible Glaciation in Selected Areas

of Arizona, California, and Nevada

edited by Ernest M. Duebendorfer and Eugene I. Smith

By William R. Dickinson

Special Paper 533

Dinosaurs, and Possible Glaciation in Selected Areas

edited by Ernest M. Duebendorfer and Eugene I. Smith

Edited by J. Michael Timmons and Karl E. Karlstrom

Special Paper 489

In Press