computational fluid dynamics introduction

Upload: thuiel

Post on 05-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Computational Fluid Dynamics Introduction

    1/18

    26.03.2004

    Sl ide 1 Hchstleistungsrechenzentrum Stut tgar t

    C.-D. Munz1, S. Roller2, M. Dumbser1

    University of Stuttgart1Institute for Aerodynamics and Gas Dynamics (IAG)

    www.iag.uni-stuttgart.de2High-Performance Computing-Center Stuttgart (HLRS)

    www.hlrs.de

    Introduction to Computational Fluid Dynamics

    1The Underlying Equations

    2

    Contents

    1. Equations

    2. Finite Volume Schemes

    3. Linear Advection Equation

    4. Systems of Advection Equations

    5. Scalar Conservation Law

    6. One-dimensional Euler Equations7. Godunov-Type Schemes

    8. Flux-Vector Splitting Schemes

    9. Second Order Accuracy MUSCL Schemes

    10. Boundary Conditions

    11. Finite-Volume Schemes in Multi-Dimensions

    12. ENO-/ WENO Schemes

    13. Discontinuous Galerkin Finite Element Methods

  • 7/31/2019 Computational Fluid Dynamics Introduction

    2/18

    3

    1. Equations

    Conservation equation

    e.g.: Mass conservation

    : normal

    mass in V :

    continuum assumption, density

    nr

    nr

    dVV

    4

    1. Equations

    Conservation equation

    e.g.: Mass conservation

    : normal

    mass in V :

    continuum assumption, density

    nr

    nr

    No mass can appear or disappear

    dSnfdVdt

    d

    V

    m

    V

    =r

    dVV

  • 7/31/2019 Computational Fluid Dynamics Introduction

    3/18

    5

    Change of mass in V flux through boundary

    continuously differentiable

    (Gauss theorem)

    V arbitrary

    dSnfdVdt

    d

    Vm

    V =r

    mf,

    ( ) =+V

    mt0dVf

    ( ) 0=+ vt

    6

    The Compressible Navier-Stokes Equations

    Equation of state:

    ( ) 0v t =+

    ( ) ( )( ) pvvvt

    =++ o

    ( )( ) qv)(peve t +=++

    ( ) ( )( )221 ve11p ==

    pressure

    viscous stress tensor

    heat flux vector

    p

    q

    density

    speed

    total energy

    v

    e

  • 7/31/2019 Computational Fluid Dynamics Introduction

    4/18

    7

    Euler Equations

    Equation of state:

    ( ) 0v t =+

    ( ) ( )( ) 0pvvv t =++ o

    ( )( ) 0pevet

    =++

    ( ) ( )( )221 ve11p ==

    pressurepdensity

    speed

    total energy per unit

    volume

    v

    e

    8

    Equations of Fluid Dynamics

    Compressible Navier-Stokes equations

    Conservation equations for mass, momentum and energy

    with viscosity and heat conduction

    hyperbolic parabolic

    Incompressible Navier-Stokes

    equations

    parabolic elliptic

    0v

    =c

    M

    Euler equations

    gas dynamics

    hyperbolic

    Re

  • 7/31/2019 Computational Fluid Dynamics Introduction

    5/18

    9

    2. Finite Volume Schemes

    ( ) [ ]T,0Din0ufu t =+

    smoothpiecewiseboundary

    fr,

    j

    kjj

    j

    C

    kjCCCD

    ==U

    iC

    Discretization of space

    Grid

    10

    ( )( ) dtdSntxufuCuC nn j

    t

    t C

    n

    jj

    n

    jj +

    + =1

    ,1 r

    [ ]1nnj t,tCovernIntegratio +

    Evolution equations for mean values

    Direct approximation of the integral conservation laws:

    Finite volume scheme

    Basic part: Appropriate approximation of the flux,

    numerical flux

  • 7/31/2019 Computational Fluid Dynamics Introduction

    6/18

    11

    Finite Volume Scheme in One Dimension

    x

    t

    1ix ix 1+ix

    1+nt

    nt

    + +

    + +

    =+

    1n

    n

    1/2i

    1/2i

    1n

    n

    1/2i

    1/2i

    t

    t

    x

    x

    x

    t

    t

    x

    x

    t 0dxdtt))f(u(x,t)dx(x,u

    [ ] [ ]1nn1/2i1/2-i t,tx,xovernIntegratio ++

    12

    ))dtt,f(u(xt

    1esapproximatg

    )dxtu(x,x

    1esapproximatu

    1n

    n

    1/2i

    1/2i

    t

    t

    1/2i1/2i

    x

    x

    n

    n

    i

    +

    +

    ++

    )g-(gx

    tuu n1/2-i

    n

    1/2i

    n

    i

    1n

    i ++ =

    with

    Finite Volume Scheme Scheme in Conservation Form

  • 7/31/2019 Computational Fluid Dynamics Introduction

    7/18

    13

    3. Linear Advection Equation

    =+ auau xt ,0

    sticscharacteri

    ( ) ( ) adt

    tdxtxx == with:C

    :Solution

    satisfiesttxuufunctionA ,=

    ( )( ) xt uauttxudt

    d+=,

    CalongconstantSolution = uu

    14

    Solution of Initial Value Problem

    ( ) ( ) = xxqxu allfor0,

    x

    t

    P

    00 tax 0x

    ( )a

    dt

    tdx=

    ( ) ( ) txtaxqtxu ,allfor, =

  • 7/31/2019 Computational Fluid Dynamics Introduction

    8/18

    15

    Upwind Scheme

    x

    t

    1ix ix 1+ix

    1+nt

    nt

    Grid

    1forstable

    0

    :0

    1

    1

    +

    axt

    x

    uua

    t

    uu

    a

    n

    i

    n

    i

    n

    i

    n

    i

    (CFL-Condition)

    16

    CIR Method

    ( )

    ( )nin

    i

    n

    i

    n

    i

    n

    i

    n

    i

    n

    i

    n

    i

    n

    i

    n

    i

    n

    in

    i

    n

    i

    uuux

    ta

    uux

    tauu

    auu

    auu

    x

    tauu

    11

    11

    1

    1

    11

    22

    2

    ionReformulat

    0for

    0for

    (1946)ReesIsaacson,Courant,

    +

    ++

    +

    +

    +

    +

    =

    =

    dissipation

    central difference

  • 7/31/2019 Computational Fluid Dynamics Introduction

    9/18

    17

    Reformulation of the CIR-Method I, Godunovs Idea

    x

    u

    xi-1/2 xi+1/2 xi+3/2

    n

    iu

    [ ]1/2i1/2-inini x,xfor xu(x)u +=

    Godunovs Idea

    constantpiecewiseu n

    18

    1. Solve the initial value problem

    [ ]1/2i1/2-in

    i

    n

    n

    xt

    x,xfor xu(x)u

    with

    Rfr x(x)uu(x,0),0auu

    +=

    ==+

    x

    u

    xi-1/2 xi+1/2 xi+3/2

  • 7/31/2019 Computational Fluid Dynamics Introduction

    10/18

    19

    1ax

    t:conditionCFL,t)dxu(x,

    x

    1:u

    1/2i

    1/2i

    x

    x

    n

    i = +

    Result: CIR-method

    x

    u

    xi-1/2 xi+1/2 xi+3/2

    2. Average the exact solution

    20

    Reformulation of the CIR-Method II

    x

    t

    1ix ix 1+ix

    1+nt

    nt

    [ ] [ ]

    + +

    + +

    =+

    ++1n

    n

    1/2i

    1/2i

    1n

    n

    1/2i

    1/2i

    t

    t

    x

    x

    t

    t

    x

    x

    1nn1/2i1/2-i

    0t)dxdtau(x,t)dxu(x,

    t,tx,xovernIntegratio

  • 7/31/2019 Computational Fluid Dynamics Introduction

    11/18

    21

    n

    1/2-i

    n

    1/2i

    n

    i

    1n

    i gt-gtuxux ++ =

    with

    )u,g(ug:fluxNumerical

    )dtt,au(xt

    1esapproximatg

    )dxtu(x,x

    1esapproximatu

    1ii1/2i

    t

    t

    1/2i1/2i

    x

    x

    n

    n

    i

    1n

    n

    1/2i

    1/2i

    ++

    ++

    =

    +

    +

    22

    Upwind-type Flux Calculation

    )u(uax

    t)u(ua

    x

    t-uu

    formonconservatiinScheme

    uaua

    0aforau

    0aforau)u,g(ug

    n

    i

    n

    1i

    n

    1i

    n

    i

    n

    i

    1n

    i

    1i

    -

    i

    1i

    i

    1ii1/2i

    =

    +=

    ==

    +

    ++

    ++

    +

    ++

    Result: CIR-method

  • 7/31/2019 Computational Fluid Dynamics Introduction

    12/18

    23

    Reformation of the CIR-Method III

    Riemann Problem

    >

  • 7/31/2019 Computational Fluid Dynamics Introduction

    13/18

    25

    A matrixmm

    4. Systems of Advection Equations

    0=+ xt Auu

    eigenvectors

    = mrrrR ...21

    Diagonalisation ( )maadiagARR ,...,: 11 ==

    maaa

  • 7/31/2019 Computational Fluid Dynamics Introduction

    14/18

  • 7/31/2019 Computational Fluid Dynamics Introduction

    15/18

  • 7/31/2019 Computational Fluid Dynamics Introduction

    16/18

    31

    Riemann problem

    Example 1:

    ( )

    >

    shock wave

    32

    Riemann problem

    Example 2:

    ( )

    >+

    rarefaction wave

    1=t

    x1=

    t

    x

  • 7/31/2019 Computational Fluid Dynamics Introduction

    17/18

    33

    Solution of the Riemann problem

    waveshock:rl uu >

    ( )

    ( ) ( )

    lr

    lr

    r

    l

    uu

    ufufs

    st

    xu

    st

    xu

    txu

    =

    >