cold exciton gases in coupled quantum wells · michael fogler, martin griswold, aaron hammack, alex...

47
Cold exciton gases in coupled quantum wells Leonid V. Butov UCSD Physics Department Introduction General overview of exciton condensation Cold exciton gases in coupled quantum wells Phenomena in cold exciton gases Condensation, Coherence, and Pattern Formation Trapping and control of exciton gases Optical traps Electrostatic traps Excitonic Circuits In collaboration with: Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang (UCSD) Alexei Ivanov, Leonidas Mouchliadis, Lois Smallwood (Cardiff University) Ben Simons (Cambridge), Leonid Levitov (MIT) Micah Hanson, Arthur Gossard (UCSB) presentations by Aaron Hammack Alex High Sen Yang

Upload: others

Post on 05-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Cold exciton gases in coupled quantum wellsLeonid V. Butov

UCSD Physics Department

Introduction● General overview of exciton condensation● Cold exciton gases in coupled quantum wells

Phenomena in cold exciton gases● Condensation, Coherence, and Pattern Formation

Trapping and control of exciton gases● Optical traps ● Electrostatic traps ● Excitonic Circuits

In collaboration with: Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang (UCSD)Alexei Ivanov, Leonidas Mouchliadis, Lois Smallwood (Cardiff University)

Ben Simons (Cambridge), Leonid Levitov (MIT)Micah Hanson, Arthur Gossard (UCSB)

presentations by

Aaron HammackAlex HighSen Yang

Page 2: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

excitonic insulator (BCS-like condensate)

in dense electron-hole system (naBD >> 1)

excitons are similar to Cooper pairs

below Tc electrons and holes bind to pairs –excitons – forming BCS-like condensateL.V. Keldysh, Yu.E. Kopaev (1964)

electron-hole liquid

condensation in real space to electron-hole droplets forming degenerate Fermi gas of electrons and holesL.V. Keldysh (1968)

Bose Einstein condensate

in dilute exciton gas (naBD << 1)

excitons are (interacting)Bose particles similar to hydrogen atoms

below Tc thermal distribution of excitons leads to their condensation in k-spaceL.V. Keldysh, A.N. Kozlov (1968)

n

T

BEC BCS

exciton gas

electron-hole plasma

pairing of fermions

k-spacecondensation of bosons

transition from BEC to BCS can occur with increasing density transition from BEC or BCS to laser can occur with increasing coupling of excitons to photonsP.B. Littlewood, P.R. Eastham, J.M.J. Keeling, F.M. Marchetti, B.D. Simons, M.H. Szymanska, J. Phys. 16, S3597 (2004)

naBD ~ 1

e&h Fermi-surfacesmatched

mismatched

polariton laser

macroscopic occupation of coupled exciton-photon mode

thermal equilibrium is not requiredA. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto (1996)

Different types of exciton condensate

+_

+_

+_

+_

Page 3: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

electron-hole liquid

GeSi

Bose Einstein condensate

Cu2OIndirect excitons in CQW

polariton laser

Microcavity polaritons

Experimental systems

excitonic insulator (BCS-like condensate)

Electron-electron bilayers in high magnetic fields at n =1

Page 4: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

1 2

22 ~ 3 K

dB

dBB

n

T nmk

λ

π

−=

=

What temperature is “cold” for exciton gas?1/222dB

Bmk Tπλ

⎛ ⎞= ⎜ ⎟

⎝ ⎠

3D: 1 3

22 32

0.527

dB

dBB

BEC dB

n

T nmk

T T

λ

π

−=

=

=

2D:mexciton ~ 10 -6 matomKelvin for excitons

is likemicroKelvin for atoms

transition from classical to quantum gas takes place when thermal de Broglie wavelength is comparable to interparticle separation

3D gas of Rb atoms: n = 1015 cm-3, matom = 105 me → TdB ~ 5×10-6 K

2D gas of excitons in GaAs QWn = 1010 cm-2, mexciton= 0.2 me → TdB ~ 3 K

n < nMott ~ 1/aB2 ~ 2×1011 cm-2

Page 5: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

estimates for characteristic temperatures for cold 2D Bose gases

nmTMkB

dB 16022/12

≈⎟⎟⎠

⎞⎜⎜⎝

⎛=

πλ

thermal de Broglie wavelength22 3dBB

nT KMkπ

= ≈

λdB is comparable to interexcitonic separation

( )1 0.3

lncS dBT T KnS

= ≈ for N=nS~105

BEC in finite 2D system

for n = 1010 cm-2 per spin state ( < nMott ~ 1/aB2 ~ 1011 cm-2), M = 0.22 m0

at T=1 K

V.N. Popov, Theor. Math. Phys. 11, 565 (1972)D.S. Fisher, P.C. Hohenberg, PRB 37, 4936 (1988)

0 3dBT T K= ≈temperature of quantum degeneracy

( )0 exp 1E dBN T T= = −

Yu.M. Kagan, lecturesW. Ketterle, N.J. van Drutten, PRA 54, 656 (1996)

Kosterlitz-Thouless temperature2

2

ln ln (1 / ) 11 ln ln (1 / )K T d B

n aT T Kn a

≈ ≈+

pairing of vortices =onset of macroscopic superfluidity which is not destroyed by vortices

21 1.7

ln ln(1/ )c dBT T Kna

= ≈

lnln(1/na2)=1–3 for 1/na2=10-108 for lnln(1/na2)=1.5

temperature of onset of local superfluidityBogoliubov temperature onset of nonzero order parameter

2 1dBnλ =

N. Prokof’ev, O. Ruebenacker, B. Svistunov, PRL 87, 270402 (2001)

1

supe

rfuid

den

sity

ns /

n

TBEC=0 TBTKT

A.L. Ivanov, P.B. Littlewood, H. Haug, PRB 59, 5032 (1999)

2

1 0 .6ln ( 4 ) ln ln (1 / )c dBT T K

n aξ π≈ ≈

+

for not so dilute gas

ξ≈380

Page 6: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

How to realize cold exciton gas ?Tlattice << 1 K in He refrigeratorsfinite lifetime of excitons could result to high exciton temperature: TX > Tlattice

find excitons with lifetime >> cooling time → TX ~ Tlattice

Page 7: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

GaAsAlxGa1-xAs

zE

KE

excitondispersion

2D: coupling of E=0 state to continuum of energy states E > E0effective cooling of 2D excitons by bulk phonons

3D: coupling of E=0 state to single state E=E0exciton energy relaxationby LA-phonon emission

E0=2Mxvs2

~ 0.05 meV

AlAs/GaAsCQW

GaAs/AlGaAsCQW

h

e

h

e

TX ~ 100 mKhas been realized experimentally

30 times below TdB

Why indirect excitons in CQW ?

high quality CQW samples with small in-plane disorder are required to overcome exciton localization

103-106 times longer exciton lifetime due to separation between electron and hole layers

103 times shorter exciton cooling timethan that in bulk semiconductors

0 50 1000.1

1

TX

Time (ns)

A.L. Ivanov et al in PRL 86, 5608 (2001)

~ 10 ns to cool to 300 mK~ 100 ns to cool to 100 mK

realization of cold exciton gas in separated layers was proposed by Yu.E. Lozovik & V.I. Yudson (1975); S. I. Shevchenko (1976);T. Fukuzawa, S.S. Kano, T.K. Gustafson, T. Ogawa (1990)

A.L. Ivanov, P.B. Littlewood, H. Haug (1990)

Page 8: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Repulsive interaction between indirect excitons

_

_

+

+

h

e

indirect excitons are oriented dipoles

Dipole-dipole repulsive interactionstabilizes exciton state against formation of metallic electron-hole droplets

results in effective screening of in-plane disorderA.L. Ivanov, EPL 59, 586 (2002)R. Zimmermann

D. Yoshioka, A.H. MacDonald, J. Phys. Soc. Jpn. 59, 4211 (1990)X. Zhu, P.B. Littlewood, M. Hybertsen, T. Rice, PRL 74, 1633 (1995)

the ground state of the system is excitonic

1.54 1.55 1.56 1.57

PL In

tens

ity

Wex=4 W/cm2

Wex=0.5 W/cm2

Energy (eV)

energy shift: δE ~ 4πne2d/ε → estimate for exciton densityapproximation for short-range 1/r3 interaction

Repulsive interaction in experiment: Exciton energy increases with densityL.V. Butov, A. Zrenner, G. Bohm, G. Weimann, J. de Physique 3, 167 (1993).

C. Schindler, R. Zimmermann, arXiv:0802.3337 [PRB 78, 045313 (2008)]→ density is higher

presentation byLeonidas Mouchliadis

Page 9: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

What is observed when the gas of indirect excitons is cooled ?

Page 10: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Enhancement of exciton scattering rate to low energy statesL.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, A.C. Gossard, PRL 86, 5608 (2001)

Phenomena observed in cold gases of indirect excitons

2 34 5 6

0

4

8

12

0.02

0.04

0.06

0.08

0.10

0.12

Magnetic Field ( T)

τ- 1 ( ns-1

)

Temperature (K)2 3 4 5 6

0

4

812

0.000

0.005

0.010

0.015

0.020

Magnetic Field (T)

τ r-1 ( n

s-1)

Temperature (K)

50 100 150

Modulation of exciton density in ring, formation of ordered exciton stateL.V. Butov, A.C. Gossard, D.S. Chemla, cond-mat/0204482 [Nature 418, 751 (2002)]

800.4 801.0 801.6

Enhancement of the exciton coherence length, beyond classical valueSen Yang, A. Hammack, M.M. Fogler, L.V. Butov, A.C. Gossard, cond-mat/0606683 [PRL 97, 187402 (2006)].

Enhancement of exciton radiative decay, mobility, emission fluctuationL.V. Butov, A. Zrenner, G. Bohm, G. Weimann, J. de Physique 3, 167 (1993); L.V. Butov, A. Zrenner, G. Abstreiter, G. Bohm, G. Weimann, PRL 73, 304 (1994); L.V. Butov, A.I. Filin, PRB 58, 1980 (1998).

Narrowing of exciton emission linewidthT. Fukuzawa, E.E. Mendez, J.M. Hong, PRL 64, 3066 (1990); J.A. Kash, M. Zachau, E.E. Mendez, J.M. Hong, T. Fukuzawa, PRL 66, 2247 (1991).

Appearance of narrow line(s) in PLA.V. Larionov, V.B. Timofeev, P.A. Ni, S.V. Dubonos, I. Hvam, K. Soerensen JETP Letters, 75, 570 (2002).

Enhancement of polarization degree A.V. Larionov, V.B. Timofeev, J. Hvam, K. Soerensen, JETP 90, 1093 (2000).

before this conference

Page 11: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

anticipated phenomenon in the cold exciton gas - exciton BEC

http://physics.ucsd.edu/~lvbutov/ maintained by Aaron Hammack

experimental evidence for phenomena expected for exciton BEC are observed below TdB

enhancement of exciton

consistent with onset ofradiative decay rate superradiance

mobility superfluidity

scattering rate with stimulatedincreasing density scattering

coherence length coherence

Butov et al. PRL 73, 304 (1994) PRB 58, 1980 (1998) PRL 86, 5608 (2001)Sen Yang et al.PRL 97, 187402 (2006)

expected specific properties of exciton BEC:● macroscopic occupation of one state

● macroscopic phase coherence

● exciton superfluidity● bosonic stimulation of exciton scattering

experiment:measurement of the state occupations by spatially and angularly resolved PLexciton condensate superradiance (macroscopic dipole) interference of condensates coherence of emitted light

exciton transport

exciton kinetics

23

45 6

0

4

8

12

0.02

0.04

0.06

0.08

0.10

0.12

Magnetic F ield (T )

τ- 1 (

n s-1)

Temperature (K)

50 100 150

800.4 801.0 801.6

2 3 4 5 6

0

4

812

0.000

0.005

0.010

0.015

0.020

Magnetic Field (T)

τ r- 1 (n

s-1)

Temperature (K)

Page 12: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

_

_

+

+

h

e

recombination of excitons tunneling of electrons?

for both: exciton in the initial state, no exciton in the final state

coupled electron and hole layers electron-electron bilayers in high magnetic fields at ν =1

J.P. Eisenstein, A.H. MacDonald, Nature 432, 691 (2004)

2 3 4 5 6

0

4

812

0.000

0.005

0.010

0.015

0.020

Magnetic Field (T)

τ r- 1 ( n

s-1)

Temperature (K)

enhancement of radiative decay rate of excitons

particle-hole transformation1 2 1 2 1 2 1 2

collective electron state exciton condensatee e e hν ν ν ν= + = ⇒ = + =

I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, PRL 84, 5808 (2000)

L.V. Butov, A.I. Filin,PRB 58, 1980 (1998)

collective electron state in QH bilayers at ν=1J.P. Eisenstein, G.S. Boebinger, L.N. Pfeiffer, K.W. West, S. He, PRL 68, 1383 (1992)

enhancement of tunneling rate of electrons

particle –hole transformation implies similarity

exciton superradiance(ξ < λ )

1 2~rτ ξ−

Page 13: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

new phenomena which were not anticipated

spatially localized exciton cloud

Butov et al. Nature 417, 47 (2002)

exciton ringsmacroscopically ordered exciton state

Butov et al. Nature, 418, 751 (2002)

pattern formation

Page 14: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

new phenomena which were not anticipated

spatially localized exciton cloud (LBS)

Butov et al. Nature 417, 47 (2002)

pattern formation

800.4 801.0 801.6

spontaneous coherenceSen Yang et al.PRL 97, 187402 (2006)arXiv:0804.2686v1

1.24 1.26 1.28

0.02

0.03ν = 5

Gate Voltage (V)

ν = 6

presentation bySen Yang

commensurability of exciton density wave

kinetics of inner ring kinetics of external ring & LBS rings

presentation byAaron Hammack

presentation bySen Yang

presentation bySen Yang

exciton ringsmacroscopically ordered exciton state

Butov et al. Nature, 418, 751 (2002)

Page 15: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Trapping and control of cold exciton gasesoptical traps for excitons

A. Hammack et al.PRL 96, 227402 (2006)PRB 76, 193308 (2007)

A. High et al.Science 321, 229 (2008)

excitonic devicesA. High et al.arXiv:0804.4886v1

cooling, localization, & interaction

1.563 1.567

180 μeV

presentation byAaron Hammack

electrostatic traps for excitons

presentation byAlex High

presentation byAlex High

presentation byAlex High

spin transport of excitons

J.R. Leonard et al.arXiv:0808.2402v1

Page 16: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

external ring

ring fragmentation localized bright spots

Pattern Formation

same

exciton state with spatial order on macroscopic lengths –

Macroscopically Ordered Exciton State (MOES)

0 100 200 300 400 5000

0 20 400

400

800

Posi

tion

on th

e rin

g (μ

m)

Peak number

PL in

tens

ity

position on the ring (μm)

inner ring

L.V. Butov, A.C. Gossard, and D.S. Chemla, cond-mat/0204482 [Nature 418, 751 (2002)]

410 μm

Page 17: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Temperature dependence of ring fragmentation

ring fragmentation into spatially ordered array of beads appears abruptly at low T

T=4.7 K

0 2 4 60Ampl

itude

of t

heFo

urie

r Tra

nsfo

rm

T (K)

T=1.8 K

Page 18: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

low-T phenomenonobserved below a few Kwhere exciton gas is degenerate

high-T phenomenaobserved up to tens of Kwhere exciton gas is classical

their origin is classical

● inner rings ← exciton transport and coolingL.V. Butov, A.C. Gossard, and D.S. Chemla, cond-mat/0204482 [Nature 418, 751 (2002)]A.L. Ivanov, L. Smallwood, A. Hammack, Sen Yang, L.V. Butov, A.C. Gossard, cond-mat/0509097 [EPL 73, 920 (2006)]

● external rings and LBS ← in-plane charge separation L.V. Butov, L.S. Levitov, B.D. Simons, A.V. Mintsev, A.C. Gossard, D.S. Chemla, cond-mat/0308117 [PRL 92, 117404 (2004)]R. Rapaport, G. Chen, D. Snoke, S.H. Simon, L. Pfeiffer, K.West, Y.Liu, S.Denev, cond-mat/0308150 [PRL 92, 117405 (2004)]

observed features in exciton PL pattern ● inner ring● external ring● localized bright spots● MOES

presentation by Sen Yang

presentation by Aaron Hammack

presentation by Sen Yang

high T low T

Page 19: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

external ring is far from hot excitation spotdue to long lifetimes of indirect excitons TX ≈ Tlattice

external ring is the region where the cold and dense exciton gas is created

macroscopically ordered exciton state

localized bright spots have hot cores

no hot spots in the ring

indirect exciton PL direct exciton PL – pattern of hot spots

Page 20: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Coherence

presentation by Sen Yang

Page 21: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Probe of spontaneous coherence (not driven by laser excitation)

left arm

right arm

Spontaneous coherence for the MOES ?far from laser in space and in energy: coherence is spontaneous

experimental method:Mach-Zehnder interferometrywith spatial and spectral resolution

Sen Yang, A. Hammack, M.M. Fogler, L.V. Butov, A.C. Gossard, cond-mat/0606683 [PRL 97, 187402 (2006)].

Page 22: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

2 4 6 8 100

1

2

3

0800.4 801.0 801.6

2 4 6 8 10

0.1

0.2

0.3

0 10 20 300.1

0.2

0.3

Coh

eren

ce L

engt

h (μ

m)

Temperature (K)

Inte

rfer

ence

Vis

ibili

ty

PL C

ontr

ast a

long

the

Rin

g

Temperature (K) Mξ (μm)

a condensate in k-space

Emergence of spontaneous coherence of excitons at low temperatures

2 (1) ( )

~ 1

ikn d re g r

kδ ξ

−= ⋅

⋅∫ kr

ξ ~ 2 μm → spread of the exciton momentum distribution δk ~ 104 cm-1

is much smaller than that for a classical exciton gas 5 1~ 2 ~ 3 10 cm at 2cl Bk mk T T Kδ −× =

an enhancement of the exciton coherence length is observed at temperatures below a few Kelvin

the increase of the coherence length is correlated with the macroscopic spatial ordering of excitons

at T=2 K the exciton coherence length ξ ~ 2 μm strongly exceeds the classical value ~ λdB ~ 0.1 μm

0 100 2000

9.1 K

3.8 K

2.2 K

800 8020

9.1 K3.8 K2.2 K

x (μm)

PL in

tens

ity

Wavelength (nm)

Page 23: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Puzzle of broad linewidth

800 8020

9.1 K3.8 K2.2 K

Wavelength (nm)

Δ ~ 1.2 meV

2

2

~ 2 μm phase-breaking time

~ a few ns

for ~ 10 cm s

D

ξ

τ ξ

=inverse

linewidth~ 1 pscτ

?~ 40 nsrecτ

indirectexcitons in CQW

polaritons in MC

spatial correlation measurementsusing a Michelson interferometer

J. Kasprzak et al., Nature 443, 409 (2006)

Sen Yang et al, cond-mat/0606683 [PRL 97, 187402 (2006)]

broad linewidth for polariton condensate above threshold suggested explanation: due to density fluctuations D.N. Krizhanovskii et al, this conference

I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, PRL 84, 5808 (2000)e-e bilayers

width of tunneling peak Δ > kBT

Page 24: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

2 4 6 8 100

1

2

3

10

Coh

eren

ce L

engt

h (μ

m)

Temperature (K)

1Q

1

DM

@ L. Mouchliadis, A. L. Ivanov, arXiv:0802.4454 [PRB 78, 033306 (2008)]* M.M. Fogler, Sen Yang, A.T. Hammack, L.V. Butov, A.C. Gossard, arXiv:0804.2686 [PRB 78, 035411 (2008)]

NA=sinα

22

1x Q

ξ ξ= +

ξ optical coherence length

ξx exciton coherence length

Effect of finite spatial resolution

01 Abbe limit2Q NA

λπ π

= =

Finite spatial resolution * = k-filtering effect @

spatial resolution

without taking into account spatial resolutiontaking into account spatial resolution

Page 25: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

What we know about the macroscopically ordered exciton state

observed in external ring● on interface between hole-rich area

and electron-rich area

observed in a cold exciton gas● at low temperatures below a few K● in a system of indirect excitons● in the external ring far from hot excitation spot

MOES is a state with:● macroscopic spatial ordering● large coherence length → a condensate in k-space

spread of the exciton momentum distribution is much smaller than that for a classical exciton gas

characterized by repulsive interaction(→ not driven by attractive interaction)

_

_

+

+

h

erepulsive interaction of oriented dipolesSen Yang et al., PRB 75, 033311 (2007)

0 2 4 60

Am

plitu

de o

f the

Four

ier T

rans

form

T (K)not observed for inner ring

Page 26: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

instability requires positive feedback to density variations

instability can result from quantum degeneracy in a cold exciton system due to stimulated kinetics of exciton formation

Theoretical model for MOES consistent with the experimental observations

2

2

2

ee e e h e

hh h e h h

XX X e h X opt

n D n wn n Jt

n D n wn n Jt

n D n wn n nt

τ

∂= ∇ − +

∂∂

= ∇ − +∂

∂= ∇ + −

L.S. Levitov, B.D. Simons, L.V. Butov, PRL 94, 176404 (2005)

22

0~ 1dB x

B

T nmgk TT

Ew N e eπ

=+ = =

Page 27: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Trapping and control of cold exciton gases

● with laser light

● with laterally modulated gate voltage

Excitonic devices

presentation byAaron Hammack

methods which allow fast controlon timescale much shorter than exciton lifetime

Page 28: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Laser induced traps for excitons

100 μm

x

E

laser laser

trap ● can be switched on and off● no heating in the trap center→ excitons are cold in the trap

● ability to form various potential patterns

low density

high density

A. Hammack, M. Griswold, L.V. Butov, A.L. Ivanov, L. Smallwood, A.C. Gossard, cond-mat/0603597 [PRL 96, 227402 (2006)]

experimentalimplementationof this idea

trap profile

Page 29: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Exciton collection to the laser induced trap

Vg = -1.2 VPex = 75 µW

δ = 4 ns

x

y50

(ns)

Page 30: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

experiment theory

PL in excitation ringPL at trap center

observed hierarchy of times (exciton cooling time) < (trap loading time) < (exciton lifetime in the trap)

is favorable for creating a dense and cold exciton gas in the traps and its control in situ

τlifetime ~ 50 ns – 10 μsτloading ~ 40 nsΤcooling to 1.5 K < 4 ns

A. Hammack, L.V. Butov, L. Mouchliadis, A. L. Ivanov A.C. Gossard, PRB 76, 193308 (2007)

Page 31: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Trapping and control of cold exciton gases

● with laser light

● with laterally modulated gate voltage

Excitonic devicespresentation byAlex High

methods which allow fast controlon timescale much shorter than exciton lifetime

Page 32: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

potential energy of indirect excitons can be controlled by an applied gate voltage

the ability to control electron fluxes by an applied gate voltage

electronic devices mesoscopicsthe field which concerns electron transport in a potential relief

virtually any in-plane potential reliefcan be created for excitons by the appropriately designed voltage pattern, e.g. traps, quantum point contacts, lattices

this relief can be rapidly controlled in-situby varying the electrode voltages zE eF dδ =

the ability to control exciton fluxes by an applied gate voltage

excitonic devices mesoscopics of bosons in semiconductors

Page 33: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

no exciton dissociation

r ex exeF a E<<

CQW far from top gate reducesin plane field, Fr

First electrostatic traps for indirect excitonsS. Zimmermann, A. Govorov, W. Hansen, J. Kotthaus, M. Bichler, W. Wegscheider, PRB 56, 13414 (1997)T. Huber, A. Zrenner, W. Wegscheider, M Bichler. Phys. Stat. Sol. (a) 166, R5 (1998)

Experimental obstacle in early works → in-plane electric field dissociated excitons

Solution: to position CQW layers closer to the homogeneous bottom electrode1999 – calculations2005 – experimentA.T. Hammack, N.A. Gippius, Sen Yang, G.O. Andreev, L.V. Butov, M. Hanson, A.C. Gossard, cond-mat/0504045 [JAP 99, 066104 (2006)]

dissociation rate vs Fr

D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, PRB 32, 1043 (1985)

Page 34: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

A.G. Winbow, A.T. Hammack, L.V. Butov, and A.C. Gossard, Nano Letters 7, 1349 (2007)A.G. Winbow, L.V. Butov, and A.C. Gossard, arXiv:0807.4920v1

prototype of storage device reaches sub-ns switching time and several μs storage time

Photon storage

store photons in the form of indirect excitons

storage and release of photons is controlled by gate voltage pulses

Page 35: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

source

draingate

ONOFF5 μm

Exciton Optoelectronic Transistor (EXOT)

photon input photon outputelectronic control

prototype of EXOT reaches a contrast ratio > 30 between ON and OFF state with operation at speeds > 1 GHz

7.0 7.50

τ~160 psτ90/10~400 ps

Time (ns)x

exciton flow is on

exciton flow is off

Gate

QWs

n

i

photonicsource

photonicdrain

opticalinputgate

opticaloutputgate

Exci

ton

ener

gy

energy bump controlled by the Gate

similar in geometry and operation to electronic FET

0

1

0 20Distance (μm)

Inte

nsity

ON

OFF

A.A. High, A.T. Hammack, L.V. Butov, M. Hanson, A.C. Gossard, Opt. Lett. 32, 2466 (2007)A.A. High, E.E. Novitskaya, L.V. Butov, M. Hanson, A.C. Gossard, Science 321, 229 (2008)

Page 36: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

excitons in the trap

10 μm1

2 3

g1

g2 g3

4image of gates

excitonic circuits perform operations on excitons that can be also viewed as operations on photons using excitons as intermediate media

both paths openleft path openright path open

two paths open one path openthree paths open

Poutput=Pleft+PrightPoutput=PrightPoutput=Pleft

Directional SwitchFlux of excitons photoexcited at is directed by gate control.

Star SwitchFlux of excitons photoexcited at is directed by gate control.

Flux mergerTwo fluxes of excitons photoexcited at are combined by gate control. The device can implement sum operation and logic AND gate with 1 set at Poutput=Pleft+Prightand 0 at Poutput<Pleft+Pright

Control of Exciton Fluxes. Excitonic circuits.

0 20

left+rightleftright

left onright onleft offright off

l, μm

Inte

nsity

directional switch

flux merger

0

1

0

1

0

1

A.A. High, E.E. Novitskaya, L.V. Butov, M. Hanson,A.C. Gossard, Science 321, 229 (2008)

Page 37: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Application of electrostatic traps formed by laterally modulated gate voltage

● cooling

● localization

● interactionpresentation byAlex High

Page 38: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Elevated trap cooling

Photoexcited hot excitons lose kinetic energy as they travel up potential energy hill → cooling of excitons

Trap at potential energy that is higher than potential energy at excitation

E

x

laser laser

Evaporative coolingExcitons with higher energy easier escape trap. This increases relative occupation of lower energy states → cooling of exciton gas

A.T. Hammack, N.A. Gippius, Sen Yang, G.O. Andreev, L.V. Butov, M. Hanson, A.C. Gossard, cond-mat/0504045 [JAP 99, 066104 (2006)]

Cooling excitons beyond temperature, which can be reached by phonon cooling

somehow similar to Sisyphus cooling used to cool atoms below the Doppler limit

0 50 1000.1

1

Time (ns)

T (K

) ~ 100 phononT mK

~ 3dBT K<<

Page 39: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

1.548 1.552

1.564 1.568

1.563 1.567

12

34

e

h

s1

s2 s3

g1

g2 g3

t

10 μm

Energy (eV)

PL In

tens

ity-5 0

1.52

1.56

Ener

gy (e

V)

Electrode Voltage (V)

yx

real trap

elevated trap

Using elevated trap for studying individual exciton states in disorder potentialdisorder is an intrinsic feature of CM materials

in-plane disorder potential in QWs forms mainly due to QW width and alloy fluctuations

emission of individual exciton states localizedin local minima of disorder potential (2-4)and delocalized exciton states (1)

E

xintermediate regime

180 μeV

0

1

Et - Eg (meV)

I 2/I 1

sharp lines emerge at the transition from the real trap to elevated trap

elevated trap technique

( )introduce effective temperature

~ expdeloc loc B

T

n n k Tδ ε= −

( )'cooling efficiency'

1 1 lnnorm elev

elev norm BT T k

γ δ δ

ε γ

=

= +

1 1 1

estimate: rate equations1 , +

is small for DX can be large for IX

esc loc optγ τ τ τ τ τ

γγ

− − −

= + =

-10 0 10 200

1

real trap elevated

trap

real trap elevated trap

t surr

t surr

E EE E

<

>

experiment: ~ 10; ~ 10 ;

~ 3 ~ 1.8B

norm elev

k K

T K T K

γ ε

A.A. High, A. T. Hammack, L.V. Butov, L. Mouchliadis, A. L. Ivanov, M. Hanson, and A.C. Gossard, arXiv:0804.4886v1

Page 40: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

0 100.0

2.5

-0.7 -0.51.560

1.5671.562 1.567 1.562 1.568

Inte

nsity

(arb

. uni

ts)

Temperature (K)

I 2/I1

Ene

rgy

(eV)

Trap voltage (V)

4

321

4 3 2

Energy (eV)

1

Inte

nsity

(arb

. uni

ts)

2.7K

4.5K

5.1K

7.0K

T=10K

1x

2x

2x

2x

2xVt= -.70V

-.65V

-.60V

-.55V

-.50V

2 1

Energy (eV)relative intensity of lines 2-4 in the elevated trap regime reduces with increasing Tbath

nominal10.7 d nm d≈ ≈

zE eF dδ =

Page 41: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

0

600

1200

1800

sum

hom

inhom

0.0 0.5 1.00

100

200

sum

elastic

inelastic

1.562 1.569

1234

1140 μW

470 μW

150 μW

36 μW

9.1 μW

1.65 μW 450x

60x

38x

9x

2x

1x

200

800

1400

1.565

1.566

1.567

100 101 102 103

102

103

104

105

108 7x1092x109

FWHM

(μeV

)

8 μm

1.562 1.569

yE

Pex (μW)Energy (eV)Energy (eV)

PL

Inte

nsity

Ener

gy (e

V)

n (cm-2)

200

800

1400

n (1010 cm-2)

FWHM

(μeV

)FW

HM (μ

eV)

FWHM

(μeV

)

loc

deloc

deloc

loc

(1) Energy increases due to repulsive ex-ex interaction.

(2) Intensity saturates: no more than one exciton can occupy potential minimum due to dipole blockade

(3) Disorder potential is effectively screened due to ex-ex interaction.

(4) Homogeneous broadening due to ex-ex interaction increases with density and dominates thelinewidth at high densities.

(5) Homogeneous broadening is lower for localized excitons. Localization suppresses scattering.

Density dependence

(1)

(2)

(3)

(4)

(5)

exp theory

Page 42: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

3 μm circle trap 20 μm circle trapCircle Trap

•single electrode trap•potential parabolic for small radii (<3μm)•potential box-shaped for large radii

Concentric Rings Trap

•Multiple electrodes allow versatile shaping of radially symmetric potential profile

Diamond-shaped traps

Diamond-Shaped Trap•Single electrode creates parabolic trapping potential even for large lengths •can collect many excitons to the trap center•can be operated by a single electrode

20 μm diamond trap

Conical Trap Elevated Trap

Hammack et al., J. Appl. Phys. 99, 066104 (2006).

D

D

Distance from trap center (μm)

Page 43: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Distance from trap center (μm)

Ener

gy (m

eV)

low density high densityx (μm)

Elevated Diamond Trap: Density Dependence

Page 44: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Exciton spin transport

J.R. Leonard, Sen Yang, L.V. Butov, A.C. Gossard, arXiv:0808.2451v1

he

S z

23

,21

1

−+

−=

he

S z

23,

21

1

+−

+=

he

S z

23

,21

2

++

+=

he

S z

23

,21

2

−−

−=

τex

τh

τeτe

+σ−σ

τr τr

<P>

(%)

10

0

0 5 10

<τp>

(ns)

0

5

Tbath (K)

10Tbath (K)

0

10

c

τex is short for direct excitons → fast spin relaxation

due to small exchange interactionτex is much larger for IX

long spin relaxation time for IX

+ long-range transport of IX

spin transport of IX

τp is large

τp drops with T

1000Pex (μW)

0.5

0

<P>

(%)

1 10 100 1000Pex (μW)

10

30 a

<τp>

(ns)

0

5

15

1 10 100nr=0 (109/cm2)

b

r clo

ud(μ

m)

0

10

20

1 10 100

c

P HW

HM (%

)

0

10

30

0 10 20rcloud (μm)

0 10 20rcloud (μm)

1

P HW

HM/ P

max e

d

10

20

20

τp drops with n

ltravel increases with n

polarization is observedup to several μm away from the excitation spot

↨spin transport of excitons

( ) 11 1

emission polarization

polarization relaxation time

2

1

p

p r

p e h ex

p r

P

PP

ττ τ

τ τ τ τ

τ τ

−− −

=+

= + +

=−dark states

optically active states

Page 45: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Status of experiments on cold excitons in CQW nanostructures

● Cold exciton gases with T << TdB were realized experimentally

● Experimental evidence for phenomena expected for exciton BEC was observed below TdB :

● A new low-temperature state – the macroscopically ordered exciton state was observed

enhancement of exciton

consistent with onset of

● radiative decay rate superradiance

● mobility superfluidity

● scattering rate with stimulated increasing density scattering

● coherence length spontaneous coherence

PRL 73, 304 (1994) PRB 58, 1980 (1998)

PRL 97, 187402 (2006)

Nature 418, 751 (2002)

23

4 56

0

4

8

12

0.02

0. 04

0. 06

0 .08

0 .10

0.12

Ma g

net ic Fi eld (T)

τ-1 (n

s-1)

Te mp era ture (K)

23

45

6

0

4

812

0.000

0.005

0.010

0.015

0. 020

Mag net ic F

i eld (T)

τ r-1 ( ns- 1 )

Tempe rat ure (K)

50 100 150

800.4 801.0 801.6

PRL 86, 5608 (2001)

Page 46: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Status of control of excitons● Trapping of excitons in laser induced traps was demonstratedObserved hierarchy of times is favorable for in situ control of cold exciton gases

● Excitonic storage device was demonstratedPrototype reaches ns switching time and several μs storage time

● Exciton optoelectronic transistor (EXOT) was demonstratedPrototype performs switching with contrast ratio > 100 between ON and OFF state with operation at speeds > 1 GHz.

● Simple excitonic integrated circuits (EXIC) were demonstratedPrototype performs operations with exciton fluxes such as directional switching and merging

For building devices operating with excitons in place of electronsThe direct coupling of the photons, used in communication, to excitons, used as the device operation media, may lead to the development of efficient optoelectronic devices that utilize excitons

For studying physics of cold excitons –cold bosons in CM materials

Possible future applications for control of excitons

cooling loading recτ τ τ<< <<

ONOFF

Application: Traps were used for studying individual exciton states in disorder potential

Nano Lett. 7, 1349 (2007)

PRL 96, 227402 (2006)PRB 76, 193308 (2007)

1.563 1.567

Science 321, 229 (2008)

arXiv:0804.4886v1

Page 47: Cold exciton gases in coupled quantum wells · Michael Fogler, Martin Griswold, Aaron Hammack, Alex High, Jason Leonard, Ekaterina Novitskaya, Averi Thomas, Alex Winbow, Sen Yang

Acknowledgements

supported by ARO, NSF, DOE

UCSD Group:Aaron Hammack Alex HighJason Leonard Mikas RemeikaAlex WinbowSen YangMartin GriswoldJames LohnerKatya NovitskayaAveri ThomasJoe Graves

Visiting scientists:Nikolai GippiusAnton Mintsev

Collaborators:Gerhard Abstreiter, WSI, GermanyDaniel Chemla, UCB&LBNLValerii Dolgopolov, ISSP RASAlexander Dzyubenko, CSBMichael Fogler, UCSDArthur Gossard, UCSBAtac Imamoglu, UCSBAlexei Ivanov, Cardiff University, UKLeonid Levitov, MITPeter Littlewood, Cambridge, UKYuri Lozovik, IS RASBen Simons, Cambridge, UKArthur Zrenner, WSI, Germany