complex variables - laplace transform z transform

128
Complex Variables Laplace Transform – Z Transform Prof. Nicolas Dobigeon University of Toulouse IRIT/INP-ENSEEIHT http://www.enseeiht.fr/ ~ dobigeon [email protected] Prof. Nicolas Dobigeon Complex variables - LT & ZT 1 / 105

Upload: others

Post on 13-Mar-2022

19 views

Category:

Documents


0 download

TRANSCRIPT

Complex VariablesLaplace Transform – Z Transform

Prof. Nicolas Dobigeon

University of ToulouseIRIT/INP-ENSEEIHT

http://www.enseeiht.fr/[email protected]

Prof. Nicolas Dobigeon Complex variables - LT & ZT 1 / 105

Framework

Organization

I 7 course & exercice sessions (1h45),

I 1 written exam (shared with Vector Analysis)

Bibliography

I Handout ENSEEIHT

I Books

I S. D. Chatterji, Cours d’analyse (vol. 2), Presses Polytechniques etUniversitaires Romandes, 1997

I Spiegel, Variables complexes (cours et problemes), Serie Schaum,McGraw Hill., 1973

Prof. Nicolas Dobigeon Complex variables - LT & ZT 2 / 105

Motivation

Applications

I Analysis and numerical calculus,

I Laplace transformCircuit theory,

I Z transformSampled systems,Digital filtering,Digital signal processing,

Prerequisites

I Usual algebra of complex numbers: properties, geometry associated withthe vector representation,

I Differentiable functions of two real variables,

I curvilinear integrals

Prof. Nicolas Dobigeon Complex variables - LT & ZT 3 / 105

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 4 / 105

Some Generalities

Outline

Some GeneralitiesIntroductionLimits - continuity

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 5 / 105

Some Generalities

Introduction

Outline

Some GeneralitiesIntroductionLimits - continuity

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 6 / 105

Some Generalities

Introduction

Complex plane (z-plane)

Complex plan is the plane equipped with the direct orthonormal basis(O; u, v). La correspondence

R2 → C(x , y) 7→ z = x + iy

is bijective.By a slight abuse of notation, the point M (x , y) and its affix z = x + iycoincide.If z 6= 0, the representation of the complex number z under the formmodulus/argument is written

z = ρe iθ

where ρ = |z | = OM is the modulus z and θ = arg z is a angle measure(u,−→OM

)(in rad) defined modulo 2π, i.e., ±2kπ, k ∈ Z.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 7 / 105

Some Generalities

Introduction

Complex function of the z-variable

For any function f of complex variable

f :

C → C

z = x + iy 7→ f (z) = P(x , y) + iQ(x , y)

we can define a function F :

F :

R2 → R2

(x , y) 7→ F (x , y) = (P(x , y),Q(x , y))

Prof. Nicolas Dobigeon Complex variables - LT & ZT 8 / 105

Some Generalities

Limits - continuity

Outline

Some GeneralitiesIntroductionLimits - continuity

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 9 / 105

Some Generalities

Limits - continuity

Limits - continuity

C is a vector space on R equipped with the norm ‖z‖ = |z |.Let f define a complex variable function and z0 = x0 + iy0 and l twocomplex numbers.

Definition: limit

limz−→z0

f (z) = l or f (z) −→z−→z0

l

means:∀ε > 0, ∃η > 0, |z − z0| < η =⇒ |f (z)− l | < ε

Definition: continuity

f continue at z0 ⇐⇒ limz−→z0

f (z) = f (z0)

⇐⇒ P(x , y) and Q(x , y) continue at (x0, y0)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 10 / 105

Some Generalities

Limits - continuity

Limits - continuity

Without any demonstration, we will admit that the standard operationson the limits or continuous functions are the same as those obtained forfunctions from R2 → R or from R→ R

Warning !If P(x , y) is continuous at the point (x0, y0), then

x 7→ P(x , y0) is continuous at x = x0

y 7→ P(x0, y) is continuous at y = y0

The reciprocal is wrong!

Prof. Nicolas Dobigeon Complex variables - LT & ZT 11 / 105

Some Generalities

Limits - continuity

Complex infinity

The complex infinity denoted ∞ is the unique complex number ensuringthe following properties with a ∈ C:

∞×∞ = ∞, |∞| =∞∞/a = ∞, a/∞ = 0, a×∞ =∞

I Representation on the Poincare sphere,

I Extensions of the limit and neighboring definitions around infinity.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 12 / 105

Usual functions

Outline

Some Generalities

Usual functionsAlgebraic functionsFunctions defined by power seriesMultivalued functions (or multifunctions)

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 13 / 105

Usual functions

Algebraic functions

Outline

Some Generalities

Usual functionsAlgebraic functionsFunctions defined by power seriesMultivalued functions (or multifunctions)

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 14 / 105

Usual functions

Algebraic functions

Algebraic functions

Functions Definition Continuiy Associated TG

z 7−→ z + a C C Translationz 7−→ a z C C Similarityz 7−→ 1

z C∗ C∗ Inversion then symetry Ox

z 7−→ az+bcz+d C \

− d

c

C \

− d

c

...

Prof. Nicolas Dobigeon Complex variables - LT & ZT 15 / 105

Usual functions

Functions defined by power series

Outline

Some Generalities

Usual functionsAlgebraic functionsFunctions defined by power seriesMultivalued functions (or multifunctions)

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 16 / 105

Usual functions

Functions defined by power series

Exponential function

Definition

ez =∞∑n=0

zn

n!

Properties

ez |z=x = ex

ez1+z2 = ez1ez2

ex+iy = ex (cos y + i sin y)

e−z =1

ez

We have the same functional relations as in R.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 17 / 105

Usual functions

Functions defined by power series

Hyperbolic and trigonometric functions

Hyperbolic functions

ch z =ez + e−z

2, sh z =

ez − e−z

2, thz =

shz

chzExample: resolution of ch z = 0.

Trigonometric functions

cos z =e iz + e−iz

2, sin z =

e iz − e−iz

2i, tan z =

sin z

cos zExample: resolution of sin z = 2.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 18 / 105

Usual functions

Functions defined by power series

Hyperbolic and trigonometric functions

PropertiesFunctions Definition set Continuity set

exp C Cch C Csh C Cth C\

i(π2

+ kπ), k ∈ Z

C\i(π2

+ kπ), k ∈ Z

cos C Csin C Ctan C\

π2

+ kπ, k ∈ Z

C\π2

+ kπ, k ∈ Z

Changing rulescos iz = ch zsin iz = i sh z

tan iz = i th zand

ch iz = cos zsh iz = i sin zth iz = i tan z

Prof. Nicolas Dobigeon Complex variables - LT & ZT 19 / 105

Usual functions

Multivalued functions (or multifunctions)

Outline

Some Generalities

Usual functionsAlgebraic functionsFunctions defined by power seriesMultivalued functions (or multifunctions)

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 20 / 105

Usual functions

Multivalued functions (or multifunctions)

Multivalued function

To any z of C, a unique value of ez corresponds. However, to any z ofC∗, an infinity of values of arg z corresponds. To distinguish betweenthese two cases, we are defining the so-called mono-valued vs.multivalues functions.

Definitions

I A function f is named mono-valued if to any value z a unique value off (z) corresponds.

I A function f is named multi-valued (aka multifunctions) if to any value zseveral distinct values of f (z) correspond.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 21 / 105

Usual functions

Multivalued functions (or multifunctions)

Multivalued function

To any z of C, a unique value of ez corresponds. However, to any z ofC∗, an infinity of values of arg z corresponds. To distinguish betweenthese two cases, we are defining the so-called mono-valued vs.multivalues functions.

Definitions

I A function f is named mono-valued if to any value z a unique value off (z) corresponds.

I A function f is named multi-valued (aka multifunctions) if to any value zseveral distinct values of f (z) correspond.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 21 / 105

Usual functions

Multivalued functions (or multifunctions)

Multivalued functions

Examples

I The argument function :

C∗ −→ Rz 7−→ arg z

is a multi-valued function.

I The functions introduce earlier are mono-valued.

Study of the multivalued functionsTo study the multivalued functions, we make them mono-valued by defining itsrestrictions (or “branches”) of rank k.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 22 / 105

Usual functions

Multivalued functions (or multifunctions)

Argument function

The branch of rank k of the argument function is

C\Ox+ −→ ]2kπ, 2 (k + 1)π[

z 7−→ θ = argk z

Remarks

I The half-axe Ox+ is called the branch cut.

I When k = 0, the restriction is called “principal branch”.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 23 / 105

Usual functions

Multivalued functions (or multifunctions)

Argument function: other definition (more general)

The branch of rank k of the argument function is

C\Dα −→ ]α + 2kπ, α + 2 (k + 1)π[

z 7−→ θ = argk,α z

Remarks

I With this definition, the half-line (or ray) Dα with origin O and angle α isthe branch cut.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 24 / 105

Usual functions

Multivalued functions (or multifunctions)

Multifunctions

Definitions

I Continuity values: values on the upper and lower sides of the branch cut.

I The point O at the origin of the branch cut is called the branch point.

Remarks

I How to represent the branch cut?

I Closed paths enclosing the branch point → branch change [WARNING]

I Closed paths enclosing the branch point → no branch change

Prof. Nicolas Dobigeon Complex variables - LT & ZT 25 / 105

Usual functions

Multivalued functions (or multifunctions)

Power functions

The branch of rank k of z 7→ z1n is

C \ Ox+ → Sk

z 7→ z1n

(k) = |z |1n e i

1n argk (z) = ρ

1n e i

θn e i

2kπn

θ ∈ ]0, 2π[

This mapping is a bijective function from C \ Ox+ in the open circularsector Sk delimited by the two lines D 2kπ

nand D 2(k+1)π

ncoming from O

and making angles 2kπn and 2(k+1)π

n with Ox+.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 26 / 105

Usual functions

Multivalued functions (or multifunctions)

Power functions

Extensions

I Function z 7→ (z − a)1n .

I Function z 7→ (z − a)α, α ∈ R.

Example

Restriction of z 7→ (z + 1)12 .

Prof. Nicolas Dobigeon Complex variables - LT & ZT 27 / 105

Usual functions

Multivalued functions (or multifunctions)

Logarithm function

The restriction of rank k of z 7→ log(z) is C \ Ox+ → Bk

z = |z |e iθ+i2kπ 7→ logk(z) = ln |z |+ argk(z)= ln ρ+ iθ + i2kπ

where Bk is the open strip-like set defined by:z / Imz ∈ ]2kπ, 2(k + 1)π[ .

Extension

I Function z 7→ zα, α ∈ C defined by zαk = eα logk (z).

Prof. Nicolas Dobigeon Complex variables - LT & ZT 28 / 105

Holomorphic functions

Outline

Some Generalities

Usual functions

Holomorphic functionsDifferentiable functions of two variables (reminders...)Derivative of a complex variable functionHolomorphic functionsComplement : harmonic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 29 / 105

Holomorphic functions

Differentiable functions of two variables (reminders...)

Outline

Some Generalities

Usual functions

Holomorphic functionsDifferentiable functions of two variables (reminders...)Derivative of a complex variable functionHolomorphic functionsComplement : harmonic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 30 / 105

Holomorphic functions

Differentiable functions of two variables (reminders...)

Differentiable functions of two variables

A function P (x , y) is differentiable at the point (x0, y0) when it isdefined in an open set containing this point and:

∆P = A (x0, y0) h + B (x0, y0) k + ‖(h, k)‖ ε (h, k)

with∆P = P (x0 + h, y0 + k)− P (x0, y0)

etlim

‖(h,k)‖→0ε (h, k) = 0

Prof. Nicolas Dobigeon Complex variables - LT & ZT 31 / 105

Holomorphic functions

Derivative of a complex variable function

Outline

Some Generalities

Usual functions

Holomorphic functionsDifferentiable functions of two variables (reminders...)Derivative of a complex variable functionHolomorphic functionsComplement : harmonic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 32 / 105

Holomorphic functions

Derivative of a complex variable function

Definition of the differentiability

Definitionf (z) differentiable at z0 if and only if

limz→z0

f (z)− f (z0)

z − z0

exists. It is denoted

f ′ (z0) = limz→z0

f (z)− f (z0)

z − z0

Example 1f (z) = z

limz→z0

z − z0

z − z0= 1, hence f est derivable en z0.

Example 2f (z) = z2

limz→z0

z2 − z20

z − z0= lim

z→z0

(z + z0) = 2z0, hence f est derivable en z0.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 33 / 105

Holomorphic functions

Derivative of a complex variable function

Definition of the differentiability

Definitionf (z) differentiable at z0 if and only if

limz→z0

f (z)− f (z0)

z − z0

exists. It is denoted

f ′ (z0) = limz→z0

f (z)− f (z0)

z − z0

Example 1f (z) = z

limz→z0

z − z0

z − z0= 1, hence f est derivable en z0.

Example 2f (z) = z2

limz→z0

z2 − z20

z − z0= lim

z→z0

(z + z0) = 2z0, hence f est derivable en z0.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 33 / 105

Holomorphic functions

Derivative of a complex variable function

Definition of the differentiability

Definitionf (z) differentiable at z0 if and only if

limz→z0

f (z)− f (z0)

z − z0

exists. It is denoted

f ′ (z0) = limz→z0

f (z)− f (z0)

z − z0

Example 1f (z) = z

limz→z0

z − z0

z − z0= 1, hence f est derivable en z0.

Example 2f (z) = z2

limz→z0

z2 − z20

z − z0= lim

z→z0

(z + z0) = 2z0, hence f est derivable en z0.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 33 / 105

Holomorphic functions

Derivative of a complex variable function

Definition of the differentiability

Counter exampleg(z) = z

z − z0

z − z0=

(x − x0)− i (y − y0)

(x − x0) + i (y − y0)

=1− i y−y0

x−x0

1 + i y−y0x−x0

=1− im

1 + im

which depends on the slope m of the path, thus

limz→z0

z − z0

z − z0does not exist

⇒ f is not differentiable at z0.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 34 / 105

Holomorphic functions

Derivative of a complex variable function

Definition of the differentiability

Counter exampleg(z) = z

z − z0

z − z0=

(x − x0)− i (y − y0)

(x − x0) + i (y − y0)

=1− i y−y0

x−x0

1 + i y−y0x−x0

=1− im

1 + im

which depends on the slope m of the path, thus

limz→z0

z − z0

z − z0does not exist

⇒ f is not differentiable at z0.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 34 / 105

Holomorphic functions

Derivative of a complex variable function

Definition of the differentiability

Counter exampleg(z) = z

z − z0

z − z0=

(x − x0)− i (y − y0)

(x − x0) + i (y − y0)

=1− i y−y0

x−x0

1 + i y−y0x−x0

=1− im

1 + im

which depends on the slope m of the path, thus

limz→z0

z − z0

z − z0does not exist

⇒ f is not differentiable at z0.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 34 / 105

Holomorphic functions

Derivative of a complex variable function

Necessary and sufficient condition

PropertyA complex variable function f is differentiable at the point z0 = x0 + iy0 if andonly if

I P (x , y) et Q (x , y) are differentiable at the point (x0, y0) and

I the Cauchy conditions are fulfilled:∂P∂x

(x0, y0) = ∂Q∂y

(x0, y0)∂P∂y

(x0, y0) = − ∂Q∂x

(x0, y0)

RemarkThe demonstration of this condition allows ones to obtain

f ′ (z0) =∂P

∂x(x0, y0) + i

∂Q

∂x(x0, y0)

f ′ (z0) =∂Q

∂y(x0, y0)− i

∂P

∂y(x0, y0)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 35 / 105

Holomorphic functions

Derivative of a complex variable function

Necessary and sufficient condition

PropertyA complex variable function f is differentiable at the point z0 = x0 + iy0 if andonly if

I P (x , y) et Q (x , y) are differentiable at the point (x0, y0) and

I the Cauchy conditions are fulfilled:∂P∂x

(x0, y0) = ∂Q∂y

(x0, y0)∂P∂y

(x0, y0) = − ∂Q∂x

(x0, y0)

RemarkThe demonstration of this condition allows ones to obtain

f ′ (z0) =∂P

∂x(x0, y0) + i

∂Q

∂x(x0, y0)

f ′ (z0) =∂Q

∂y(x0, y0)− i

∂P

∂y(x0, y0)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 35 / 105

Holomorphic functions

Holomorphic functions

Outline

Some Generalities

Usual functions

Holomorphic functionsDifferentiable functions of two variables (reminders...)Derivative of a complex variable functionHolomorphic functionsComplement : harmonic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 36 / 105

Holomorphic functions

Holomorphic functions

Holomorphic functions

DefinitionA complex variable function is said holomorphic on an open set A of C if it isdifferentiable in any point of A. Notation: f ∈ H/A.

PropertiesThe properties are the same as those related to differentiable in R. Let define fand g ∈ H/A.I λf + µg ∈ H/A et (λf + µg)′ = λf ′ + µg ′

I fg ∈ H/A et (fg)′ = f ′g + fg ′

I If ∀z ∈ A, g (z) 6= 0, then:

1

g∈ H/A et

(1

g

)′= − g ′

g 2

I If f ∈ H/A, g ∈ H/f (A), then: (g f ) ∈ H/A et (g f )′ = (g ′ f ) f ′

I If f is bijective from A onto f (A), then:

f −1 ∈ H/f (A) et(f −1

)′=

1

f ′ f −1

Prof. Nicolas Dobigeon Complex variables - LT & ZT 37 / 105

Holomorphic functions

Holomorphic functions

Holomorphic functions

DefinitionA complex variable function is said holomorphic on an open set A of C if it isdifferentiable in any point of A. Notation: f ∈ H/A.

PropertiesThe properties are the same as those related to differentiable in R. Let define fand g ∈ H/A.I λf + µg ∈ H/A et (λf + µg)′ = λf ′ + µg ′

I fg ∈ H/A et (fg)′ = f ′g + fg ′

I If ∀z ∈ A, g (z) 6= 0, then:

1

g∈ H/A et

(1

g

)′= − g ′

g 2

I If f ∈ H/A, g ∈ H/f (A), then: (g f ) ∈ H/A et (g f )′ = (g ′ f ) f ′

I If f is bijective from A onto f (A), then:

f −1 ∈ H/f (A) et(f −1

)′=

1

f ′ f −1

Prof. Nicolas Dobigeon Complex variables - LT & ZT 37 / 105

Holomorphic functions

Holomorphic functions

Differentiability of usual functions

Algebraic functionsOne formally differentiates with respect to z as for the real variable functionwith respect to x :

(az)′ = a

(zm)′ = mzm−1, m ∈ Z

Functions defined by series expansionTheorem of differentiability of power series:The function f (z) = a0 + a1z + ...+ anz

n + ... of convergence radius R isholomorphic on the open disk d (O,R). Its derivative is the sum of theterm-wise differential series. Thus

(ez)′ = ez

(chz)′ = shz

(cos z)′ = − sin z

etc ...

One derives with respect to z as one derives in R with respect to x .

Prof. Nicolas Dobigeon Complex variables - LT & ZT 38 / 105

Holomorphic functions

Holomorphic functions

Differentiability of usual functions

Algebraic functionsOne formally differentiates with respect to z as for the real variable functionwith respect to x :

(az)′ = a

(zm)′ = mzm−1, m ∈ Z

Functions defined by series expansionTheorem of differentiability of power series:The function f (z) = a0 + a1z + ...+ anz

n + ... of convergence radius R isholomorphic on the open disk d (O,R). Its derivative is the sum of theterm-wise differential series. Thus

(ez)′ = ez

(chz)′ = shz

(cos z)′ = − sin z

etc ...

One derives with respect to z as one derives in R with respect to x .

Prof. Nicolas Dobigeon Complex variables - LT & ZT 38 / 105

Holomorphic functions

Holomorphic functions

Differentiability of multifunctions

I Derivative of logk z

Z = logk (z) = ln ρ+ iθ + 2ikπ

defined from C \ Ox+ to Bk .

One reminds that exp (logk (z)) = z . By the reciprocal formula, thederivative is given

z = f (Z) =⇒ z ′ = f ′ (Z)

Z = f −1 (z) =⇒ Z ′ =1

f ′ (f −1 (z))

Thus:

z = exp (Z) =⇒ z ′ = exp (Z)

Z = logk (z) =⇒ Z ′ =1

exp (logk (z))=

1

z

The additive constant disappears. Thus:

logk z holomorphic on C \ Ox+ et (logk)′ (z) = 1z

Prof. Nicolas Dobigeon Complex variables - LT & ZT 39 / 105

Holomorphic functions

Holomorphic functions

Differentiability of multifunctions

I Derivative of zα(k), α ∈ C

zα(k) = exp (α logk (z))

By differentiability of compound functions, one obtains:[zα(k)

]′= [α [logk (z)]]′ exp [α logk (z)]

Thus: [zα(k)

]′=α

zzα(k)

The derivative owns the same multiplicative constant. Thus

zα(k) holomorphic on C \ Ox+ et[zα(k)

]′=α

zzα(k)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 40 / 105

Holomorphic functions

Complement : harmonic functions

Outline

Some Generalities

Usual functions

Holomorphic functionsDifferentiable functions of two variables (reminders...)Derivative of a complex variable functionHolomorphic functionsComplement : harmonic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 41 / 105

Holomorphic functions

Complement : harmonic functions

Complement : harmonic functions

If we had time...

Prof. Nicolas Dobigeon Complex variables - LT & ZT 42 / 105

Integration and Cauchy theorem

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theoremGeneralitiesJordan lemmasIntegral of holomorphic functions

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 43 / 105

Integration and Cauchy theorem

Generalities

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theoremGeneralitiesJordan lemmasIntegral of holomorphic functions

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 44 / 105

Integration and Cauchy theorem

Generalities

Path

I A path of C is continuous function γ : [a, b]→ C, where [a, b] is aninterval of R.

I If γ(a) = γ(b), γ is a closed path.

I γ is piecewise C 1 if γ′(t) exists and is continuous on the intervals[tj−1, tj ] of R with t0 = a < t1 < ... < tn = b.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 45 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

Let f (z) a function defined on a path γ which is piecewise-C 1

Letn∪

k=1zk−1zk define a subdivision of this path with ξk ∈ zk−1zk ,

zk = γ(tk), z0 = γ (a) and zn = γ (b).

Definition: ∫γf (z)dz = lim

n→∞

n∑k=1

f (ξk)(zk − zk−1)

with maxk|zk − zk−1| →

n→∞0

Prof. Nicolas Dobigeon Complex variables - LT & ZT 46 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

Let f (z) a function defined on a path γ which is piecewise-C 1

Letn∪

k=1zk−1zk define a subdivision of this path with ξk ∈ zk−1zk ,

zk = γ(tk), z0 = γ (a) and zn = γ (b).

Definition: ∫γf (z)dz = lim

n→∞

n∑k=1

f (ξk)(zk − zk−1)

with maxk|zk − zk−1| →

n→∞0

Prof. Nicolas Dobigeon Complex variables - LT & ZT 46 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

With the following notations

zk = xk + iyk

zk − zk−1 = ∆xk + i∆yk

ξk = ak + ibk

f (ξk) = P(ak , bk) + iQ(ak , bk)

it yields ∫γf (z)dz = lim

n→∞

n∑k=1

P(ak , bk)∆xk − Q(ak , bk)∆yk

+i limn→+∞

n∑k=1

Q(ak , bk)∆xk + P(ak , bk)∆yk

with maxk|∆xk | → 0 and max

k|∆yk | → 0. Hence∫

γ

f (z)dz =

∫γ

(Pdx − Qdy) + i

∫γ

(Qdx + Pdy)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 47 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

Sufficient condition of existence

P and Q continious on γor f continious on γ

In practice: γ is parametrized∫γf (z)dz =

∫ b

af (γ (t)) γ′ (t) dt

Usual paths

I Line segment parallel to the X-axis,z = x + iy0, x ∈ [x1, x2]

I Line segment parallel to the Y-axis,z = x0 + iy , y ∈ [y1, y2]

I Arc of radius R0

z = R0eiθ, θ ∈ [θ1, θ2]

I Line segment coming from the originz = ρe iθ0 , ρ ∈ [ρ1, ρ2]

Prof. Nicolas Dobigeon Complex variables - LT & ZT 48 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

Sufficient condition of existence

P and Q continious on γor f continious on γ

In practice: γ is parametrized∫γf (z)dz =

∫ b

af (γ (t)) γ′ (t) dt

Usual paths

I Line segment parallel to the X-axis,z = x + iy0, x ∈ [x1, x2]

I Line segment parallel to the Y-axis,z = x0 + iy , y ∈ [y1, y2]

I Arc of radius R0

z = R0eiθ, θ ∈ [θ1, θ2]

I Line segment coming from the originz = ρe iθ0 , ρ ∈ [ρ1, ρ2]

Prof. Nicolas Dobigeon Complex variables - LT & ZT 48 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

Elementary properties of integralsa) Linearity ∫

γ

(λf (z) + µg(z))dz = λ

∫γ

f (z)dz + µ

∫γ

g(z)dz

b) Sense of the pathγ ∫γ−

f (z)dz = −∫γ+

f (z)dz

γ− = γ+ followed in the reverse sense.

c) Integral of a constant f (z) = K

n∑k=1

f (zk)(zk − zk−1) = (zn − z0)K = (γ(b)− γ(a))K

Prof. Nicolas Dobigeon Complex variables - LT & ZT 49 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

Elementary properties of integralsa) Linearity ∫

γ

(λf (z) + µg(z))dz = λ

∫γ

f (z)dz + µ

∫γ

g(z)dz

b) Sense of the pathγ ∫γ−

f (z)dz = −∫γ+

f (z)dz

γ− = γ+ followed in the reverse sense.

c) Integral of a constant f (z) = K

n∑k=1

f (zk)(zk − zk−1) = (zn − z0)K = (γ(b)− γ(a))K

Prof. Nicolas Dobigeon Complex variables - LT & ZT 49 / 105

Integration and Cauchy theorem

Generalities

Complex curvilinear integral

Elementary properties of integralsa) Linearity ∫

γ

(λf (z) + µg(z))dz = λ

∫γ

f (z)dz + µ

∫γ

g(z)dz

b) Sense of the pathγ ∫γ−

f (z)dz = −∫γ+

f (z)dz

γ− = γ+ followed in the reverse sense.

c) Integral of a constant f (z) = K

n∑k=1

f (zk)(zk − zk−1) = (zn − z0)K = (γ(b)− γ(a))K

Prof. Nicolas Dobigeon Complex variables - LT & ZT 49 / 105

Integration and Cauchy theorem

Jordan lemmas

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theoremGeneralitiesJordan lemmasIntegral of holomorphic functions

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 50 / 105

Integration and Cauchy theorem

Jordan lemmas

Jordan lemmas1st Lemma Jordan

AssumptionsCr (a, r) arc of center a and radius rlimr→0( resp. ∞) supCr

|(z − a) f (z)| = 0

Conclusion

limr→0( resp. ∞)

∫Crf (z)dz = 0

Proof: ∣∣∣∣∫Cr

f (z)dz

∣∣∣∣ =

∣∣∣∣∣∫ β

α

f (a + re iθ)rie iθdθ

∣∣∣∣∣6

∫ β

α

∣∣rf (a + re iθ)∣∣ dθ

6 (β − α) supCr

|(z − a) f (z)|

Prof. Nicolas Dobigeon Complex variables - LT & ZT 51 / 105

Integration and Cauchy theorem

Jordan lemmas

Jordan lemmas2nd Jordan lemmas

Assumptionlim∞ supCr

|f (z)| = 0

Conclusions

lim∞∫Cre imz f (z)dz = 0 pour m > 0 et Cr = C+

r

lim∞∫Cre imz f (z)dz = 0 pour m < 0 et Cr = C−r

lim∞∫Cremz f (z)dz = 0 pour m < 0 et Cr = C d

r

lim∞∫Cremz f (z)dz = 0 pour m > 0 et Cr = C g

r

Proof:

|Ir | =

∣∣∣∣∫Cr

e imz f (z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

e imre iθ f (re iθ)ire iθdθ

∣∣∣∣≤ 2r sup

Cr

|f (z)|∫ π

2

0

e−mr sin θdθ

≤ supCr

|f (z)| πm

(1− e−mr ) (car sin θ >2θ

π)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 52 / 105

Integration and Cauchy theorem

Integral of holomorphic functions

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theoremGeneralitiesJordan lemmasIntegral of holomorphic functions

Residue theorem

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 53 / 105

Integration and Cauchy theorem

Integral of holomorphic functions

Cauchy theorem1-connected (or simply connected) domain

Assumptionsf holomorphic on Ω, non-null open space of CLet D ⊂ Ω define a simply-connected domain of contour C

Conclusion ∫Cf (z)dz = 0

Proof (by the use of the Green-Riemann formula)∫C+

Adx + Bdy =

∫ ∫D

(∂B

∂x− ∂A

∂y

)dxdy

Prof. Nicolas Dobigeon Complex variables - LT & ZT 54 / 105

Integration and Cauchy theorem

Integral of holomorphic functions

Cauchy theoremn-connected domain - Generalization

Example of a 2-connected domain∫C

f (z)dz =

∫C+

1

f (z)dz +

∫C−

2

f (z)dz = 0

Oriented contour−→τ tangent vector−→n oriented interior normal

(−→τ ,−→n ) = +π

2

For δD = C+1 ∪ C−2 , it yields∫

δD

f (z)dz = 0

Prof. Nicolas Dobigeon Complex variables - LT & ZT 55 / 105

Integration and Cauchy theorem

Integral of holomorphic functions

Cauchy theoremApplication

Let f define a holomorphic function on a 1-connected domain D.

a) Definition of∫ b

af (z)dz

Let a and b define two points of D.Let γ1, γ2 define two paths inside D with origin a and end point b. Then∫

γ1

f (z)dz =

∫γ2

f (z)dz =

∫ b

a

f (z)dz

b) Definition of Fz0 (u) =∫ u

z0f (z)dz , u ∈ C

Fz0 (u) is independent of the path from z0 to u included in DFz0 (u) is a primitive of f (z) such that F ′z0

(u) = f (u).

Prof. Nicolas Dobigeon Complex variables - LT & ZT 56 / 105

Integration and Cauchy theorem

Integral of holomorphic functions

Cauchy theoremApplication

Let f define a holomorphic function on a 1-connected domain D.

a) Definition of∫ b

af (z)dz

Let a and b define two points of D.Let γ1, γ2 define two paths inside D with origin a and end point b. Then∫

γ1

f (z)dz =

∫γ2

f (z)dz =

∫ b

a

f (z)dz

b) Definition of Fz0 (u) =∫ u

z0f (z)dz , u ∈ C

Fz0 (u) is independent of the path from z0 to u included in DFz0 (u) is a primitive of f (z) such that F ′z0

(u) = f (u).

Prof. Nicolas Dobigeon Complex variables - LT & ZT 56 / 105

Residue theorem

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theoremTheorem for a bounded domain DApplication to integral calculusApplication to the sum of a series

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 57 / 105

Residue theorem

Theorem for a bounded domain D

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theoremTheorem for a bounded domain DApplication to integral calculusApplication to the sum of a series

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 58 / 105

Residue theorem

Theorem for a bounded domain D

Residue theorem

Assumptions

I f holomorphic on Ω\ ∪jzj , Ω non-empty open set of C

I zj isolated singularities of f

I D ⊂ Ω 1-connected domain of contour ∂D inside Ω

Conclusion ∫∂D+ f (z)dz = 2iπ

∑zj∈D

resf (zj)

with (definition of resf (zj)) :

resf (zj) = limr→0

12iπ

∫C+(zj ,r)

f (z)dz

Prof. Nicolas Dobigeon Complex variables - LT & ZT 59 / 105

Residue theorem

Theorem for a bounded domain D

Remarks and definition

I Isolated singularities (IS, or isolated singular point)zj is an IS of f (z) if and only if ∃r > 0 such that f is holomorphic ind(zj , r)\ zj, where d(zj , r) stands for the disc of center zi andradius ri .

I Computing the residue thanks to the Laurent seriesIf zj is an IS, one admits that f has a Laurent series in d(zj , r)\zj :

f (z) =∞∑n=1

bn(z − zj)n

+∞∑n=0

an(z − zj)n

Thus, it comes:∫C+(zj ,r)

f (z)dz =∞∑n=1

∫C+

bn(z − zj)n

dz +∞∑n=0

∫C+

an(z − zj)ndz

Prof. Nicolas Dobigeon Complex variables - LT & ZT 60 / 105

Residue theorem

Theorem for a bounded domain D

Remarks and definition

I Isolated singularities (IS, or isolated singular point)zj is an IS of f (z) if and only if ∃r > 0 such that f is holomorphic ind(zj , r)\ zj, where d(zj , r) stands for the disc of center zi andradius ri .

I Computing the residue thanks to the Laurent seriesIf zj is an IS, one admits that f has a Laurent series in d(zj , r)\zj :

f (z) =∞∑n=1

bn(z − zj)n

+∞∑n=0

an(z − zj)n

Thus, it comes:∫C+(zj ,r)

f (z)dz =∞∑n=1

∫C+

bn(z − zj)n

dz +∞∑n=0

∫C+

an(z − zj)ndz

Prof. Nicolas Dobigeon Complex variables - LT & ZT 60 / 105

Residue theorem

Theorem for a bounded domain D

Remarks and definition

We set z − zj = re iθ and it yields

∞∑n=1

∫ 2π

0

bnidθ

rn−1e i(n−1)θ+ i

∞∑n=0

∫ 2π

0

anrn+1e i(n+1)θdθ

All the integrals are null (straightforward...) except:∫ 2π

0

bnidθ

rn−1e i(n−1)θwith n = 1

Thus : ∫C+(zj ,r)

f (z)dz =

∫ 2π

0

b1idθ = 2iπb1

Conclusion : resf (zj) is the coefficient of the term 1z−zj of the main

part of the Laurent series of f .

Prof. Nicolas Dobigeon Complex variables - LT & ZT 61 / 105

Residue theorem

Theorem for a bounded domain D

Remarks and definitionI Computing the residue in case of a pole of order p

One computes the Taylor series of ϕ(z) = (z − zj)pf (z) which is

holomorphic in V (zj)

ϕ(z) = ϕ(zj) + ...+(z − zj)

p−1

(p − 1)!ϕ

(p−1)(zj )

+ ...

As a consequence, the Laurent series of f is:

f (z) =ϕ(zj)

(z − zj)p+ ...+

ϕ(p−1)(zj )

(p − 1)!(z − zj)+ ...

thus

resf (zj) = 1(p−1)!ϕ

(p−1)(zj )

= 1(p−1)!

dp−1

dzp−1 [(z − zj)pf (z)]

∣∣∣z=zj

In practice:I for p > 2, one compute the Laurent series,I for p = 2, one can use resf (zj) = d

dz (z − zj)2f (z)

∣∣z=zj

,

I for p = 1, one has resf (zj) = limz→zj

(z − zj)f (z)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 62 / 105

Residue theorem

Theorem for a bounded domain D

Remarks and definitionI Computing the residue in case of a pole of order p

One computes the Taylor series of ϕ(z) = (z − zj)pf (z) which is

holomorphic in V (zj)

ϕ(z) = ϕ(zj) + ...+(z − zj)

p−1

(p − 1)!ϕ

(p−1)(zj )

+ ...

As a consequence, the Laurent series of f is:

f (z) =ϕ(zj)

(z − zj)p+ ...+

ϕ(p−1)(zj )

(p − 1)!(z − zj)+ ...

thus

resf (zj) = 1(p−1)!ϕ

(p−1)(zj )

= 1(p−1)!

dp−1

dzp−1 [(z − zj)pf (z)]

∣∣∣z=zj

In practice:I for p > 2, one compute the Laurent series,I for p = 2, one can use resf (zj) = d

dz (z − zj)2f (z)

∣∣z=zj

,

I for p = 1, one has resf (zj) = limz→zj

(z − zj)f (z)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 62 / 105

Residue theorem

Theorem for a bounded domain D

Remarks and definition

Interesting particular case : zj pole of order 1, f (z) = P(z)Q(z) , P(zj) 6= 0

One expands Q(z) :

Q(z) = 0 + (z − zj)Q′(zj) +

(z − zj)2

2!Q ′′(zj) + ...

thus

limz→zj

(z − zj)f (z) =P(zj)

Q ′(zj)

This formula is interesting for some residue calculus, such as f (z) = 1sin z

en z = 0. Indeed:

resf (0) =P(0)

Q ′(0)=

1

cos 0= 1

Prof. Nicolas Dobigeon Complex variables - LT & ZT 63 / 105

Residue theorem

Application to integral calculus

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theoremTheorem for a bounded domain DApplication to integral calculusApplication to the sum of a series

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 64 / 105

Residue theorem

Application to integral calculus

Integrals of the form: I =∫∞−∞ f (x)dx

Very often, one defines f (z) and the contour which consists of a straightline associated with I and a circular parts which close path. Example:

Computing

I =

∫ +∞

−∞

x2 + 1

x4 + 1dx

Prof. Nicolas Dobigeon Complex variables - LT & ZT 65 / 105

Residue theorem

Application to integral calculus

Integrals defined by a multifunction

Example: show that, for a ∈ ]0, 1[

J =

∫ ∞0

xa−1

1 + xdx =

π

sin (πa)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 66 / 105

Residue theorem

Application to integral calculus

Trigonometric integrals

I =

∫ 2π

0

R(cos θ, sin θ)dθ

where R is a rational fraction. One sets z = e iθ and one derives cos θand sin θ as functions of z .It consists of computing an integral on the unit circle.Example : show that

J =

∫ 2π

0

5 + 3 sin θ=π

2

Prof. Nicolas Dobigeon Complex variables - LT & ZT 67 / 105

Residue theorem

Application to the sum of a series

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theoremTheorem for a bounded domain DApplication to integral calculusApplication to the sum of a series

Laplace transform

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 68 / 105

Residue theorem

Application to the sum of a series

Application to the sum of a series

See exercise session.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 69 / 105

Laplace transform

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transformDefinitionPropertiesInverse Laplace transformApplications

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 70 / 105

Laplace transform

Definition

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transformDefinitionPropertiesInverse Laplace transformApplications

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 71 / 105

Laplace transform

Definition

Definition

Set of the (Laplace) transformable functionsE is the set of the functions f defined on R+ such that• f is locally integrable, i.e.,

∫ A

0f (t)dt <∞,∀A

• It exists x0 such that∫∞

0e−x0t f (t)dt <∞

Laplace transformFor f ∈ E , one defines its Laplace transform as

F (p) ,∫∞

0e−pt f (t)dt p ∈ C

Notation: F (p) = TL(f (t))

Prof. Nicolas Dobigeon Complex variables - LT & ZT 72 / 105

Laplace transform

Definition

Definition

Set of the (Laplace) transformable functionsE is the set of the functions f defined on R+ such that• f is locally integrable, i.e.,

∫ A

0f (t)dt <∞,∀A

• It exists x0 such that∫∞

0e−x0t f (t)dt <∞

Laplace transformFor f ∈ E , one defines its Laplace transform as

F (p) ,∫∞

0e−pt f (t)dt p ∈ C

Notation: F (p) = TL(f (t))

Prof. Nicolas Dobigeon Complex variables - LT & ZT 72 / 105

Laplace transform

Definition

DefinitionConvergences

(simple) Convergence

Thereom 1If F (p) exists for p = p0 = x0 + iy0 thenF (p) exists ∀p such that Rep > Rep0 = x0

Consequence : x ∈ R,F (p) <∞ admits a lower bound denoted xc andcalled abscissa of (simple) convergence of F .

Absolute convergence

Theorem 2If∫∞

0

∣∣e−pt f (t)∣∣ dt exists for p = p0 = x0 + iy0 then∫∞

0

∣∣e−pt f (t)∣∣ dt exists ∀p such that Rep > Rep0 = x0

Consequence :x ∈ R,

∫∞0

∣∣e−pt f (t)∣∣ dt <∞ admits a lower bound denoted

xca and called abscissa of absolute convergence of F (obviously, xc ≤ xca)

Example: f (t) = ekt sin[ekt], k > 0, xc = 0 and xca = k.

Remark : one often has xc = xca.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 73 / 105

Laplace transform

Definition

DefinitionConvergences

(simple) Convergence

Thereom 1If F (p) exists for p = p0 = x0 + iy0 thenF (p) exists ∀p such that Rep > Rep0 = x0

Consequence : x ∈ R,F (p) <∞ admits a lower bound denoted xc andcalled abscissa of (simple) convergence of F .

Absolute convergence

Theorem 2If∫∞

0

∣∣e−pt f (t)∣∣ dt exists for p = p0 = x0 + iy0 then∫∞

0

∣∣e−pt f (t)∣∣ dt exists ∀p such that Rep > Rep0 = x0

Consequence :x ∈ R,

∫∞0

∣∣e−pt f (t)∣∣ dt <∞ admits a lower bound denoted

xca and called abscissa of absolute convergence of F (obviously, xc ≤ xca)

Example: f (t) = ekt sin[ekt], k > 0, xc = 0 and xca = k.

Remark : one often has xc = xca.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 73 / 105

Laplace transform

Definition

Definition

Fundamental theoremIf f (t) is piecewise continuous on R+,then F (p) =

∫∞0

e−pt f (t)dt is holomorphic on ]xc ,+∞[ andthen it is infinitely differentiable on ]xc ,+∞[ with

dnF (p)dpn =

∫∞0

dn

dpn [e−pt f (t)] dt

Consequence: deriving xc from F (p)

If F (p) a function of the complex variable p is the Laplace transformof a function f (t) which admits isolated singularities skand branching points rj in C, then xc = supRe(sk , rj)

Examples: F (p) = 1p(p−2) xc = 2

F (p) = 1p+1 xc = 0

Prof. Nicolas Dobigeon Complex variables - LT & ZT 74 / 105

Laplace transform

Properties

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transformDefinitionPropertiesInverse Laplace transformApplications

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 75 / 105

Laplace transform

Properties

Usual properties

a) LinearityTL (λf + µg) =λF (p) + µG (p)

Generally, abscissa of convergence xc = sup(xcf , xcg ).b) Derivation* with respect to p

TL (−1)ntnf (t) =dn

dpnF (p)

* with respect to t (f continuous on [0,+∞[)

TL [f ′(t)] = pF (p)− f (0+)

Generalization:

TL[f (n)(t)

]= pnF (p)− pn−1f (0+)− ...− f (n−1)(0+)

Application: resolution of linear differential equations

Prof. Nicolas Dobigeon Complex variables - LT & ZT 76 / 105

Laplace transform

Properties

Usual properties

a) LinearityTL (λf + µg) =λF (p) + µG (p)

Generally, abscissa of convergence xc = sup(xcf , xcg ).b) Derivation* with respect to p

TL (−1)ntnf (t) =dn

dpnF (p)

* with respect to t (f continuous on [0,+∞[)

TL [f ′(t)] = pF (p)− f (0+)

Generalization:

TL[f (n)(t)

]= pnF (p)− pn−1f (0+)− ...− f (n−1)(0+)

Application: resolution of linear differential equations

Prof. Nicolas Dobigeon Complex variables - LT & ZT 76 / 105

Laplace transform

Properties

Usual properties

c) Integration* LT of a primitive

TL

[∫ t

0

f (u)du

]=

F (p)

p

Abscissa of convergence: sup(xc , 0)* Primitive of a LT

TL

[f (t)

t

]=

∫ ∞p

F (u)du

Prof. Nicolas Dobigeon Complex variables - LT & ZT 77 / 105

Laplace transform

Properties

Usual properties

d) Translation* with respect to p

TL[eat f (t)

]= F (p − a)

Abscissa of convergence: xc + Re(a)* with respect to t

TL [f (t − a)U(t − a)] = e−apF (p)

Abscissa of convergence: xcRemark: Application to periodic functionse) Scaling

TL[f( tk

)]= kF (kp) k > 0

Abscissa of convergence: xck

Prof. Nicolas Dobigeon Complex variables - LT & ZT 78 / 105

Laplace transform

Properties

Usual properties

f) Convolution

TL

[∫ t

0

f (u)g(t − u)du

]= F (p)G (p)

g) Theorems of the initial and final values

limt→0+

f (t) = limp→∞

pF (p)

limt→∞

f (t) = limp→0

pF (p)

h) Transform of seriesSeries of general term an

tn

n!with abscissa of convergence Rc =∞

TL[∑∞

n=1 antn

n!

]=∑∞

n=1an

pn+1

Example: show that TL[

sinωtt

]= Arctg ωp

Use two methods: series expansion and TL[x(t)t

]Prof. Nicolas Dobigeon Complex variables - LT & ZT 79 / 105

Laplace transform

Properties

Some Laplace transforms

Function TL ConvergenceU(t) 1

p xc = 0

eαt 1p−α xc = Reα

e iωt 1p−iω xc = 0

ch (αt) pp2−α2 xc = supRe(α,−α)

sh (αt) αp2−α2 xc = supRe(α,−α)

cosωt pp2+ω2 xc = 0

sinωt ωp2+ω2 xc = 0

t 1p2 xc = 0

tn, n ∈ N n!pn+1 xc = 0

tα, α ∈ R Γ(α+1)pα+1

with Γ(x) =∫∞

0e−ttx−1dt et Γ(n + 1) = nΓ(n) = n!

Prof. Nicolas Dobigeon Complex variables - LT & ZT 80 / 105

Laplace transform

Inverse Laplace transform

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transformDefinitionPropertiesInverse Laplace transformApplications

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 81 / 105

Laplace transform

Inverse Laplace transform

Inversion formula

X (p) =

∫ ∞0

x(t)e−ptdt =

∫ ∞0

x(t)e−ate−j2πftdt

with p = a + j2πfAnalogy with the Fourier transform

X (f ) = TF (x(t)) =∫R x(t)e−j2πft

x(t) = TF−1(X (f )) =∫R X (f )e+j2πftdf

Hence :

X (p) = TF[x(t)e−atU(t)

]and thus the inversion formula:

x(t)U(t) = 12iπ

∫D↑ X (p)eptdp

One applies the residue theorem with X (p)ept .Example: X (p) = 1√

p

Prof. Nicolas Dobigeon Complex variables - LT & ZT 82 / 105

Laplace transform

Inverse Laplace transform

Inversion formula

X (p) =

∫ ∞0

x(t)e−ptdt =

∫ ∞0

x(t)e−ate−j2πftdt

with p = a + j2πfAnalogy with the Fourier transform

X (f ) = TF (x(t)) =∫R x(t)e−j2πft

x(t) = TF−1(X (f )) =∫R X (f )e+j2πftdf

Hence :

X (p) = TF[x(t)e−atU(t)

]and thus the inversion formula:

x(t)U(t) = 12iπ

∫D↑ X (p)eptdp

One applies the residue theorem with X (p)ept .Example: X (p) = 1√

p

Prof. Nicolas Dobigeon Complex variables - LT & ZT 82 / 105

Laplace transform

Applications

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transformDefinitionPropertiesInverse Laplace transformApplications

Z transform

Prof. Nicolas Dobigeon Complex variables - LT & ZT 83 / 105

Laplace transform

Applications

Differential equations with constant coefficients

y (n) + a1y(n−1) + ...+ any(t) = f (t)

Initial conditions

y(0) = b0, y′(0) = b1, ..., y

(n−1)(0) = bn−1

Laplace transform

TL [any(t)] = anY (p)TL[y (n)(t)

]= pnY (p)− pn−1y(0+)− ...− y (n−1)(0+)

TL [Ωn(y)] = Ωn(p)Y (p)− Qn−1(p)TL [f (t)] = F (p)

Algebraic problem

Ωn(p)Y (p) = Qn−1(p) + F (p)

Y (p) = Qn−1(p)Ωn(p) + F (p)

Ωn(p) = Y1(p) + Y2(p)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 84 / 105

Laplace transform

Applications

Differential equations with constant coefficients

a) Y1(p) Algebraic fraction

Y1(p) =Qn−1(p)∏r

i=1(p − pi )ki

where pi is a ki -order root with∑r

i=1 ki = nPartial fraction decomposition :

Y1(p) =r∑

i=1

Ai1

p − pi+

Ai2

(p − pi )2 + ...+

Aiki

(p − pi )ki

where

y1(t) =∑r

i=1 epi t[Ai1 + Ai2t + ...+ Aiki t

ki−1]

b) Y2(p) = F (p)Ωn(p) = F (p)× 1

Ωn(p) thus:

y2(t) =

∫ t

0

f (u)Rn(t − u)du

Hence, the solution of the problem is y(t) = y1(t) + y2(t)Prof. Nicolas Dobigeon Complex variables - LT & ZT 85 / 105

Laplace transform

Applications

Partial differential equation of several variables

The LT allows one to reduce the equation with respect to one dimension.Example:Two-dimensional spatio-temporal problem: string vibration f (x , t)

∂2f∂x2 − 1

c2∂2f∂t2 = 0

Initial conditions

f (x , 0) = ϕ(x)∂f

∂t(x , 0) = ψ(x)

Conditions at limits

f (∞, t) = 0f (0, t) = g(t)

Prof. Nicolas Dobigeon Complex variables - LT & ZT 86 / 105

Laplace transform

Applications

Partial differential equation of several variables

Solution thanks to the LT (p is a considered as a parameter)

F (x , p) =

∫ ∞0

e−pt f (x , t)dt

TL

[∂f

∂t

]= pF (x , p)− f (x , 0)

= pF (x , p)− ϕ(x)

TL

[∂2f

∂t2(x , t)

]= p2F (x , p)− pf (x , 0)− ∂f

∂t(x , 0)

= p2F (x , p)− pϕ(x)− ψ(x)

TL

[∂2f

∂x2(x , t)

]=

∫ ∞0

e−pt∂2f (x , t)

∂x2dt

=∂2

∂x2

∫ ∞0

e−pt f (x , t)dt =d2F (x , p)

dx2

Prof. Nicolas Dobigeon Complex variables - LT & ZT 87 / 105

Laplace transform

Applications

Partial differential equation of several variables

One obtains

d2F (x,p)dx2 − p2F (x , p) = pϕ(x) + ψ(x)

with

F (∞, p) = TL [f (∞, t)] = 0

G (p) = TL [g(t)] = TL[f (0, t)] = F (0, p)

One-dimensional problem (differential equations + conditions at limits).

Prof. Nicolas Dobigeon Complex variables - LT & ZT 88 / 105

Z transform

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transformDefinitionPropertiesInverse Z transformApplicationsLaplace and Z transforms

Prof. Nicolas Dobigeon Complex variables - LT & ZT 89 / 105

Z transform

Definition

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transformDefinitionPropertiesInverse Z transformApplicationsLaplace and Z transforms

Prof. Nicolas Dobigeon Complex variables - LT & ZT 90 / 105

Z transform

Definition

Definition

DefinitionOne defines the Z transform of a series x(n), n ∈ Z as:

X (z) =+∞∑

n=−∞

x(n)z−n z ∈ C

Notation:X (z) = TZ(x(n))

Remark: bilateral and unilateral TZ.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 91 / 105

Z transform

Definition

Definition

Domain of convergenceThe domain of convergence is the set of complex numbers z such that theseries X (z) converges.

Reminder: Cauchy criterion

limn→+∞

n√|un| < 1 =⇒

+∞∑n=0

un converge

One has a sufficient condition of convergence. Thanks to this criterion, oneshows that the series X (z) converges once:

0 ≤ R−x < |z | < R+x ≤ +∞

Example: X (z) =∑+∞

n=0 z−n converges for |z | > 1

Prof. Nicolas Dobigeon Complex variables - LT & ZT 92 / 105

Z transform

Properties

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transformDefinitionPropertiesInverse Z transformApplicationsLaplace and Z transforms

Prof. Nicolas Dobigeon Complex variables - LT & ZT 93 / 105

Z transform

Properties

Usual properties

LinearityTZ (ax(n) + by(n)) = aX (z) + bY (z)

Convergence: if R+ = min(R+x ,R

+y ) and R− = max(R−x ,R

−y ), then the

convergence domain contains ]R−,R+[.Shifting

TZ (x(n − n0)) = z−n0X (z)

Same domain of convergence as X (z).Scaling

TZ (anx(n)) = X(za

)Domain of convergence: |a|R−x < |z | < |a|R+

x

Prof. Nicolas Dobigeon Complex variables - LT & ZT 94 / 105

Z transform

Properties

Usual properties

LinearityTZ (ax(n) + by(n)) = aX (z) + bY (z)

Convergence: if R+ = min(R+x ,R

+y ) and R− = max(R−x ,R

−y ), then the

convergence domain contains ]R−,R+[.Shifting

TZ (x(n − n0)) = z−n0X (z)

Same domain of convergence as X (z).Scaling

TZ (anx(n)) = X(za

)Domain of convergence: |a|R−x < |z | < |a|R+

x

Prof. Nicolas Dobigeon Complex variables - LT & ZT 94 / 105

Z transform

Properties

Usual properties

LinearityTZ (ax(n) + by(n)) = aX (z) + bY (z)

Convergence: if R+ = min(R+x ,R

+y ) and R− = max(R−x ,R

−y ), then the

convergence domain contains ]R−,R+[.Shifting

TZ (x(n − n0)) = z−n0X (z)

Same domain of convergence as X (z).Scaling

TZ (anx(n)) = X(za

)Domain of convergence: |a|R−x < |z | < |a|R+

x

Prof. Nicolas Dobigeon Complex variables - LT & ZT 94 / 105

Z transform

Properties

Usual properties

DifferentiabilityThe Z transform defines a Laurent series which is infinitely differentiableterm-by-term in its domain of convergence. Thus

TZ (nx(n)) = −z dX (z)

dz

Same domain of convergence as X (z).Convolution productThe convolution between the series x(n) and y(n) is defined as:

u(n) = x(n) ∗ y(n) =+∞∑

k=−∞

x(k)y(n − k)

ThusTZ (x(n) ∗ y(n)) = X (z)Y (z)

The domain of convergence of U(z) can be larger than the intersectionof domains of convergence of X (z) and Y (z), respectively.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 95 / 105

Z transform

Properties

Usual properties

DifferentiabilityThe Z transform defines a Laurent series which is infinitely differentiableterm-by-term in its domain of convergence. Thus

TZ (nx(n)) = −z dX (z)

dz

Same domain of convergence as X (z).Convolution productThe convolution between the series x(n) and y(n) is defined as:

u(n) = x(n) ∗ y(n) =+∞∑

k=−∞

x(k)y(n − k)

ThusTZ (x(n) ∗ y(n)) = X (z)Y (z)

The domain of convergence of U(z) can be larger than the intersectionof domains of convergence of X (z) and Y (z), respectively.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 95 / 105

Z transform

Inverse Z transform

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transformDefinitionPropertiesInverse Z transformApplicationsLaplace and Z transforms

Prof. Nicolas Dobigeon Complex variables - LT & ZT 96 / 105

Z transform

Inverse Z transform

Inverse Z transform

The inverse Z transform is given by:

x(n) =1

j2π

∫C+

X (z)zn−1dz

where C is a closed path included into the domain of convergence

Prof. Nicolas Dobigeon Complex variables - LT & ZT 97 / 105

Z transform

Inverse Z transform

TZ inverse

ProofOne has to compute the integrals

J(n, k) =

∫C+

zn−k−1dz

Thanks to the residue theorem, one shows that:

J(n, k) =

0 si n 6= kj2π si n = k

Hence:

1

j2π

∫C+

X (z)zn−1dz =1

j2π

∫C+

( ∞∑k=−∞

x(k)z−k

)zn−1dz

=1

j2π

∞∑k=−∞

x(k)J(n, k)

= x(n)

Remark : tablesProf. Nicolas Dobigeon Complex variables - LT & ZT 98 / 105

Z transform

Inverse Z transform

TZ inverse

ProofOne has to compute the integrals

J(n, k) =

∫C+

zn−k−1dz

Thanks to the residue theorem, one shows that:

J(n, k) =

0 si n 6= kj2π si n = k

Hence:

1

j2π

∫C+

X (z)zn−1dz =1

j2π

∫C+

( ∞∑k=−∞

x(k)z−k

)zn−1dz

=1

j2π

∞∑k=−∞

x(k)J(n, k)

= x(n)

Remark : tablesProf. Nicolas Dobigeon Complex variables - LT & ZT 98 / 105

Z transform

Applications

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transformDefinitionPropertiesInverse Z transformApplicationsLaplace and Z transforms

Prof. Nicolas Dobigeon Complex variables - LT & ZT 99 / 105

Z transform

Applications

Discrete signal filtering

See exercise session and/or later.

Prof. Nicolas Dobigeon Complex variables - LT & ZT 100 / 105

Z transform

Applications

Recurrence relations

Example: 1-st order system

y(n)− ay(n − 1) = x(n) |a| < 1

The input of the system is chosen as:

x(n) = bnU(n) with |b| < 1

where U(n) is the Heaviside step function.

I Compute y(n) for n ≥ 0 given that y(n) = 0 for n < 0.

I Determine the impulse response of the system h(n) such thaty(n) = x(n) ∗ h(n).

Prof. Nicolas Dobigeon Complex variables - LT & ZT 101 / 105

Z transform

Laplace and Z transforms

Outline

Some Generalities

Usual functions

Holomorphic functions

Integration and Cauchy theorem

Residue theorem

Laplace transform

Z transformDefinitionPropertiesInverse Z transformApplicationsLaplace and Z transforms

Prof. Nicolas Dobigeon Complex variables - LT & ZT 102 / 105

Z transform

Laplace and Z transforms

Laplace and Z transforms

Let x(t) define a causal signal whose Laplace transform is:

X (p) =

∫ ∞0

x(t)e−ptdt

One samples this signal with period T and one denotes X (z) its Ztransform:

X (z) =∞∑n=0

x(nT )z−n

ThenX (z) =

∑res X (p)

1−epT z−1

Prof. Nicolas Dobigeon Complex variables - LT & ZT 103 / 105

Z transform

Laplace and Z transforms

Laplace and Z transforms

The formula of inverse Laplace transform provides

x(t)U(t) =1

2iπ

∫D↑

X (p)eptdp

hence

X (z) =∞∑n=0

x(nT )z−n =∞∑n=0

[1

2iπ

∫D↑

X (p)epnTdp

]z−n

=1

2iπ

∫D↑

X (p)∞∑n=0

(z−1epT

)ndp

Once∣∣z−1epT

∣∣ < 1, on a

X (z) =1

2iπ

∫D↑

X (p)1

1− z−1epTdp =

∑res

X (p)

1− epT z−1

Prof. Nicolas Dobigeon Complex variables - LT & ZT 104 / 105

Z transform

Laplace and Z transforms

Complex VariablesLaplace Transform – Z Transform

Prof. Nicolas Dobigeon

University of ToulouseIRIT/INP-ENSEEIHT

http://www.enseeiht.fr/[email protected]

Prof. Nicolas Dobigeon Complex variables - LT & ZT 105 / 105