compact superconducting cavities for deflecting and...

37
Page 1 Subashini De Silva Center for Accelerator Science Department of Physics, Old Dominion University and Thomas Jefferson National Accelerator Facility COMPACT SUPERCONDUCTING CRABBING AND DEFLECTING CAVITIES LINAC 2012, Tel-Aviv, Israel 9-14 September, 2012

Upload: others

Post on 05-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 1

Subashini De Silva

Center for Accelerator Science

Department of Physics, Old Dominion University

and

Thomas Jefferson National Accelerator Facility

COMPACT SUPERCONDUCTING

CRABBING AND DEFLECTING

CAVITIES

LINAC 2012, Tel-Aviv, Israel 9-14 September, 2012

Page 2: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 2

Introduction

• New geometries for compact superconducting crabbing

and deflecting cavities have been developed

• They have significantly improved properties over those

of the standard TM110–type cavities

– They are smaller

– Have low surface fields

– High shunt impedance

– Some of the designs have no lower-order-mode with a well-

separated fundamental mode

Page 3: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 3

Crabbing/Deflecting Cavity Applications

• Luminosity management in linear or circular colliders

• Separation or merge of multiple beams

• Emittance exchange in beams

• X-ray pulse compression

• Beam diagnostics

Page 4: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 4

The 1st Superconducting RF Deflecting Cavity

2.865 GHz Karlsruhe/CERN RF Separator*

• Designed 1970, operated 1977-1981

• 104 cells

• At IHEP since 1998

• Operating mode: bi-periodic TM110 mode

Assembly

into

cryostat

* A. Citron et al., NIM 164, 31-55, (1979)

Page 5: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 5

The 1st Superconducting Crabbing Cavity

• Operating mode: TM110 mode

• Required transverse deflection:

1.44 MV

• Operation: 2007-2010

Frequency 508.9 MHz

LOM 410.0 MHz

Nearest HOMs 630.0, 650.0, 680.0 MHz

Ep* 4.24 MV/m

Bp* 12.23 mT

Bp*/Ep

* 2.88 mT/(MV/m)

[R/Q]T 48.9 Ω

Geometrical

Factor (G) 227.0 Ω

RTRS 1.11×104 Ω2

At ET* = 1 MV/m

Complex HOM Damping Scheme *K. Hosoyama et al, “Crab Cavity for KEKB”,

Proc. of the 7th Workshop on RF

Superconductivity, p.547 (1998)

KEK Crabbing Cavity*

Beam

E

E

B

Page 6: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 6

Potential Applications of Compact Superconducting

Deflecting/Crabbing Cavities

42 mm <150 mm

194 mm

R = 20 mm 300 mm

5th Pass

Beam

Line

4th Pass

Beam Line

450 mm

680 mm

499 MHz Deflecting Cavity for

Jefferson Lab 12 GeV Upgrade

400 MHz Crabbing Cavity for

LHC High Luminosity Upgrade

Deflecting Cavity

for Project–X*

For Muon Pulses

For Kaon Pulses

For Nuclear Pulses

• Bunch frequency (f0) = 162.5 MHz

• Deflecting cavity frequency = f0×(m±1/4)

• Frequency options:

– m=2 f0×(m+1/4) = 365.625 MHz

– m=3 f0×(m-1/4) = 446.875 MHz

*V. Yakovlev and M. Champion, “A Beam Splitter for the

Project-X”, LHC-CC11, (2011)

• Requires a crabbing

system at two interaction

points (IP1 and IP5)

– Vertical crossing at IP1

– Horizontal crossing at IP5

Page 7: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 7

How To Achieve Compact Designs

• Karlsruhe/CERN deflector and KEK crabbing cavity used

magnetic field

– Operating in TM110 mode which is not the lowest mode

• Current compact designs use electric field or both

electric and magnetic fields

– TEM-like designs

– TE-like designs

• Compact superconducting crabbing/deflecting cavity

designs

– University of Lancaster / Jefferson Lab – 4-Rod Cavity

– BNL – Quarter Wave Cavity

– ODU/SLAC – Parallel-Bar Cavity and RF-Dipole Cavity

Page 8: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 8

4-Rod Cavity

• Operates in a TEM-like mode

– Uses both electric field and

magnetic field

– Deflecting mode is not the lowest

mode

+

+ -

-

+ +

- -

+

+

-

-

+

+ +

+

Fundamental deflecting mode

Accelerating lower order mode

• 499 MHz normal conducting rf

separator* at Jefferson Lab

• High shunt impedance

*C. Leemann and C.G. Yao,

“A Highly Effective Deflecting Structure”,

Proc. of the 1990 LINAC, p.232-234, (1991)

Magnetic field

29.2 cm

Beam

Page 9: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 9

4-Rod Cavity (U. Lancaster/Jefferson Lab)

• 400 MHz superconducting 4-rod cavity*

• Rod shaping

– To reduce surface electric and magnetic fields

– To reduce offset field non-uniformities

8.4 cm

*B. Hall, “LHC-4R Crab Cavity”,

EUCARD SRF Annual Review, March 2012

Page 10: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 10

Lower and Higher Order Modes of the 4-Rod Cavity

0.001

0.01

0.1

1

10

100

1000

0 0.5 1 1.5 2

R/Q

(O

hm

s)

Frequency (GHz)

Horizontal

Vertical

Monopole

3p/4 Higher Order Monopole Mode 3p/4 Higher Order Dipole Mode

Lower Order Monopole Mode – 374.9 MHz

Page 11: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 11

4-Rod Cavity Properties

Surface Magnetic Field

Surface Electric Field

Frequency 400.0 MHz

LOM 375.2 MHz

Nearest HOMs 436.6, 452.1 MHz

Ep* 4.0 MV/m

Bp* 7.56 mT

Bp*/Ep

* 1.89 mT/(MV/m)

[R/Q]T 915.0 Ω

Geometrical

Factor (G) 70.35 Ω

RTRS 6.4×104 Ω2

At ET* = 1 MV/m

Page 12: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 12

Quarter-Wave Cavity (BNL)

#Q. Wu et al., “Novel Deflecting Cavity Design for

eRHIC”, Proc. of the15th International Conference

on RF Superconductivity, p.707, (2011)

Magnetic Field

Electric Field

λ/4 ≈ 100 MHz

¼-Wave Cavity*

*E. Haebel, “Superconducting Cavities and

Minimum RF Power Schemes for LHC”,

CERN/EF/RF 84-4

181 MHz ¼-wave cavity

for eRHIC#

400 MHz superconducting asymmetric ¼-wave cavity

• Attractive at low frequencies

• Strong reentrant form makes

the field pattern at the outer

radius predominately TEM

Page 13: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 13

Quarter-Wave Cavity

Asymmetric

Cavity

Symmetric

Cavity

LOM None None MHz

Nearest

HOM 657 582 MHz

Ep* 5.38 4.04 MV/m

Bp* 7.6 7.2 mT

Bp*/Ep

* 1.42 1.77 mT/(MV/m)

[R/Q]T 344.0 401.1 Ω

Geometrical

Factor (G) 131.0 82.4 Ω

RTRS 4.5×104 3.3×104 Ω2

At ET* = 1 MV/m

*R. Calaga et.al., in Proceedings of the 3rd IPAC,

New Orleans, Louisiana (2012), p. 2260.

Page 14: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 14

Higher Order Modes of the ¼-Wave Cavity

• No Lower Order Modes

• Hybrid modes with both deflection and

acceleration

*R. Calaga et.al., in Proceedings of the 3rd IPAC,

New Orleans, Louisiana (2012), p. 2260.

Page 15: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 15

Parallel-Bar Cavity to RF-Dipole Cavity (ODU)

E Field Surface E Field H Field Surface H Field

499 MHz Deflecting Cavity*

*J.R. Delayen, S.U. De Silva, “Designs of Superconducting Parallel-Bar Deflecting Cavities for Deflecting/Crabbing Applications”, Proc.

of the15th International Conference on RF Superconductivity, p.219, (2011)

TEM-type

mode

TE-like

mode

Page 16: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 16

Design Evolution of the 499 MHz Deflecting Cavity

• To increase mode separation

between fundamental modes

• ~18 MHz ~ 130 MHz

• To improve design rigidity Less

susceptible to mechanical vibrations

and deformations

• To lower peak magnetic field

• Reduced peak magnetic field by

~20%

π mode

0 mode

Page 17: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 17

Design Evolution of the 499 MHz Deflecting Cavity

• To remove higher order modes with

field distributions between the cavity

outer surface and bar outer surface

• Eliminate multipacting conditions

• To lower peak magnetic field

• Reduced peak magnetic field by

~25%

• To achieve balanced peak surface

fields

• BP/EP ≈ 1.5 mT/(MV/m)

Balanced Peak Fields

2.0 mT/(MV/m)P

P

B

E

Page 18: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 18

Ridged Waveguide Cavity (SLAC)

*Z. Li and L. Ge, “Compact Crab Cavity Design and

Modeling Using Parallel Code ACE3P”, LHC-CC11, (2011)

E Field H Field

Frequency 400.0 MHz

LOM None MHz

Nearest HOM 617.0 MHz

Ep* 3.38 MV/m

Bp* 7.05 mT

Bp*/Ep

* 2.09 mT/(MV/m)

[R/Q]T 330.0 Ω

At ET* = 1 MV/m

• 400 MHz Crabbing Cavity*

• Operating at a TE11-like mode

25 cm

27 cm

8.4 cm

Page 19: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 19

Characteristics of the RF-Dipole Cavity

• Properties depend on a few parameters

– Frequency determined by diameter of the cavity design

– Bar Length ~λ/2

– Bar height and aperture determine EP and BP

– Angle determines BP/EP

• RF-Dipole design has

– Low surface fields and high shunt impedance

– Good balance between peak surface electric and magnetic field

– No LOMs

– Nearest HOM is widely separated ( ~ 1.5 fundamental mode)

– Good uniformity of deflecting field due to high degree symmetry

Page 20: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 20

Optimization of Bar Shape of the RF-Dipole Cavity

θ

Bar Height

499 MHz

Deflecting

Cavity

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

2.5 2.7 2.9 3.1 3.3 3.5

Bp /

Et

(mT

/(M

V/m

))

Ep / Et

50 mm

60 mm

70 mm

80 mm

90 mm

100 mm

110 mm

120 mm

Bar Height =

Bp / Ep = 1.5 mT/(MV/m)

Bp / Ep = 1.75 mT/(MV/m)

Bp / Ep = 2.0 mT/(MV/m)

Bp / Ep = 2.2 mT/(MV/m)

Page 21: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 21

RF-Dipole Cavity Designs

Frequency 499.0 400.0 750.0 MHz

Aperture

Diameter (d) 40.0 84.0 60.0 mm

d/(λ/2) 0.133 0.224 0.3

LOM None None None MHz

Nearest HOM 777.0 589.5 1062.5 MHz

Ep* 2.86 3.9 4.29 MV/m

Bp* 4.38 7.13 9.3 mT

Bp*/Ep

* 1.53 1.83 2.16 mT/

(MV/m)

[R/Q]T 982.5 287.2 125.0 Ω

Geometrical

Factor (G) 105.9 138.7 136.0 Ω

RTRS 1.0×105 4.0×104 1.7×104 Ω2

At ET* = 1 MV/m

750 MHz Crabbing Cavity

for MEIC at Jefferson Lab*

499 MHz Deflecting Cavity for

Jefferson Lab 12 GeV Upgrade

400 MHz Crabbing Cavity for

LHC High Luminosity Upgrade

24 cm

44 cm

34 cm

53 cm

19 cm

35 cm

*A. Castilla et.al., in Proceedings of the 3rd IPAC,

New Orleans, Louisiana (2012), p. 2447.

Page 22: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 22

RF-Dipole Square Cavity Options

• Square-type rf-dipole cavity to further reduce the transverse

dimensions

• Frequency is adjusted by curving radius of the edges

• RF-dipole cavity with modified curved loading elements across the

beam aperture to reduce field non-uniformity

Height and

Width

< 145 mm

Page 23: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 23

HOM Properties of the RF-Dipole Cavity

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0 500 1000 1500 2000

R/Q

)

Frequency (MHz)

Vx Vy Vacc

• Widely separated Higher Order Modes

• No Lower Order Modes

E field

E field

H field

H field

499 MHz Deflecting Cavity

Page 24: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 24

LOM and HOM Damping

4-Rod Cavity* ¼-Wave Cavity* RF-Dipole Cavity*

Input

Coupler

HOM

Coupler

HOM

Coupler

LOM

Coupler

Coaxial two-stage

high-pass filter coupler

Input

Coupler

Magnetic loop-type

HOM couplers

*Presented at LARP CM 18 / HiLumi LHC Meeting,

Fermilab, May 2012

Page 25: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 25

Multipacting Analysis

4-Rod Cavity* ¼-Wave Cavity* RF-Dipole Cavity*

*Presented at LARP CM 18 / HiLumi LHC Meeting,

Fermilab, May 2012

• Soft multipactor barriers were

found in the cavity above 0.5 MV

• No Hard barriers were found

• Multipacting on the beam pipe

was found on the beam pipe at

~1.6MV

Resonant Particles Distribution at 0.6MV

SEY >1

Peak

SEY

Page 26: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 26

Field Non-Uniformity

• Shaped rods

– To reduce filed non-uniformity across the beam aperture

– Suppress higher order multipole components

4-Rod Cavity

• Voltage deviation at 20 mm – Horizontal: 6.2 % 1.5%

– Vertical: 25.3% 0.6%

RF-Dipole Cavity

• Voltage deviation at 20 mm – Horizontal: 5.0% 0.2%

– Vertical: 5.5% 2.4%

(A) (B) (A) (B)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10 12 14 16 18 20

δV

T /

VT

Offset (mm)

Design (A) in x

Design (B) in x

Design (A) in y

Design (B) in y

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10 12 14 16 18 20

δV

T /

VT

Offset (mm)

Design (A) in x

Design (B) in x

Design (A) in y

Design (B) in y

Page 27: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 27

400 MHz 4-Rod Cavity Fabrication

Page 28: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 28

499 MHz RF-Dipole Cavity Fabrication

Page 29: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 29

400 MHz RF-Dipole Cavity Fabrication

Page 30: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 30

Summary

KEK

Crabbing

Cavity

RF-Dipole

Cavity

RF-Dipole

Cavity

4-Rod

Cavity

Asymmetric

¼-Wave

Cavity

Symmetric

¼-Wave

Cavity

Units

Frequency 508.9 499.0 400.0 400.0 400.0 400.0 MHz

Aperture Diameter (d) 100.0 40.0 84.0 84.0 84.0 84.0 mm

d/(λ/2) 0.34 0.13 0.22 0.22 0.22 0.22

LOM 410.0 None None 375.2 None None MHz

Nearest HOM 630.0 777.0 589.5 436.6 657.0 577.8 MHz

Ep* 4.24 2.86 3.9 4.0 5.38 4.04 MV/m

Bp* 12.23 4.38 7.13 7.56 7.6 7.2 mT

Bp*/Ep

* 2.88 1.53 1.83 1.89 1.42 1.77 mT/(MV/m)

[R/Q]T 48.9 982.5 287.2 915.0 344.0 401.1 Ω

Geometrical Factor (G) 227.0 105.9 138.7 70.35 131.0 82.4 Ω

RTRS 1.1×104 1.0×105 4.0×104 6.4×104 4.5×104 3.3×104 Ω2

At ET* = 1 MV/m

Page 31: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 31

Summary

• The development of compact deflecting/crabbing cavities

was in response to the strict dimensional requirements in

some current applications

• All these compact designs have attractive properties in

meeting the requirements

– Low and balanced surface fields

– High shunt impedance

– Some of the designs have no lower-order-mode with a well-

separated fundamental mode

• HOM damping, multipacting and mechanical analysis have

been addressed

• Most of the compact designs are currently being fabricated

and prototype testing is underway

Page 32: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 32

• The work done at ODU is towards my PhD carried out under the

supervision of Dr. Jean Delayen

ACKNOWLEDGEMENTS

• Jefferson Lab

– HyeKyoung Park

• ODU

– Alejandro Castilla

• SLAC

– Zenghai Li, Lixin Ge

• Niowave

– Dmitry Gorelov, Terry Grimm

• CERN

– Rama Calaga

• University of Lancaster

– Graeme Burt, Ben Hall

• BNL

– Ilan Ben-Zvi, Qiong Wu

THANK YOU

Page 33: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 33

Mechanical Analysis

497.84E+06

497.86E+06

497.88E+06

497.90E+06

497.92E+06

497.94E+06

497.96E+06

497.98E+06

498.00E+06

498.02E+06

498.04E+06

0 20000 40000 60000 80000 100000 120000

Fre

qu

ency

(H

z)

External Pressure (Pa)

Baseline Cavity (No stiffeners)

Pressure sensitivity -

212 Hz/torr

4-Rod Cavity* ¼-Wave Cavity* RF-Dipole Cavity*

Cap

Bar

OC

Slope

Page 34: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 34

Beam Aperture Dependence

2.5

3.0

3.5

4.0

4.5

5.0

5.5

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

EP/E

T

Beam aperture radius (mm)

40 deg

50 deg

60 deg

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

BP/E

T(m

T/(

MV

/m))

Beam aperture radius (mm)

40 deg

50 deg

60 deg

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

BP/E

Pm

T/(

MV

/m)

Beam aperture radius (mm)

40 deg

50 deg

60 deg

100.0

110.0

120.0

130.0

140.0

150.0

160.0

170.0

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Cav

ity

Rad

ius

(mm

)

Beam aperture radius (mm)

40 deg

50 deg

60 deg

At 499 MHz

Page 35: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 35

Beam Aperture Dependence

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

1.4E+03

1.6E+03

1.8E+03

2.0E+03

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

[R/Q

] T(Ω

)

Beam Aperture Radius (mm)

40 deg

50 deg

60 deg

90.0

100.0

110.0

120.0

130.0

140.0

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Geo

met

rica

l F

acto

r (Ω

)

Beam aperture radius (mm)

40 deg

50 deg

60 deg

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

2.0E+05

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

RTR

S(Ω

2)

Beam Aperture Radius (mm)

40 deg

50 deg

60 deg

At 499 MHz

T S S

T

T

RR R QR

Q

RG

Q

Page 36: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 36

Transverse Voltage

• Lorentz Force

• Transverse Voltage experienced by a particle

• Panofsky Wenzel Theorem

[ ]dp

F q E v Bdt

[ ( ) ( ) ]i z

c

T TT

V E z i v B z e dz

0

0

1( , )

/ /

i z

c

T T Z Z

i iV V E r z e dz

c c r

Page 37: COMPACT SUPERCONDUCTING CAVITIES FOR DEFLECTING AND …casa.jlab.org/publications/viewgraphs/conference/De Silva... · 2013. 3. 4. · Page 1 Subashini De Silva Center for Accelerator

Page 37

[R/Q]

• Longitudinal [R/Q]

• Transverse [R/Q]

– Direct Integral Method

– Using Panofsky Wenzel Theorem (x0=5 mm)

2

2 0

0

2 2

0 0

,( ) 1

,

j z

cz

Z

T

E z x x e dzV x xR

Q U kx kx U

2

2 , 0 , 0j z

cx y

TT

T

E z x j B z x e dzVR

Q U U

2

2 , 0j z

cz

Z

E z x e dzVR

Q U U

kc